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Preface

Parameterized complexity theory provides a framework for a refined analysis
of hard algorithmic problems.

Classical complexity theory analyzes and classifies problems by the amount
of a resource, usually time or space, that is required by algorithms solving
them. It was a fundamental idea, going back to the work of Hartmanis and
Stearns in the early 1960s, to measure the required amount of the resource
as a function of the size of the input. This has led to a manageable vari-
ety of complexity classes and a clean-cut theory of intractability. However,
measuring complexity only in terms of the input size means ignoring any
structural information about the input instances in the resulting complexity
theory. Sometimes, this makes problems appear harder than they typically
are. Parameterized complexity theory takes a step backwards and measures
complexity not only in terms of the input size, but in addition in terms of a
parameter, which is a numerical value that may depend on the input in an
arbitrary way. The main intention is to address complexity issues in situations
where we know that the parameter is comparatively small.

Consider, for example, the problem of evaluating a database query. Its
input has two parts, a database and the query. Observe that these two parts
will usually differ in size quite significantly; the database will be much larger
than the query. A natural parameter for a parameterized complexity analysis
of this problem is the size of the query. As a more theoretically motivated
example, consider approximation schemes for optimization problems. Their
input consists of a problem instance and an error bound ε. A natural param-
eter is 1/ε. If we can accept an error of 5% in an approximation, we have a
parameter value 1/ε = 20 for our approximation scheme. Typical parameters
for many algorithmic problems on graphs are the tree width or the maximum
degree of the input graph. Numerous other examples of naturally parame-
terized problems can be found in other application areas such as automated
verification, artificial intelligence, or computational biology.

The central notion of parameterized complexity theory is fixed-parameter
tractability. It relaxes the classical notion of tractability, polynomial time solv-
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ability, by admitting algorithms whose “nonpolynomial behavior” is restricted
by the parameter.

Of course, algorithms have always been analyzed and optimized in terms
of many different input parameters, and no complexity theory was needed to
do this. The main contribution of the theory is to provide a framework for
establishing the intractability of certain problems. In the absence of techniques
for actually proving lower bounds for natural problems, the main goal of such
a theory is to classify problems into complexity classes by means of suitable
reductions. Since the parameterized theory is two-dimensional, depending not
only on the input size but also on the parameter, it is not surprising that it
leads to a much larger variety of complexity classes and to more complicated
reductions than the classical, one-dimensional complexity theory.

Besides providing a theory of intractability, parameterized complexity the-
ory also provides a theory of fixed-parameter tractability that had significant
impact on the design of algorithms. By consciously studying parameterized
problems from different areas, researchers were able to devise new general al-
gorithmic techniques for solving parameterized problems efficiently for small
parameter values and to put existing algorithmic ideas into a larger context.
Some of these general techniques are known as the method of bounded search
trees, kernelization, color coding, and dynamic programming on tree decom-
positions.

An aspect of parameterized complexity theory that has gained importance
more recently is its close connection with an area sometimes referred to as
exact exponential worst-case complexity analysis. This area is concerned with
exact algorithms1 for hard algorithmic problems that are better than the
trivial brute-force algorithms and corresponding (exponential) lower bounds
for the running time of such algorithms. The role of the parameter in this
context is to capture more precisely the main source of the (exponential)
complexity of a problem. For example, the complexity of the satisfiability
problem for formulas of propositional logic is better analyzed in terms of the
number of variables of the input formula than in terms of its size.

Parameterized complexity theory is a fairly new branch of complexity the-
ory. It was developed by Downey and Fellows in a series of ground breaking
articles in the early 1990s. In these articles, Downey and Fellows defined the
notion of fixed-parameter tractability, came up with suitable notions of reduc-
tions, defined the most important complexity classes, and proved a number
of fundamental completeness results. Since then, numerous other researchers
have contributed to the theory. Downey and Fellows’ 1999 monograph [83]
gives a fairly complete picture of the theory then. The development has not
slowed down since then, quite to the contrary. However, we feel that the field
has matured to a degree that it deserves a comprehensive state-of-the art
introduction, which we hope to provide by this book.

1“Exact” as opposed to “approximation” algorithms.
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Organization of This Book

In Chap. 1, we introduce the central notion of fixed-parameter tractability. We
give various characterizations of fixed-parameter tractability. Furthermore, we
explain one of the most basic algorithmic techniques for the design of fixed-
parameter tractable algorithms (fpt-algorithms for short), which is known as
the method of bounded search trees.

Intractability

Chapters 2–8 are devoted to the theory of fixed-parameter intractability. We
start by defining an appropriate notion of reduction in Chap. 2. Then we
turn to the question of what might be an analogue of the classical class NP
in the world of parameterized complexity. In Chap. 3, we define and study
the class W[P], which may be seen as such an analogue of NP. We develop a
completeness theory for this class and establish its various connections with
classical complexity theory.

Whereas natural problems in NP tend to be either in PTIME or NP-
complete, there are many natural parameterized problems in W[P] that nei-
ther are in FPT nor are W[P]-complete. To classify such problems, we have
to investigate the fine structure of the class W[P]. A skeleton for this fine
structure can be obtained from descriptive complexity theory, which analyzes
and classifies problems by the syntactic form of their definitions (in suitably
formalized languages as provided by mathematical logic). It leads to a nat-
ural hierarchy of classes within W[P], the so-called W-hierarchy. Essentially,
the levels of this hierarchy correspond to the number of alternations between
universal and existential quantifiers in definitions of their complete problems.
Many natural parameterized problems turn out to be complete for the first
or second level of this hierarchy. The W-hierarchy is introduced in Chap. 5
and is further studied in Chap. 7. There is another hierarchy that extends
beyond the boundaries of W[P], the so-called A-hierarchy. It may be seen as
an analogue of the polynomial hierarchy in the world of parameterized com-
plexity. The A-hierarchy is also introduced in Chap. 5 and is further studied
in Chap. 8. The first levels of the A-hierarchy and the W-hierarchy coincide
and are studied in detail in Chap. 6.

The necessary notions from mathematical logic and descriptive complex-
ity theory are introduced in Chap. 4. Logic plays an important role in this
book, not only in providing syntactical characterizations of the levels of the
main hierarchies of intractable parameterized complexity classes, but also in
algorithmic metatheorems, which state that all problems of a certain syntactic
form are tractable. A well-known example for such a theorem is Courcelle’s
theorem, stating that all problems definable in monadic second-order logic
are fixed-parameter tractable if parameterized by the tree width of the input
structure.
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Algorithmic Techniques

Chapters 9–14 are mostly devoted to advanced algorithmic techniques for
designing fpt-algorithms. Our emphasis is always on the general techniques
and not on optimizing the running times of algorithms for specific problems.

In Chap. 9 we study a technique known as kernelization. A kernelization al-
gorithm reduces a given instance of a parameterized problem to a (presumably
smaller) instance whose size is effectively bounded in terms of the parameter
alone and does not depend on the size of the original instance. Thus kernel-
ization is a form of preprocessing with an explicit performance guarantee. In
the same chapter, we study the application of linear programming techniques
to parameterized problems. So far, such techniques have only led to a few,
albeit powerful, fixed-parameter tractability results.

In Chap. 10, we introduce the automata-theoretic method, which typically
leads to fpt-algorithms, but not necessarily polynomial time algorithms. The
automata-theoretic method plays a very important role in the design of al-
gorithms for logic-based algorithmic problems, as they can be found, for ex-
ample, in automated verification. A general theorem that can be obtained
by automata-theoretic techniques states that the model-checking problem for
monadic second-order logic on trees is fixed-parameter tractable. We also
prove superexponential (actually, nonelementary) lower bounds for the run-
ning time of fpt-algorithms for this problem.

The following two chapters are devoted to algorithms on restricted classes
of graphs and structures, specifically graphs of bounded tree width, pla-
nar graphs, and graphs with excluded minors. Based on the fixed-parameter
tractability of the model-checking problem for monadic second-order logic on
trees, which is proved in Chap. 10 by automata-theoretic means, we prove
Courcelle’s metatheorem mentioned above and give a number of applications
of this theorem. We also (briefly) discuss the main algorithmic consequences
of Robertson and Seymour’s graph minor theory. Algorithms for planar graph
problems have always received a lot of attention from researchers in param-
eterized complexity theory, and very refined techniques have been developed
for designing fpt-algorithms on planar graphs. Some of these techniques can
be generalized to larger classes of graphs, for example, classes of bounded local
tree width. Chapter 12 is an introduction into this topic.

In Chap. 13, we study specific families of problems, homomorphism prob-
lems and embedding problems (also known as subgraph isomorphism prob-
lems). We obtain a complete classification of the complexity of certain re-
strictions of homomorphism problems, which essentially says that precisely
the restrictions to instances of bounded tree width are tractable. Remarkably,
for such problems fixed-parameter tractability and polynomial time solvabil-
ity coincide. To prove the fixed-parameter tractability of restricted embedding
problems, we introduce color coding, another general technique for designing
fpt-algorithms.
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Finally, in Chap. 14, we study the complexity of parameterized counting
problems. After introducing counting versions of the most important param-
eterized complexity classes, we focus on the counting versions of embedding
problems. We prove that counting paths or cycles in a graph is hard, even
though by the results of the previous chapter the decision problems are fixed-
parameter tractable. However, we show that the color coding technique of
the previous chapter provides randomized approximation schemes for these
counting problems.

Bounded Fixed-Parameter Tractability

The last two chapters of the book are devoted to a variant of fixed-parameter
tractability that restricts the dependence of the running time of fpt-algorithms
on the parameter. For instance, the dependence may be required to be singly
exponential or subexponential. In this way, we obtain a whole range of different
notions of bounded fixed-parameter tractability. The two most interesting of
these notions are exponential fixed-parameter tractability and subexponential
fixed-parameter tractability. We study these notions and the corresponding
intractability theories in Chaps. 15 and 16, respectively. Both theories have
interesting connections to classical complexity theory: The exponential theory
is related to limited nondeterminism and, specifically, the class NP[log2 n]
of problems that can be decided in polynomial time by a nondeterministic
algorithm that only uses log2 n nondeterministic bits. The subexponential
theory provides a framework for exponential worst-case complexity analysis.

The dependencies between the chapters of this book are shown in Fig. 0.1.
The two dashed arrows indicate very minor dependencies. In general, we have
tried to make the chapters as self-contained as possible. A reader familiar with
the basic notions of parameterized complexity theory should have no problem
starting with any chapter of this book and only occasionally going back to
the results of earlier chapters.

Throughout the book, we have provided exercises. Many of them are very
simple, just giving readers an opportunity to confirm what they have just
learned. Others are more challenging. We provide solution hints where we
consider them necessary. At the end of each chapter we include a “Notes”
section providing references for the results mentioned in the chapter and also
pointers to further readings. At the end of some chapters, we also include a
few open problems. It is not our intention to provide a comprehensive list of
open problems in the area. We have just included a few problems that we find
particularly interesting. We believe that most of them are quite difficult, some
being long-standing open problems in the area.

Prerequisites

We assume familiarity with the basic notions of complexity theory, logic, and
discrete mathematics. We provide an appendix with background material from
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Fig. 0.1. Dependencies among the chapters and sections of this book

classical complexity theory that may serve as a reference for the reader. Knowl-
edge of the appendix is no prerequisite for reading the book; the necessary
definitions and notations are always introduced in the main text. A brief intro-
duction to the relevant notions from logic and its connections with complexity
theory is given in Chap. 4.
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1

Fixed-Parameter Tractability

In this chapter, we introduce parameterized problems and the notion of
fixed-parameter tractability. We start with an informal discussion that high-
lights the main issues behind the definition of fixed-parameter tractability. In
Sect. 1.2, we begin the formal treatment. In Sect. 1.3, we consider a larger ex-
ample that introduces some of the most fundamental parameterized problems
and the most basic technique for establishing fixed-parameter tractability,
the method of bounded search trees. In Sect. 1.4 and Sect. 1.5 we exemplify
how the parameterized approach may help to gain a better understanding
of the complexity of fundamental algorithmic problems by considering ap-
plications in two different areas, approximation algorithms and automated
verification. Finally, in Sect. 1.6, we give several equivalent characterizations
of fixed-parameter tractability.

1.1 Introduction

Before we start our formal development of the theory, in this section we in-
formally discuss a few motivating examples. All notions discussed informally
in this introduction will be made precise later in this book.

The first example is the problem of evaluating a database query, which
we have already mentioned in the preface. To be a bit more precise, let us
say that we want to evaluate a conjunctive query ϕ in a relational database
D.1 Conjunctive queries form the most fundamental class of database queries,

1If the reader has never heard of “conjunctive queries” or “relational databases”
before, there is no need to worry. All that is required here is some vague idea about
“database query” and “database.” (For example, a database might store flights be-
tween airports, and a conjunctive query might ask if there is connection from Berlin
to Beijing with two stopovers.) Of course, the query will be written in some formal
query language, such as the language SQL, and thus is a well-defined mathematical
object. Its size is simply the number of symbols it contains.
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and many queries that occur in practice are conjunctive queries. Classical
complexity quickly tells us that this problem is intractable; it is NP-complete.

As a second example, we consider a central algorithmic problem in au-
tomated verification, the problem of checking that a finite state system, for
example, a circuit, has a certain property. The state space S of the system can
be described by a so-called Kripke structure, which is nothing but a vertex-
labeled directed graph. The property to be checked is typically specified as
a formula ϕ in a temporal logic, for example, linear temporal logic LTL.2

Then the problem is to decide whether the structure S satisfies the formula
ϕ. This problem is known as the LTL model-checking problem. Again, classical
complexity tells us that the problem is intractable; it is PSPACE-complete.

The two problems are fairly similar, and they both lend themselves natu-
rally to a parameterized complexity analysis. As we explained in the introduc-
tion, in parameterized complexity theory the complexity of a problem is not
only measured in terms of the input size, but also in terms of a parameter.
The theory’s focus is on situations where the parameter can be assumed to
be small. The inputs of both the query evaluation problem and the model-
checking problem consist of two parts, which typically have vastly different
sizes. The database and the state space are usually very large, whereas the
query and the LTL-formula tend to be fairly small. As parameters, we choose
the size of the query and the size of the formula. In the following discussion,
we denote the parameter by k and the input size by n. Note that the input
size n will usually be dominated by the size of the database and the size of
the state space, respectively.

It is easy to show that the query evaluation problem can be solved in
time O(nk). Furthermore, the model-checking problem can be solved in time
O(k · 22k · n). The latter result requires more effort; we will reconsider it in
Sect. 1.5 and again in Sect. 10.1. In both cases, the constants hidden in the
O( · ) notation (“big-Oh notation”) are fairly small. At first sight, these results
look very similar: Both running times are exponential, and both are polyno-
mial for fixed k. However, there is an important difference between the two
results: Let us assume that n is large and k is small, say, k = 5. Then an
exponent k in the running time, as in O(nk), is prohibitive, whereas an expo-
nential factor 22k as in O(k ·22k ·n) may be unpleasant, but is acceptable for a
problem that, after all, is PSPACE-complete.3 In the terminology of parame-
terized complexity theory, the LTL model-checking problem is fixed-parameter
tractable.

Up to this point, except for the occasional use of the term “parameter,” the
discussion did not require any parameterized complexity theory. As a matter

2Again, there is no need to know about Kripke structures or temporal logic here.
A vague intuition of “systems” and “specification languages” is sufficient.

3Actually, in practice the dominant factor in the k · 22k · n running time of the
LTL model-checking algorithm is not the exponential 22k, but the size n of the state
space.
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of fact, researchers in database theory and automated verification were well
aware of the issues we discussed above before parameterized complexity was
first introduced. (The LTL model-checking algorithm due to Lichtenstein and
Pnueli was published in 1985.) But now we ask if the conjunctive query eval-
uation problem is also fixed-parameter tractable, that is, if it can be solved
by an algorithm with a similar running time as the LTL model-checking algo-
rithm, say, 2O(k) ·n or 2p(k) ·q(n) for some polynomials p(X), q(X), or at least

22k · q(n). Classical complexity provides us with no means to support a nega-
tive answer to this question, and this is where the new theory of parameterized
intractability is needed. To cut the story short, the conjunctive query evalua-
tion problem can be shown to be complete for the parameterized complexity
class W[1]. This result, which will be proved in Chap. 6, can be interpreted
as strong evidence that the problem is not fixed-parameter tractable.

As a third example of a parameterized problem we consider the satisfiabil-
ity problem for formulas of propositional logic. We parameterize this problem
by the number of variables of the input formula. Again denoting the parameter
by k and the size of the input by n, this problem can clearly be solved in time
O(2k · n) and hence is fixed-parameter tractable. However, this problem is of
a different nature from the parameterized problems we have discussed so far,
because here the parameter cannot be expected to be small in typical appli-
cations. If, in some specific application, we had to solve large instances of the
satisfiability problem with few variables, then the fixed-parameter tractabil-
ity would help, but such a scenario seems rather unlikely. The purpose of the
parameterization of the satisfiability problem by the number of variables is to
obtain a more precise measure for the “source of the (exponential) complex-
ity” of the problem, which is not the size of the input formula, but the number
of variables. The typical question asked for such parameterizations is not if
the problem is fixed-parameter tractable, but if it can be solved by (exponen-
tial) algorithms better than the trivial brute-force algorithms. Specifically,
we may ask if the satisfiability problem can be solved in time 2o(k) · n. Here
parameterized complexity theory is closely connected with exact exponential
(worst-case) complexity analysis. We will give an introduction into this area
in the last chapter of this book.

1.2 Parameterized Problems and Fixed-Parameter
Tractability

We start by fixing some notation and terminology: The set of all integers is
denoted by Z, the set of nonnegative integers by N0, and the set of natural
numbers (that is, positive integers) by N. For integers n, m with n ≤ m, we
let [n, m] := {n, n + 1, . . . , m} and [n] := [1, n]. Unless mentioned explicitly
otherwise, we encode integers in binary.

As is common in complexity theory, we describe decision problems as lan-
guages over finite alphabets Σ. To distinguish them from parameterized prob-



4 1 Fixed-Parameter Tractability

lems, we refer to sets Q ⊆ Σ∗ of strings over Σ as classical problems. We
always assume Σ to be nonempty.

Definition 1.1. Let Σ be a finite alphabet.
(1) A parameterization of Σ∗ is a mapping κ : Σ∗ → N that is polynomial

time computable.
(2) A parameterized problem (over Σ) is a pair (Q, κ) consisting of a set Q ⊆

Σ∗ of strings over Σ and a parameterization κ of Σ∗. �

Example 1.2. Let Sat denote the set of all satisfiable propositional for-
mulas, where propositional formulas are encoded as strings over some finite
alphabet Σ. Let κ : Σ∗ → N be the parameterization defined by

κ(x) :=

⎧⎪⎨⎪⎩
number of variables of x, if x is (the encoding of) a propositional

formula (with at least one variable)4,

1, otherwise,

for x ∈ Σ∗. We denote the parameterized problem (Sat, κ) by p-Sat. �

If (Q, κ) is a parameterized problem over the alphabet Σ, then we call
strings x ∈ Σ∗ instances of Q or (Q, κ) and the numbers κ(x) the correspond-
ing parameters. Usually, we represent a parameterized problem (Q, κ) in the
form

Instance: x ∈ Σ∗.
Parameter: κ(x).

Problem: Decide whether x ∈ Q.

For example, the problem p-SAT would be represented as follows:

p-SAT
Instance: A propositional formula α.

Parameter: Number of variables of α.
Problem: Decide whether α is satisfiable.

As in this case, the underlying alphabet will usually not be mentioned explic-
itly.

As a second example, we consider a parameterized version of the classical
Independent-Set problem. Recall that an independent set in a graph is a set
of pairwise non-adjacent vertices. An instance of Independent-Set consists
of a graph G and a positive integer k; the problem is to decide if G has an
independent set of k elements.

4Our notation concerning propositional logic will be explained in detail in
Sect. 4.1. In particular, we will not admit Boolean constants in propositional formu-
las, so every formula has at least one variable.
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Example 1.3. A natural parameterization κ of Independent-Set is de-
fined by κ(G, k) = k. It yields the following parameterized problem:

p-Independent-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has an independent set of cardi-

nality k.
�

Before we define fixed-parameter tractability, let us briefly comment on the
technical condition that a parameterization be polynomial time computable.
For almost all natural parameterizations, the condition will obviously be sat-
isfied. In any case, we can always make the parameter an explicit part of the
input: If Q ∈ Σ∗ and K : Σ∗ → N is a function, then we can consider the
problem

Q′ := {(x, k) | x ∈ Q, and k = K(x)} ⊆ Σ∗ × N,

with the parameterization κ defined by κ(x, k) := k. Indeed, parameterized
problems are often defined as subsets of Σ∗×N, with the parameter being the
second component of the instance. A typical example is p-Independent-Set.

Fixed-Parameter Tractability

Recall that the motivation for the notion of fixed-parameter tractability is
that if the parameter is small then the dependence of the running time of an
algorithm on the parameter is not so significant. A fine point of the notion is
that it draws a line between running times such as 2k · n on one side and nk

on the other, where n denotes the size of the input and k the parameter.
The length of a string x ∈ Σ∗ is denoted by |x|.

Definition 1.4. Let Σ be a finite alphabet and κ : Σ∗ → N a parameteriza-
tion.
(1) An algorithm A with input alphabet Σ is an fpt-algorithm with respect to

κ if there is a computable function f : N→ N and a polynomial p ∈ N0[X ]
such that for every x ∈ Σ∗, the running time of A on input x is at most

f
(
κ(x)

)
· p

(
|x|

)
.

(2) A parameterized problem (Q, κ) is fixed-parameter tractable if there is an
fpt-algorithm with respect to κ that decides Q.
FPT denotes the class of all fixed-parameter tractable problems. �

If the parameterization is clear from the context, we do not explicitly
mention it and just speak of fpt-algorithms. We often use a less explicit ter-
minology when bounding the running time of an algorithm or the complexity
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of a problem. For example, we might say that an algorithm is an fpt-algorithm
if its running time is f(κ(x)) · |x|O(1) for some computable function f . For-
mally, nO(1) denotes the class of all polynomially bounded functions on the
natural numbers. The reader not familiar with the O( · ) (“big-Oh”) and o( · )
(“little-oh”) notation will find its definition in the Appendix. Occasionally,
we also use the corresponding Ω( · ) (“big-Omega”) and ω( · ) (“little-omega”)
notation for the corresponding lower bounds and the Θ( · ) (“big-Theta”) no-
tation for simultaneous upper and lower bounds, which all are explained in
the Appendix as well.

Example 1.5. The parameterized satisfiability problem p-Sat is fixed-para-
meter tractable. Indeed, the obvious brute-force search algorithm decides if a
formula α of size m with k variables is satisfiable in time O(2k ·m). �

Clearly, if Q ∈ PTIME then (Q, κ) ∈ FPT for every parameterization κ.
Thus fixed-parameter tractability relaxes the classical notion of tractability,
polynomial time decidability.

Another trivial way of generating fixed-parameter tractable problems is
shown in the following example:

Example 1.6. Let Σ be a finite alphabet and κsize : Σ∗ → N the parameter-
ization defined by

κsize(x) := max{1, |x|}

for all x ∈ Σ∗. (Remember that parameterizations always take nonnegative
values.) Then for every decidable set Q ⊆ Σ∗, the problem (Q, κsize) is fixed-
parameter tractable. �

The example can be generalized to the following proposition. A function
f : N → N is nondecreasing (increasing) if for all m, n ∈ N with m < n we
have f(m) ≤ f(n) (f(m) < f(n), respectively). A function f is unbounded if
for all n ∈ N there exists an m ∈ N such that f(m) ≥ n.

Proposition 1.7. Let g : N → N be a computable nondecreasing and un-
bounded function, Σ a finite alphabet, and κ : Σ∗ → N a parameterization
such that κ(x) ≥ g(|x|) for all x ∈ Σ∗.

Then for every decidable set Q ⊆ Σ∗, the problem (Q, κ) is fixed-parameter
tractable.

Proof: Let h : N→ N be defined by

h(n) :=

{
max{m ∈ N | g(m) ≤ n}, if n ≥ g(1),

1, otherwise.

Since g is nondecreasing and unbounded, h is well-defined, and since g is
nondecreasing and computable, h is also computable. Observe that h is non-
decreasing and that h(g(n)) ≥ n for all n ∈ N. Thus for all x ∈ Σ∗ we have
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h(κ(x)) ≥ h(g(|x|)) ≥ |x|.

Let f : N→ N be a computable function such that x ∈ Q is decidable in time
f(|x|). Without loss of generality we may assume that f is nondecreasing.
Then x ∈ Q is decidable in time f(h(κ(x)), and hence (Q, κ) is fixed-parameter
tractable. 
�

Thus every parameterized problem where the parameter increases mono-
tonically with the size of the input is fixed-parameter tractable. The following
example illustrates the other extreme of a parameterization that does not
grow at all:

Example 1.8. Let Σ be a finite alphabet and κone : Σ∗ → N the parameter-
ization defined by

κone(x) := 1.

for all x ∈ Σ∗.
Then for every Q ⊆ Σ∗, the problem (Q, κone) is fixed-parameter tractable

if and only if Q is polynomial time decidable. �

The parameterizations κsize and κone introduced in Examples 1.6 and 1.8
will be quite convenient later to construct “pathological” examples of param-
eterized problems with various properties.

Exercise 1.9. Prove that the condition that g is nondecreasing is necessary
in Proposition 1.7. That is, construct a decidable problem Q and a param-
eterization κ such that (Q, κ) �∈ FPT and κ(x) ≥ g(|x|) for all x and some
function g that is computable and unbounded, but not nondecreasing.
Hint: Let Q be a problem that only contains strings of even length and that
is decidable, but not decidable in polynomial time. Let κ(x) := κone(x) if |x|
is even and κ(x) := |x| if |x| is odd. �

Parameterized complexity theory provides methods for proving problems
to be fixed-parameter tractable, but also gives a framework for dealing with
apparently intractable parameterized problems in a similar way as the theory
of NP-completeness does in classical complexity theory.

A very simple criterion for fixed-parameter intractability is based on the
observation that the slices of a fixed-parameter tractable problem are solvable
in polynomial time:

Definition 1.10. Let (Q, κ) be a parameterized problem and � ∈ N. The �th
slice of (Q, κ) is the classical problem

(Q, κ)� := {x ∈ Q | κ(x) = �}. �

Proposition 1.11. Let (Q, κ) be a parameterized problem and � ∈ N. If
(Q, κ) is fixed-parameter tractable, then (Q, κ)� ∈ PTIME.

We leave the simple proof to the reader (recall that κ is computable in poly-
nomial time).
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Example 1.12. Recall that a graph G = (V, E) is k-colorable, where k ∈ N,
if there is a function C : V → [k] such that C(v) �= C(w) for all {v, w} ∈ E.
We parameterize the colorability problem for graphs by the number of colors:

p-Colorability
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G is k-colorable.

The third slice of this problem is the classical 3-colorability problem, which
is well-known to be NP-complete. Hence, by the preceding proposition,
p-Colorability is not fixed-parameter tractable unless PTIME = NP. �

Unfortunately, for most parameterized problems that are believed to be
intractable there is no such easy reduction to the classical theory of NP-
completeness. For example, it is widely believed that p-Independent-Set is
not fixed-parameter tractable, but all slices of the problem are decidable in
polynomial time.

Some remarks concerning the definition of fixed-parameter tractability are
in order. We allow an arbitrary computable function f to bound the depen-
dence of the running time of an fpt-algorithm on the parameter. While indeed
a running time such as

O(2k · n),

where k denotes the parameter and n the size of the instance, can be quite
good for small values of k, often better than the polynomial O(n2), a running
time of, say,

2222
22

k

· n,

cannot be considered tractable even for k = 1. The liberal definition of fixed-
parameter tractability is mainly justified by the following two arguments,
which are similar to those usually brought forward to justify polynomial time
as a model of classical tractability:

(1) FPT is a robust class that does not depend on any particular machine
model, has nice closure properties, and has a mathematically feasible the-
ory.

(2) “Natural” problems in FPT will have “low” parameter dependence.

While by and large, both of these arguments are valid, we will see later in
this book that (2) has some important exceptions. Indeed, we will see in
Chap. 10 that there are natural fixed-parameter tractable problems that can
only be solved by fpt-algorithms with a nonelementary parameter dependence.
In Chap. 15, we will investigate more restrictive notions of fixed-parameter
tractability.
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However, among the known fixed-parameter tractable problems, problems
that require a larger than exponential parameter dependence are rare excep-
tions. Furthermore, much of the theory is concerned with proving intractabil-
ity (more precisely, hardness results), and, of course, such results are even
stronger for our liberal definition.

Let us also mention that Downey and Fellows’ standard notion of fixed-
parameter tractability does not even require the parameter dependence of
an fpt-algorithm to be computable. However, the notion of fixed-parameter
tractability adopted here (called strongly uniform fixed-parameter tractability
in [83]) leads to a more robust theory, which for all natural problems is the
same anyway.

We want to clarify a possible source of ambiguity in our notation. Often
the instances of problems are taken from a certain class of instances, such as
the class of planar graphs. Suppose we have a parameterized problem (Q, κ)
over the alphabet Σ and then consider the restriction of Q to a class I ⊆ Σ∗

of instances. Formally, this restriction is the problem (I ∩ Q, κ). Informally,
we usually introduce it as follows:

Instance: x ∈ I.
Parameter: κ(x).

Problem: Decide whether x ∈ Q.

Let us emphasize that this notation specifies the same problem as:

Instance: x ∈ Σ∗.
Parameter: κ(x).

Problem: Decide whether x ∈ Q ∩ I.

Example 1.13. For every class A of propositional formulas, we consider the
following restriction of the problem p-Sat:

p-Sat(A)
Instance: α ∈ A.

Parameter: Number of variables in α.
Problem: Decide whether α is satisfiable. �

We close this section with a technical remark that will frequently be used
tacitly. Many parameterized problems, for instance, p-Independent-Set,
have the following form:

Instance: x ∈ Σ∗ and k ∈ N.
Parameter: k.

Problem: . . . .
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Note that the size of an instance of such a problem is of order |x| + log k.5

Nevertheless, a simple computation shows that the problem is fixed-parameter
tractable if and only if for some computable function f it can be decided in
time f(k) · |x|O(1) (instead of f(k) · (|x|+ log k)O(1)).

Similarly, a problem of the form

Instance: x ∈ Σ∗ and y ∈ (Σ′)∗.
Parameter: |y|.

Problem: . . . .

is in FPT if and only if it can be solved in time f(|y|) · |x|O(1).

1.3 Hitting Sets and the Method of Bounded Search
Trees

Let us consider the following problem, which we may call the panel problem:
We have to form a small panel of leading experts in some research area A that
we do not know well. We only have a publication database for that area at
our disposal.6 Here are three ideas of approaching the problem:

(1) We could try to find a small panel of scientists such that every paper
in the area A is coauthored by some scientist of the panel. Clearly, the
members of such a panel must know the area very well.

(2) We could try to find a small panel such that everybody working in the
area has a joint publication with at least one panel member. Then the
panel members should have a good overview over the area (maybe not as
good as in (1), but still good enough).

(3) If neither (1) nor (2) works out, we could try to form a panel of scientists
working in the area such that no two of them have a joint publication. To
guarantee a certain breadth the panel should have a reasonable size.

But how can we find such a panel for either of the three approaches, given
only the publication database? As trained complexity theorists, we model the
problems we need to solve by the well-known hitting set, dominating set, and
independent set problems.

For approach (1), we consider the collaboration hypergraph of the publi-
cation database. A hypergraph is a pair H = (V, E) consisting of a set V
of vertices and a set E of hyperedges (sometimes also called edges), each of
which is a subset of V . Thus graphs are hypergraphs with (hyper)edges of
cardinality two. A hitting set in a hypergraph H = (V, E) is a set S ⊆ V

5If we write log n where an integer is expected, we mean �log n�.
6If the reader feels the need for further motivation, here are two suggestions:

Think of being a publisher who wants to start a new book series in the area A and
is looking for an editorial board, or think of being a university official who wants to
evaluate the A department with the help of a panel of external experts.
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of vertices that intersects each hyperedge (that is, S ∩ e �= ∅ for all e ∈ E).
Hitting-Set is the problem of finding a hitting set of a given cardinality k
in a given hypergraph H. The vertices of the collaboration hypergraph are all
authors appearing in the publication database, and the hyperedges are all sets
of authors of publications in the database. Approach (1) to the panel problem
amounts to solving Hitting-Set for the collaboration hypergraph and the
desired panel size k.

For approaches (2) and (3), all the information we need is contained in the
collaboration graph. The vertices of this graph are again all authors, and there
is an edge between two authors if they have a joint publication.7 Recall that
a dominating set in a graph G = (V, E) is a set S ⊆ V of vertices such that
every vertex in V \ S is adjacent to a vertex in S. Dominating-Set is the
problem of finding a dominating set of a given cardinality k in a given graph
G. Approach (2) to the panel problem amounts to solving Dominating-Set
for the collaboration graph and panel size k. Finally, approach (3) to the panel
problem amounts to solving Independent-Set for the collaboration graph
and panel size k.

Unfortunately, all three problems are NP-complete. At first sight, this
suggests that unless the publication database is fairly small there is not much
hope for solving the panel problem with any of the three approaches. However,
we only have to solve the problem for a small panel size k. We parameterize
the problems by k and consider the following parameterized problems:

p-Hitting-Set
Instance: A hypergraph H and k ∈ N.

Parameter: k.
Problem: Decide whether H has a hitting set of k elements.

p-Dominating-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a dominating set of k ele-

ments.

We have already defined p-Independent-Set in Example 1.3.
If we assume the size of the panel to be small, a good fpt-algorithm for

any of the three problems would let us solve the panel problem with the
corresponding idea. Unfortunately, we will see later in this book that most
likely none of the three problems is fixed-parameter tractable.

A great strength of the parameterized approach to the design of algorithms
is its flexibility. If the first, obvious parameterization of a problem has been

7In hypergraph-theoretical terms, the collaboration graph is the primal graph of
the collaboration hypergraph.
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classified as “intractable,” there is no need to give up. We can always look for
further, maybe “hidden,” parameters. In our example, we notice that we can
expect the hyperedges of the collaboration hypergraph, that is, the author
sets of publications in our database, to be fairly small. This suggests the
following more-refined parameterization of the hitting set problem (we denote
the cardinality of a finite set M by |M |):

p-card-Hitting-Set
Instance: A hypergraph H = (V, E) and k ∈ N.

Parameter: k + d, where d := max{|e| | e ∈ E}.
Problem: Decide whether H has a hitting set of k elements.

What we actually would like to do here is parameterize the problem by two
parameters, k and d. However, admitting several parameters would further
complicate the theory, and to avoid this we can use the sum of all intended
parameters as the only actual parameter. We do the same whenever we con-
sider problems with several parameters. This is sufficient for all our purposes,
and it keeps the theory feasible.

The size of a hypergraph H = (V, E) is the number

‖H‖ := |V |+
∑
e∈E

|e|,

this roughly corresponds to the size of a reasonable representation of H.8

Theorem 1.14. p-card-Hitting-Set is fixed-parameter tractable. More pre-
cisely, there is an algorithm solving Hitting-Set in time

O(dk · ‖H‖).

Proof: Without loss of generality, we always assume that d ≥ 2. For hyper-
graphs with hyperedges of cardinality at most 1, the hitting set problem is
easily solvable in linear time.

We apply a straightforward recursive algorithm. Let e be a hyperedge of the
input hypergraph H. We know that each hitting set of H contains at least one
vertex in e. We branch on these vertices: For v ∈ e, let Hv be the hypergraph
obtained from H by deleting v and all hyperedges that contain v. Then H has
a k-element hitting set that contains v if and only if Hv has a (k− 1)-element
hitting set. Thus H has a k-element hitting set if and only if there is a v ∈ e
such that Hv has a (k−1)-element hitting set. A recursive algorithm based on
this observation is displayed as Algorithm 1.1. The algorithm returns true if
the input hypergraph has a hitting set of cardinality k and false otherwise.

8As our machine model underlying the analysis of concrete algorithms we use
random access machines with a standard instruction set and the uniform cost mea-
sure (cf. the Appendix). The assumption underlying the definition of the size of a
hypergraph is that each vertex can be stored in one or a constant number of memory
cells. See p. 74 in Chap. 4 for a detailed discussion of the size of structures.
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HS(H, k)
// H = (V, E) hypergraph, k ≥ 0
1. if |V | < k then return false
2. else if E = ∅ then return true
3. else if k = 0 then return false
4. else

5. choose e ∈ E
6. for all v ∈ e do

7. Vv ← V \ {v}; Ev ← {e ∈ E | v �∈ e}; Hv ← (Vv, Ev)
8. if HS(Hv, k − 1) then return true
9. return false

Algorithm 1.1. A recursive hitting set algorithm

The correctness of the algorithms follows from the discussion above. To
analyze the running time, let T (k, n, d) denote the maximum running time
of HS(H′, k′) for H′ = (V ′, E′) with ‖H′‖ ≤ n, max{|e| | e ∈ E′} ≤ d, and
k′ ≤ k. We get the following recurrence:

T (0, n, d) = O(1) (1.1)

T (k, n, d) = d · T (k − 1, n, d) + O(n) (1.2)

(for n, k ∈ N). Here the term d · T (k − 1, n, d) accounts for the at most d
recursive calls in line 8. The hypergraph Hv can easily be computed in time
O(n), and all other commands can be executed in constant time. Let c ∈ N

be a constant such that the term O(1) in (1.1) and the term O(n) in (1.2) are
bounded by c · n. We claim that for all d ≥ 2 and k ≥ 0,

T (k, n, d) ≤ (2dk − 1) · c · n. (1.3)

We prove this claim by induction on k. For k = 0, it is immediate by the
definition of c. For k > 0, we have

T (k, n, d) ≤ d · T (k − 1, n, d) + c · n
≤ d · (2dk−1 − 1) · c · n + c · n
= (2dk − d + 1) · c · n
≤ (2dk − 1) · c · n.

This proves (1.3) and hence the theorem. 
�

Exercise 1.15. Modify algorithm HS(H, k) in such a way that it returns a
hitting set of H of size at most k if such a hitting set exists and nil otherwise
and that the running time remains O(dk · ‖H‖). �

The recursive algorithm described in the proof exhaustively searches for
a hitting set of size at most k. Of course, instead of recursive, such a search
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can also be implemented by explicitly building a search tree (which then
corresponds to the recursion tree of the recursive version). A nonrecursive
implementation that traverses the tree in a breadth-first manner rather than
depth-first (as the recursive algorithm) may be preferable if we are interested
in a hitting set of minimum cardinality (a minimum hitting set for short). The
important fact is that the search tree is at most d-ary, that is, every node has
at most d children, and its height is at most k. (The height of a tree is the
number of edges on the longest path from the root to a leaf.) Thus the size of
the tree is bounded in terms of the parameter k + d. This is why the method
underlying the algorithm is often called the method of bounded search trees.

The following example illustrates the construction of the search tree:

Example 1.16. Let

H :=
(
{a, b, c, d, e, f, g, h}, {e1, . . . , e5}

)
,

where e1 := {a, b, c}, e2 := {b, c, d}, e3 := {c, e, f}, e4 := {d, f}, and e5 :=
{d, g}. The hypergraph is displayed in Fig. 1.2.

a

b

c

d

e f
g

he1

e2

e3 e4
e5

Fig. 1.2. The hypergraph of Example 1.16

The search tree underlying the execution of our algorithm on input (H, 3)
is displayed in Fig. 1.3. We assume that on all branches of the tree the edges
are processed in the same order e1, . . . , e5. Each inner node of the tree is
labeled by the hyperedge e processed at that node, and each edge of the tree
is labeled by the vertex v ∈ e that determines the next recursive call. We leave
it to the reader to compute the subhypergraphs Hv for which the recursive
calls are made. The color of a leaf indicates the return value: It is true for
black and gray leaves and false for white leaves. Each black or gray leaf
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corresponds to a hitting set of H, which consists of the vertices labeling the
edges on the path from the root to the leaf. A leaf is black if this hitting set
is minimal with respect to set inclusion. �

e1

e2

a

e3

b

c e f

e4

c

d f

e3

d
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b

e4

c
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e

d f

e5

f

d g

e4

c

d

e5

f

d g

Fig. 1.3. A search tree

For later reference, we note that a slight modification of our hitting set
algorithm yields the following lemma.

Lemma 1.17. There is an algorithm that, given a hypergraph H and a nat-
ural number k, computes a list of all minimal (with respect to set inclusion)
hitting sets of H of at most k elements in time

O(dk · k · ‖H‖),

where d is the maximum hyperedge cardinality. The list contains at most dk

sets.

Proof: Consider the algorithm EnumerateHS displayed as Algorithm 1.4.

Claim 1. Let H = (V, E) be a hypergraph and k ∈ N0. Then

EnumerateHS(H, k, ∅)

returns a set S of hitting sets of H such that each minimal hitting set of H
of cardinality at most k appears in S.

Proof: By induction on the number |E| of hyperedges of H we prove the
slightly stronger statement that for all sets X disjoint from V ,

EnumerateHS(H, k, X)

returns a set S of sets such that:
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EnumerateHS(H, k, X)
// H = (V, E) hypergraph, k ≥ 0, set X of vertices (not of H)
1. if E = ∅ then return {X}
2. else if k = 0 then return ∅
3. else

4. choose e ∈ E
5. S ← ∅
6. for all v ∈ e do

7. Vv ← V \ {v}; Ev ← {e ∈ E | v �∈ e}; Hv ← (Vv, Ev)
8. S ← S ∪ EnumerateHS(Hv, k − 1, X ∪ {v})
9. return S

Algorithm 1.4. An algorithm enumerating hitting sets

(i) For all S ∈ S we have X ⊆ S, and the set S \X is a hitting set of H of
cardinality at most k.

(ii) For each minimal hitting set S of H of cardinality at most k the set S∪X
is contained in S.

This is obvious for |E| = 0, because the only minimal hitting set of a hyper-
graph with no hyperedges is the empty set.

So suppose that |E| > 0 and that the statement is proved for all hyper-
graphs with fewer hyperedges. Let S be the set returned by the algorithm. To
prove (i), let S ∈ S. Let e be the edge chosen in line 4 and v ∈ e such that
S enters the set S in the corresponding execution of line 8, that is, S ∈ Sv,
where Sv is the set returned by EnumerateHS(Hv, k − 1, X ∪ {v}). By the
induction hypothesis, X ∪ {v} ⊆ S and S \ (X ∪ {v}) is a hitting set of Hv.
Then e′ ∩ (S \X) �= ∅ for all edges e′ ∈ Ev and also for all edges e′ ∈ E \Ev,
because v ∈ S and v /∈ X .

To prove (ii), let S be a minimal hitting set of H of cardinality at most k.
Note that the existence of such a set implies k > 0 because E �= ∅. Let e be
the hyperedge chosen by the algorithm in line 4 and v ∈ S ∩ e, and let Sv be
the set returned by the recursive call EnumerateHS(Hv, k − 1, X ∪ {v}) in
line 8.

S \ {v} is a minimal hitting set of the hypergraph Hv. Hence by the
induction hypothesis,

S ∪X = (S \ {v}) ∪ (X ∪ {v}) ∈ Sv ⊆ S.

This proves (ii) and hence the claim. �

The analysis of the algorithm is completely analogous to the analysis of
the algorithm HS in the proof of Theorem 1.14, only the constant c changes.
Hence the running time is O(dk · ‖H‖).

As the search tree traversed by the algorithm is a d-ary tree of height k,
it has at most dk leaves, which implies that the set S of hitting sets returned
by the algorithm has cardinality at most dk. But not all hitting sets in S are
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necessarily minimal; we only know that all minimal hitting sets of cardinality
at most k appear in S. However, we can easily test in time O(k ·n) if a hitting
set of H of cardinality k is minimal. Thus we can extract a list of all minimal
hitting sets from S in time O(|S| · k · n) = O(dk · k · n). 
�

Before we give further applications of the method of bounded search trees,
let us briefly return to our panel problem. The reader may object that the
algorithm of Theorem 1.14, though an fpt-algorithm, is still not very efficient.
After all, there may be publications with ten authors or more, and if the panel
is supposed to have 10 members, this yields an unpleasantly large constant
factor of 1010. Note, however, that a simple heuristic optimization will improve
the algorithm considerably if most hyperedges of the input hypergraph are
small and only a few are a bit larger: We first sort the hyperedges of the
hypergraph by cardinality and then process them in this order. Then chances
are that the algorithm stops before it has to branch on the large hyperedges,
and even if it has to branch on them this will only happen close to the leaves
of the tree. In particular, in our collaboration hypergraph, probably only few
papers will have many authors.

For approach (1) to the panel problem, we have thus constructed a rea-
sonable algorithm. How about (2) and (3), that is, p-Dominating-Set and
p-Independent-Set on the collaboration graph? Note that the fact that
the maximum hyperedge cardinality d can be expected to be small has no
impact on the collaboration graph. To see this, observe that for every collab-
oration graph G there is a matching collaboration hypergraph with maximum
edge cardinality 2: the graph G itself viewed as a hypergraph. As we shall
see below, an important parameter for the Dominating-Set and Independ-
ent-Set problems is the degree of the input graph. Unfortunately, we cannot
expect the degree of the collaboration graph, that is, the maximum number
of coauthors of an author in the publication database, to be small.

An immediate consequence of Theorem 1.14 is that the hitting set problem
restricted to input hypergraphs of bounded hyperedge cardinality is fixed-
parameter tractable:

Corollary 1.18. For every d ≥ 1, the following problem is fixed-parameter
tractable:

p-d-Hitting-Set
Instance: A hypergraphH = (V, E) with max{|e| | e ∈ E} ≤

d and k ∈ N.
Parameter: k.

Problem: Decide whether H has a hitting set of k elements.

A vertex cover of a graph G = (V, E) is a set S ⊆ V of vertices such that
for all edges {v, w} ∈ E either v ∈ S or w ∈ S. The parameterized vertex
cover problem is defined as follows:
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p-Vertex-Cover
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a vertex cover of k elements.

As graphs are hypergraphs of hyperedge cardinality 2, Theorem 1.14 yields:

Corollary 1.19. p-Vertex-Cover is fixed-parameter tractable. More pre-
cisely, there is an algorithm solving p-Vertex-Cover in time O(2k · ‖G‖).

The degree deg(v) of a vertex v in a graph G = (V, E) is the number of
edges incident with v. The (maximum) degree of G is deg(G) := max{deg(v) |
v ∈ V }. Consider the following refined parameterization of Dominating-Set:

p-deg-Dominating-Set
Instance: A graph G = (V, E) and k ∈ N.

Parameter: k + deg(G).
Problem: Decide whether G has a dominating set of k ele-

ments.

To prove the following corollary of Theorem 1.14, observe that the domi-
nating sets of a graph G = (V, E) are precisely the hitting sets of the hyper-
graph(

V, {ev | v ∈ V }
)
, where ev := {v} ∪

{
w ∈ V

∣∣ {v, w} ∈ E
}

for v ∈ V.

Corollary 1.20. p-deg-Dominating-Set is fixed-parameter tractable. More
precisely, there is an algorithm solving Dominating-Set in time

O((d + 1)k · ‖G‖).

A different application of the method of bounded search trees shows that
the refined parameterization of Independent-Set by the degree is also fixed-
parameter tractable.

p-deg-Independent-Set
Instance: A graph G = (V, E) and k ∈ N.

Parameter: k + deg(G).
Problem: Decide whether G has an independent set of k ele-

ments.

Exercise 1.21. Prove that p-deg-Independent-Set is fixed-parameter trac-
table.
Hint: Construct the first k levels of a search tree that, if completed, describes
all maximal independent sets of the input graph. �
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Exercise 1.22. A cover for a hypergraph H = (V, E) is a set X ⊆ V such
that |e \ X | ≤ 1 for all e ∈ E. Note that if |e| ≥ 2 for all e ∈ E then
every cover is a hitting set. Show that there is an algorithm that, given a
hypergraph H and a natural number k, computes a list of all minimal covers
of H of cardinality at most k in time O((k + 1)k · k · ‖H‖). �

Exercise 1.23. Let
A = (aij)i∈[m]

j∈[n]

∈ {0, 1}m×n

be an m × n matrix with 0–1-entries. A dominating set for A is a set S ⊆
[m]× [n] such that
• aij = 1 for all (i, j) ∈ S,
• if aij = 1 for some i ∈ [m], j ∈ [n], then there is an i′ ∈ [m] such that

(i′, j) ∈ S, or there is a j′ ∈ [n] such that (i, j′) ∈ S.
That is, S is a set of 1-entries of the matrix such that each 1-entry is either
in the same row or in the same column as an element of S.

Prove that the following problem is fixed-parameter tractable:

p-Matrix-Dominating-Set
Instance: A matrix A ∈ {0, 1}m×n and k ∈ N.

Parameter: k.
Problem: Decide whether A has a dominating set of cardi-

nality k.

Hint: View A as the adjacency matrix of a bipartite graph. A dominating set
for the matrix corresponds to a set S of edges of the graph such that each
edge has an endpoint with an edge in S in common. Show that if the matrix
has a dominating set of cardinality k, then the graph has only few vertices
of degree larger than k. Build a bounded search tree whose leaves describe
minimal sets of edges that cover all edges except those that have an endpoint
of degree larger than k. Try to extend the covers at the leaves to covers of all
edges. �

1.4 Approximability and Fixed-Parameter Tractability

In this section, we will show how the point of view of parameterized complexity
may provide a better understanding of certain complexity issues in the theory
of approximation algorithms for combinatorial optimization problems. First,
we recall the definition of optimization problems. A binary relation R ⊆ Σ∗

1×
Σ∗

2, for alphabets Σ1, Σ2, is polynomially balanced if there is a polynomial
p ∈ N0[X ] such that for all (x, y) ∈ R we have |y| ≤ p(|x|).

Definition 1.24. Let Σ be a finite alphabet. An NP-optimization problem
(over Σ) is a triple O = (sol, cost, goal), where
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(1) sol is a function defined on Σ∗ such that the relation

{(x, y) | x ∈ Σ∗ and y ∈ sol(x)}

is polynomially balanced and decidable in polynomial time. For every
instance x ∈ Σ∗, we call the elements of the set sol(x) solutions for x.

(2) cost is a polynomial time computable function defined on {(x, y) | x ∈
Σ∗, and y ∈ sol(x)}; the values of cost are positive natural numbers.

(3) goal ∈ {max, min}.
If goal = max (goal = min) we speak of a maximization (minimization)
problem. The function optO on Σ∗ is defined by

optO(x) := goal{cost(x, y) | y ∈ sol(x)}.

A solution y ∈ sol(x) for an instance x ∈ Σ∗ is optimal if cost(x, y) = optO(x).
The objective of an optimization problem O is to find an optimal solution for
a given instance. �

Let us remark that for many problems O, finding an optimal solution for a
given instance x is polynomial time equivalent to computing the cost optO(x)
of an optimal solution. This, in turn, is often equivalent to deciding for a given
k if optO(x) ≥ k for goal = max or optO(x) ≤ k for goal = min.

Example 1.25. Recall that a complete graph is a graph in which all vertices
are pairwise adjacent. A clique in a graph is the vertex set of a complete
subgraph. The decision problem Clique asks whether a given graph G has
a clique of given cardinality k. It is derived from the maximization problem
Max-Clique, which asks for a clique of maximum cardinality.

We usually use an informal notation for introducing optimization problems
that is similar to our notation for parameterized problems. For example, for
the maximum clique problem we write:

Max-Clique
Instance: A graph G = (V, E).

Solutions: Nonempty cliques S ⊆ V of G.
Cost: |S|.
Goal: max.

(We only admit nonempty cliques as solutions because we require costs to be
positive integers.) �
Example 1.26. The minimum vertex cover problem is defined as follows:

Min-Vertex-Cover
Instance: A graph G = (V, E).
Solutions: Nonempty vertex covers S ⊆ V of G.

Cost: |S|.
Goal: min. �
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There is a canonical way to associate a parameterized problem with each
optimization problem:

Definition 1.27. Let O = (sol, cost, opt) be an NP-optimization problem
over the alphabet Σ. The standard parameterization of O is the following
parameterized problem:

p-O
Instance: x ∈ Σ∗ and k ∈ N.

Parameter: k.
Problem: Decide whether optO(x) ≥ k if goal = max or

optO(x) ≤ k if goal = min.
�

Example 1.28. The standard parameterization of Min-Vertex-Cover is
the following problem:

p-Min-Vertex-Cover
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a vertex cover of at most k

elements.

Observe that p-Min-Vertex-Cover is almost exactly the same problem as
p-Vertex-Cover introduced in the previous section, because a graph with
at least k vertices has a vertex cover of exactly k elements if and only if it has a
vertex cover of at most k elements. This is because vertex covers are monotone
in the sense that supersets of vertex covers are also vertex covers. The two
problems only differ on instances (G, k), where G has less than k vertices. For
both problems, such instances are trivial, though in different directions.

Similarly, p-Hitting-Set and p-Dominating-Set are essentially the
standard parameterizations of the minimization problems Min-Hitting-Set
and Min-Dominating-Set. For maximization problems, instead of mono-
tonicity we need antimonotonicity, which means that subsets of solutions are
still solutions. p-Independent-Set is essentially the standard parameteri-
zation of the antimonotone maximization problem Max-Independent-Set,
and the following problem p-Clique is essentially the standard parameteri-
zation of Max-Clique:

p-Clique
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a clique of k elements.

�
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Note that for minimization problems that are not monotone and maxi-
mization problems that are not antimonotone, the standard parameterization
is not the same as the parameterized problem that asks for solutions of cardi-
nality exactly k. As a matter of fact, the two problems may have very different
complexities, as the following exercise shows:

Exercise 1.29. A propositional formula is in 3-disjunctive normal form (3-
DNF) if it is of the form

∨
i∈I(λi1 ∧ λi2 ∧ λi3), where the λij are literals. The

conjunctions (λi1 ∧ λi2 ∧ λi3) are called the terms of the formula. Consider
the following maximization problem:

Max-3-DNF-Sat
Instance: A propositional formula α in 3-DNF.

Solutions: Assignments to the variables of α.
Cost: 1 + number of terms satisfied.
Goal: max.

(a) Prove that the standard parameterization of Max-3-DNF-Sat is fixed-
parameter tractable.
Hint: Prove that the expected number of terms satisfied by a random
assignment is at least (1/8)m, where m is the total number of terms of the
input formula. Conclude that for m ≥ 8k, the formula has an assignment
that satisfies at least k terms.

(b) Show that unless PTIME = NP, the following parameterized problem
associated with Max-3-DNF-Sat is not fixed-parameter tractable:

Instance: A propositional formula α in 3-DNF and k ∈ N.
Parameter: k.

Problem: Decide whether there is an assignment that satis-
fies exactly k − 1 terms of α.

Hint: Prove that it is NP-complete to decide if a given formula in 3-
disjunctive normal form has an assignment that satisfies no term. �

Let us now turn to approximability. Let O = (sol, cost, goal) be an opti-
mization problem over Σ. For any instance x of O and for any y ∈ sol(x), the
approximation ratio r(x, y) of y with respect to x is defined as

r(x, y) := max

{
optO(x)

cost(x, y)
,
cost(x, y)

optO(x)

}
.

For example, for minimization problems, we have cost(x, y) = r(x, y)·optO(x).
The approximation ratio is always a number ≥ 1; the better a solution is, the
closer the ratio is to 1.

Definition 1.30. Let O = (sol, cost, goal) be an NP-optimization problem
over the alphabet Σ.
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(1) Let ε > 0 be a real number. A polynomial time ε-approximation algorithm
for O is a polynomial time algorithm that, given an instance x ∈ Σ∗,
computes a solution y ∈ sol(x) such that r(x, y) ≤ (1 + ε).
Problem O is constant approximable if, for some ε > 0, there exists a
polynomial time ε-approximation algorithm for O.

(2) A polynomial time approximation scheme (ptas) for O is an algorithm A

that takes as input pairs (x, k) ∈ Σ∗ × N such that for every fixed k, the
algorithm is a polynomial time (1/k)-approximation algorithm. �

Most of the known polynomial time approximation schemes have a run-
ning time of nΩ(k), which means that for reasonably close approximations the
running times quickly get infeasible on large instances. A ptas A is a fully
polynomial time approximation scheme (fptas) if its running time is polyno-
mial in |x| + k. Unfortunately, only few known optimization problems have
an fptas. However, if we do not need a very precise approximation and can
live with an error 1/k, say, of 10%, we are in the situation where we have a
small problem parameter k. We parameterize our approximation schemes by
this error parameter and obtain the following intermediate notion:

Definition 1.31. Let O = (sol, cost, goal) be an NP-optimization problem
over the alphabet Σ. An efficient polynomial time approximation scheme (ep-
tas) for O is a ptas A for O for which there exists a computable function
f : N → N and a polynomial p(X) such that the running time of A on input
(x, k) ∈ Σ∗ × N is at most f(k) · p(|x|). �

Thus an eptas is an fpt-algorithm with respect to the parameterization
(x, k) �→ k of Σ∗ × N. Clearly,

FPTAS ⊆ EPTAS ⊆ PTAS,

that is, if an optimization problem O has an fptas then it has an eptas, and
if it has an eptas then it has a ptas. The notion of an eptas seems to be a
reasonable intermediate notion of approximation schemes between the very
strict fptas and the general ptas. One well-known example of an eptas is
Arora’s approximation scheme for the Euclidean traveling salesman problem
[16]. We will see an example of an eptas for a scheduling problem in Sect. 9.4.

The following result establishes a connection between the existence of an
eptas for an optimization problem and the fixed-parameter tractability of its
standard parameterization. The result is simple, but interesting because it
connects two completely different parameterized problems derived from the
same optimization problem:

Theorem 1.32. If the NP-optimization problem O has an eptas then its stan-
dard parameterization p-O is fixed-parameter tractable.

Proof: Let us assume that O = (sol, cost, min) is a minimization problem
over the alphabet Σ. (The proof for maximization problems is similar.) Let
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A be an eptas for O with running time f(k) · |x|O(1) for some computable
function f . The following algorithm A′ is an fpt-algorithm for p-O: Given an
instance (x, k), algorithm A′ computes the output y of A on input (x, k + 1).
If cost(x, y) ≤ k it accepts; otherwise it rejects.

Clearly, A′ is an fpt-algorithm, because A is an fpt-algorithm. To see
that A′ is correct, we distinguish between two cases: If cost(x, y) ≤ k, then
optO(x) ≤ k, and hence (x, k) is a “yes”-instance of p-O. If cost(x, y) ≥ k +1,
then

optO(x) =
cost(x, y)

r(x, y)
≥ cost(x, y)

1 + 1
k+1

≥ k + 1

1 + 1
k+1

=
k + 1

k + 2
· (k + 1) > k.

As optO(x) > k, the pair (x, k) is a “no”-instance of p-O. 
�
Together with hardness results from parameterized complexity theory,

Theorem 1.32 can be used to establish the nonexistence of efficient poly-
nomial time approximation schemes (under assumptions from parameterized
complexity). Let us remark that the converse of Theorem 1.32 does not hold.
It is known that Min-Vertex-Cover has no ptas unless PTIME = NP and
hence no eptas, while in Sect. 1.3 we saw that the standard parameterization
p-Vertex-Cover is in FPT.

1.5 Model-Checking Problems

The parameterized approach is particularly well-suited for a certain type of
logic-based algorithmic problems such as model-checking problems in auto-
mated verification or database query evaluation. In such problems one has to
evaluate a formula of some logic in a finite structure. Typically, the formula
(for example, a database query or a description of a system property) is small
and the structure (for example, a database or a transition graph of a finite
state system) is large. Therefore, a natural parameterization of such problems
is by the length of the formula.

In this section, we shall study the model-checking problem for linear tem-
poral logic in some more detail. In the model-checking approach to automated
verification, finite state systems are modeled as Kripke structures (or tran-
sition systems). Formally, a Kripke structure is a triple K = (V, E, λ) that
consists of a directed graph (V, E) together with a mapping λ that associates
a set of atomic propositions with each vertex. The vertices of the structure
represent the states of the system, the edges represent possible transitions be-
tween states, and the atomic propositions represent properties of the states,
such as “the printer is busy” or “the content of register R1 is 0.” Walks in the
graph describe possible computations of the system. (Throughout this book,
we distinguish between walks and paths in graphs. On a walk, vertices and
edges may be repeated, whereas on a path each vertex and hence each edge
may appear at most once.)
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Linear temporal logic (LTL) is a language for specifying properties of
such systems. Besides static properties of the states, which can be specified
by Boolean combinations of the atomic propositions, the logic also allows
it to specify temporal properties of the computations, such as: “Whenever
the reset-button is pressed, eventually the system reboots.” Here “the reset-
button is pressed” and “the system reboots” are atomic propositions. If we
represent them by the symbols Reset and Reboot, an LTL-formula specifying
the property is

G(Reset→ FReboot).

Here the G-operator says that the subformula it is applied to holds at all states
of the computation following and including the current state. The subformula
Reset→ F Reboot says that if Reset holds at a state, then FReboot also holds.
The F-operator says that the subformula it is applied to holds at some state of
the computation after or equal to the current state. Thus FReboot says that
at some point in the future Reboot holds. We say that an LTL-formula ϕ holds
at a state v ∈ V in a Kripke structure K = (V, E, λ) (and write K, v |= ϕ) if
all walks of K starting at v satisfy ϕ. There is no need to give further details
or a formal definition of LTL here.

The LTL model-checking problem MC(LTL) asks whether a given Kripke
structure satisfies a given LTL-formula at a given state. We are mostly inter-
ested in the following parameterization:

p-MC(LTL)
Instance: A finite Kripke structure K = (V, E, λ), a state

v ∈ V , and an LTL-formula ϕ.
Parameter: Length of ϕ.

Problem: Decide whether K, v |= ϕ.

Theorem 1.33. p-MC(LTL) is fixed-parameter tractable. More precisely,
there is an algorithm solving MC(LTL) in time

2O(k) · n,

where k is the length of the input formula ϕ and n the size of the input
structure K.

It is known that the unparameterized problem MC(LTL) is PSPACE-complete
and thus intractable from the perspective of classical complexity. However,
the problem is solved on large instances in practice. Thus the parameterized
complexity analysis much better captures the “practical” complexity of the
problem.

While a full proof of the theorem would mean too much of a digression at
this point, it is useful to sketch the general strategy of the proof. The first
step is to translate the input formula ϕ into a Büchi automaton A. Büchi
automata are finite automata that run on infinite words. The second step is
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to check if the Büchi automaton A accepts all walks in K starting at v. The
first step requires exponential time, as the size m of the automaton A may be
exponential in the length of ϕ. The second step can be carried out by a fairly
straightforward algorithm in time O(m · n), where n denotes the size of K.

The automata-theoretic approach, as laid out here, is one of the most suc-
cessful algorithmic techniques for solving logic-based problems. It has various
practical applications in automated verification, database systems, and other
areas. Often, the algorithms obtained by this approach are fpt-algorithms. We
will study the automata-theoretic approach in more detail in Chap. 10.

Model-checking problems for various fragments of first-order logic play
a very important role in the theory of parameterized intractability and will
re-occur at many places in this book.

1.6 Alternative Characterizations of Fixed-Parameter
Tractability

In this section we derive various characterizations of fixed-parameter tractabil-
ity that emphasize different aspects of this notion. The first result shows that
the standard “multiplicative” notion of fixed-parameter tractability is equiv-
alent to an “additive” notion.

Proposition 1.34. Let (Q, κ) be a parameterized problem. The following are
equivalent:
(1) (Q, κ) ∈ FPT.
(2) There is an algorithm deciding x ∈ Q in time

g
(
κ(x)

)
+ f

(
κ(x)

)
· p

(
|x|+ κ(x)

)
for computable functions f, g and a polynomial p(X).

(3) There is an algorithm deciding x ∈ Q in time

g
(
κ(x)

)
+ p

(
|x|

)
for a computable function g and a polynomial p(X).

Proof: Clearly, (3) implies (2). We turn to the implication (2)⇒ (1). We may
assume that the polynomial in (2) is a monomial, p(X) = Xd. Let Σ be the
alphabet of (Q, κ) and x ∈ Σ∗ an instance, n := |x| and k := κ(x). Using the
inequality a + b ≤ a · (b + 1) (for a, b ∈ N), we get

g(k) + f(k) · (n + k)d ≤ (g(k) + f(k) · (k + 1)d) · (n + 1)d ≤ h(k) · p(n),

where h(k) := g(k) + f(k) · (k + 1)d and p(n) := (n + 1)d. Finally, from the
inequality a · b ≤ a2 + b2 (for a, b ∈ N0), we get the implication (1) ⇒ (3),
since
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f(k) · p(n) ≤ f(k)2 + p(n)2. 
�

A function f : N → N is time constructible if there is a deterministic
Turing machine that for all n ∈ N on every input of length n halts in exactly
f(n) steps. Note that if f is time constructible then f(n) can be computed in
O(f(n)) steps. The following simple lemma implies that if f(k) · p(n) bounds
the running time of an fpt-algorithm, then we can always assume the function
f to be increasing and time constructible. We will often apply this lemma
tacitly.

Lemma 1.35. Let f : N → N be a computable function. Then there exists a
computable function g : N→ N such that:
(1) f(k) ≤ g(k) for all k ∈ N,
(2) g is increasing,
(3) g is time constructible.

Proof: Let g(k) be the running time of a Turing machine that, given k in
unary, consecutively computes f(1), f(2), . . . , f(k) in unary and then halts.


�

We are now ready to give the two alternative characterizations of fixed-
parameter tractability, which form the main result of this section.

Definition 1.36. Let (Q, κ) be a parameterized problem over Σ.
(1) (Q, κ) is in PTIME after a precomputation on the parameter if there

exist an alphabet Π, a computable function π : N → Π∗, and a problem
X ⊆ Σ∗ ×Π∗ such that X ∈ PTIME and for all instances x of Q we have

x ∈ Q ⇐⇒
(
x, π(κ(x))

)
∈ X.

(2) (Q, κ) is eventually in PTIME if there are a computable function h :
N → N and a polynomial time algorithm A that on input x ∈ Σ∗ with
|x| ≥ h(κ(x)) correctly decides whether x ∈ Q. The behavior of A on
inputs x ∈ Σ∗ with |x| < h(κ(x)) is arbitrary. �

Theorem 1.37. Let (Q, κ) be a parameterized problem. Then the following
statements are equivalent:
(1) (Q, κ) is fixed-parameter tractable.
(2) (Q, κ) is in PTIME after a precomputation on the parameter.
(3) Q is decidable and (Q, κ) is eventually in PTIME.

Proof: Let Σ be the alphabet of (Q, κ).
(1)⇒ (2): Let AQ be an algorithm deciding x ∈ Q in time f(κ(x))·|x|c with

computable f and c ∈ N. Let Π be the alphabet {1, §} and define π : N→ Π∗

by
π(k) := k§f(k)
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where k and f(k) are written in unary. Let X ⊆ Σ∗ ×Π∗ be the set of tuples
accepted by the following algorithm A.

Given (x, y) ∈ Σ∗ × Π∗, first A checks whether y = κ(x)§u for some
u ∈ {1}∗. If this is not the case, then A rejects, otherwise A simulates |u| · |x|c
steps of the computation of AQ on input x. If AQ stops in this time and
accepts, then A accepts, otherwise A rejects.

Since |u| ≤ |y|, one easily verifies that A runs in polynomial time; moreover:

x ∈ Q ⇐⇒ A accepts
(
x, κ(x)§f(κ(x))

)
⇐⇒

(
x, π(κ(x))

)
∈ X.

(2)⇒ (3): Assume that (Q, κ) is in PTIME after a precomputation on the
parameter. Choose an alphabet Π, a computable function π : N → Π∗, and
a problem X ⊆ Σ∗ × Π∗ as in Definition 1.36(1). Furthermore let AX be an
algorithm deciding X in polynomial time. The equivalence

x ∈ Q ⇐⇒
(
x, π(κ(x))

)
∈ X

shows that Q is decidable. We fix an algorithm Aπ computing π and let f(k)
be the running time of Aπ on input k. We present an algorithm A showing
that (Q, κ) is eventually in PTIME.

Given x ∈ Σ∗, the algorithm A simulates |x| steps of the computation of
π(κ(x)) by Aπ. If the computation of Aπ does not stop in this time, then
A rejects, otherwise it simulates AX to check whether (x, π(κ(x))) ∈ X and
accepts or rejects accordingly. Clearly, A runs in polynomial time, and for
x ∈ Σ∗ with |x| ≥ f(κ(x)):

A accepts x ⇐⇒ x ∈ Q.

(3) ⇒ (1): Assume (3). Let AQ be an algorithm that decides x ∈ Q and
let h be a computable function and Ah a polynomial time algorithm correctly
deciding whether x ∈ Q for x ∈ Σ∗ with |x| ≥ h(κ(x)). We present an fpt-
algorithm A deciding Q: Given x ∈ Σ∗, first A computes h(κ(x)) and checks
whether |x| ≥ h(κ(x)). If |x| < h(κ(x)), then A simulates AQ on input x to
decide whether x ∈ Q. In this case the running time of A can be bounded in
terms of the parameter κ(x) and the time invested to compute this parameter,
that is, by f(κ(x)) + |x|O(1) for some computable f . If |x| ≥ h(κ(x)), then
A simulates Ah on input x to decide whether x ∈ Q. This simulation takes
time polynomial in |x|. Altogether, the running time of A can be bounded by
f(κ(x)) + |x|O(1). 
�

The equivalence between a problem being fixed-parameter tractable and
in polynomial time after a precomputation that only involves the parameter
may be a bit surprising at first sight, but the proof of Theorem 1.37 reveals
that it is actually based on a trivial padding argument. However, there is
a more meaningful concept behind the notion of being in polynomial time
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after a precomputation. The instances of many natural parameterized prob-
lems have two parts, and the parameter is the length of the second part. An
example is the LTL model-checking problem, the LTL-formula being the sec-
ond part of an instance. Fpt-algorithms for such problems often proceed in
two steps. They first do a precomputation on the second part of the input
and then solve the problem using the first part of the input and the result
of the precomputation. Again, LTL model-checking is a good example: The
fpt-algorithm we outlined in Sect. 1.5 transforms the input formula into a
Büchi automaton in a precomputation and then runs the automaton on the
input structure. Another example is database query evaluation, with the first
part of the input being a database and the second part the query. A natural
approach to solving this problem is to first “optimize” the query, that is, to
turn it into an equivalent query that can be evaluated more efficiently, and
then evaluate the optimized query.

While such algorithms are not formally polynomial time after a precom-
putation on the parameter—they do a precomputation on the LTL-formula
and on the database query, hence on part of the input—they were the original
motivation for introducing the concept of a problem being in PTIME after a
precomputation.

We close this chapter with one more characterization of fixed-parameter
tractability. We will see in Chap. 9 that this characterization embodies a very
useful algorithmic technique.

Definition 1.38. Let (Q, κ) be a parameterized problem over Σ.
A polynomial time computable function K : Σ∗ → Σ∗ is a kernelization

of (Q, κ) if there is a computable function h : N→ N such that for all x ∈ Σ∗

we have
(x ∈ Q ⇐⇒ K(x) ∈ Q) and |K(x)| ≤ h(κ(x)).

If K is a kernelization of (Q, κ), then for every instance x of Q the image
K(x) is called the kernel of x (under K). �

Observe that a kernelization is a polynomial time many-one reduction of a
problem to itself with the additional property that the image is bounded in
terms of the parameter of the argument.

Theorem 1.39. For every parameterized problem (Q, κ), the following are
equivalent:
(1) (Q, κ) ∈ FPT.
(2) Q is decidable, and (Q, κ) has a kernelization.

Proof: Let Σ be the alphabet of (Q, κ).
(2) ⇒ (1): Let K be a kernelization of (Q, κ). The following algorithm

decides Q: Given x ∈ Σ∗, it computes K(x) (in polynomial time) and uses a
decision algorithm for Q to decide if K(x) ∈ Q. Since |K(x)| ≤ h(κ(x)), the
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running time of the decision algorithm is effectively bounded in terms of the
parameter κ(x).

(1) ⇒ (2): Let A be an algorithm solving (Q, κ) in time f(k) · p(n) for
some computable function f and polynomial p(X). Without loss of generality
we assume that p(n) ≥ n for all n ∈ N. If Q = ∅ or Q = Σ∗, then (Q, κ) has
the trivial kernelization that maps every instance x ∈ Σ∗ to the empty string
ε. Otherwise, we fix x0 ∈ Q and x1 ∈ Σ∗ \Q.

The following algorithm A′ computes a kernelization K for (Q, κ): Given
x ∈ Σ∗ with n := |x| and k := κ(x), the algorithm A′ simulates p(n)·p(n) steps
of A. If A stops and accepts (rejects), then A′ outputs x0 (x1, respectively).
If A does not stop in ≤ p(n) · p(n) steps, and hence n ≤ p(n) ≤ f(k), then
A′ outputs x. Clearly, K can be computed in polynomial time, |K(x)| ≤
|x0|+ |x1|+ f(k), and (x ∈ Q ⇐⇒ K(x) ∈ Q). 
�

Example 1.40. Recall that p-SAT is the satisfiability problem for proposi-
tional logic parameterized by the number of variables. The following simple
algorithm computes a kernelization for p-SAT: Given a propositional formula
α with k variables, it first checks if |α| ≤ 2k. If this is the case, the algo-
rithm returns α. Otherwise, it transforms α into an equivalent formula α′ in
disjunctive normal form such that |α′| ≤ O(2k). �
Exercise 1.41. Prove that p-deg-Independent-Set has a kernelization such
that the kernel of an instance (G, k) with d := deg(G) has size O(d2 · k). More
precisely, if (G′, k′) with G′ = (V ′, E′) is the kernel of an instance (G, k), then
|V ′| ≤ (d + 1) · k and hence |E′| ≤ d · (d + 1) · k/2.

Hint: Prove by induction on k that every graph of degree d with at least
(d + 1) · k vertices has an independent set of cardinality k. �
Exercise 1.42. Let H = (V, E) be a hypergraph. A basis of H is a set S of
subsets of V such that each hyperedge e ∈ E is the union of sets in S. That
is, for all e ∈ E there are s1, . . . , s� ∈ S such that e = s1 ∪ . . . ∪ s�.

Prove that the following problem is fixed-parameter tractable:

p-Hypergraph-Basis
Instance: A hypergraph H and k ∈ N.

Parameter: k ∈ N.
Problem: Decide whether H has a basis of cardinality k.

�

Notes

The central notion of this book, fixed-parameter tractability, was introduced
by Downey and Fellows in [78], a preliminary version of [79].9 Earlier papers [2,
180] dealt with the asymptotic behavior of parameterized problems.

9Usually, we only refer to the full version of an article.
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The method of bounded search trees in the context of parameterized com-
plexity theory goes back to Downey and Fellows [81]. Most of the results
presented in Sect. 1.3 (including the exercises) can be found in [83].

The notion of an efficient polynomial time approximation scheme was in-
troduced by Cesati and Trevisan [42]; Theorem 1.32 is due to Bazgan [21].

The model-checking algorithm for linear temporal logic mentioned in The-
orem 1.33 is due to Lichtenstein and Pnueli [154]. We refer the reader to
[55] for background on model-checking and linear temporal logic. Papadim-
itriou and Yannakakis [170] point out that parameterized complexity theory
yields a productive framework for studying the complexity of database query
languages, which is more realistic than the classical approach.

Theorem 1.37 is due to [100]; it builds on the advice view of Cai et al. [37].
The notion of kernelization in the context of parameterized complexity the-
ory goes back to Downey and Fellows [81]. Theorem 1.39 was shown by Nie-
dermeier [165]. Exercise 1.41 is due to Yijia Chen (private communication).
Exercise 1.42 is due to [83].
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Reductions and Parameterized Intractability

In this chapter, we start our development of the theory of parameterized
intractability. In general, no parameterized complexity theory is needed to
find an fpt-algorithm for a concrete fixed-parameter tractable problem. The
main purpose of the theory is to give evidence that certain problems are not
fixed-parameter tractable (just as the main purpose of the theory of NP-
completeness is to give evidence that certain problems are not polynomial
time computable). In the classical theory, the notion of NP-completeness is
central to a nice, simple, and far-reaching theory for intractable problems. Un-
fortunately, the world of parameterized intractability is more complex: There
is a big variety of seemingly different classes of intractable parameterized
problems.

We start by introducing a suitable notion of reduction in Sect. 2.1. In the
following two sections we study the two classes para-NP and XP. Neither of
them is central to the theory, but they serve as a useful frame for all of the
more interesting classes. We will see that XP is provably different from FPT.
Intuitively, it may be viewed as a parameterized analogue of the classical class
EXPTIME.

2.1 Fixed-Parameter Tractable Reductions

Definition 2.1. Let (Q, κ) and (Q′, κ′) be parameterized problems over the
alphabets Σ and Σ′, respectively. An fpt-reduction (more precisely, fpt many-
one reduction) from (Q, κ) to (Q′, κ′) is a mapping R : Σ∗ → (Σ′)∗ such
that:
(1) For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).
(2) R is computable by an fpt-algorithm (with respect to κ). That is, there

is a computable function f and a polynomial p(X) such that R(x) is
computable in time f(κ(x)) · p(|x|).

(3) There is a computable function g : N → N such that κ′(R(x)) ≤ g(κ(x))
for all x ∈ Σ∗. �
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While conditions (1) and (2) of Definition 2.1 are quite natural, condi-
tion (3) is necessary to ensure the crucial property of fpt-reductions stated in
the following lemma:

Lemma 2.2. FPT is closed under fpt-reductions. That is, if a parameterized
problem (Q, κ) is reducible to a parameterized problem (Q′, κ′) and (Q′, κ′) ∈
FPT, then (Q, κ) ∈ FPT.

Proof: Let x �→ x′ be an fpt-reduction from (Q, κ) to (Q′, κ′) computable
in time h(k) · q(|x|) with k′ ≤ g(k), where k := κ(x), k′ := κ(x′), h, g are
computable functions, and q(X) is a polynomial. In particular, |x′| ≤ h(k) ·
q(|x|). Choose an algorithm A′ deciding (Q′, κ′) in time f ′(k′)·p′(|x′|). Without
loss of generality we may assume that f ′ is nondecreasing.

Then x ∈ Q can be decided by first computing x′ and then deciding if
x′ ∈ Q′. This requires at most

h(k) · q(|x|) + f ′(k′) · p′(|x′|) ≤ h(k) · q(|x|) + f ′(g(k)) · p′(h(k) · q(|x|))

steps. Since p′(h(k) · q(|x|)) ≤ p′(h(k)) · p′(q(|x|)), we obtain a running time
allowed for an fpt-algorithm. Note that we need the condition k′ ≤ g(k) in
order to be able to bound f ′(k′) in terms of k. 
�

Let us introduce some additional notation: We write (Q, κ) ≤fpt (Q′, κ′) if
there is an fpt-reduction from (Q, κ) to (Q′, κ′). We write (Q, κ) ≡fpt (Q′, κ′)
if (Q, κ) ≤fpt (Q′, κ′) and (Q′, κ′) ≤fpt (Q, κ), and we write (Q, κ) <fpt (Q′, κ′)

if (Q, κ) ≤fpt (Q′, κ′) and (Q′, κ′) �≤fpt (Q, κ). We let
[
(Q, κ)

]fpt
be the class

of parameterized problems fpt-reducible to (Q, κ), that is,[
(Q, κ)

]fpt
:=

{
(Q′, κ′)

∣∣ (Q′, κ′) ≤fpt (Q, κ)
}
.

If C is a class of parameterized problems, then we let[
C
]fpt

:=
⋃

(Q,κ)∈C

[
(Q, κ)

]fpt
.

We call
[
C
]fpt

the closure of C under fpt-reductions. C is closed under fpt-

reductions if C =
[
C
]fpt

, that is, if for all parameterized problems (Q, κ) and
(Q′, κ′) we have:

If (Q, κ) ≤fpt (Q′, κ′) and (Q′, κ′) ∈ C, then (Q, κ) ∈ C.

We define C-hardness and C-completeness of a parameterized problem (Q, κ)
as in classical complexity theory:

• (Q, κ) is C-hard under fpt-reductions if every problem in C is fpt-reducible
to (Q, κ).

• (Q, κ) is C-complete under fpt-reductions if (Q, κ) ∈ C and (Q, κ) is C-
hard.
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We use a similar notation and terminology for all other reductions considered
in this book.

Let us call a parameterized problem (Q, κ) over the alphabet Σ trivial if
either Q = ∅ or Q = Σ∗.

The following lemma collects further basic properties of fpt-reductions. We
leave the straightforward proof to the reader:

Lemma 2.3. (1) The relation ≤fpt is reflexive and transitive.
(2) Let (Q, κ) ∈ FPT. Then for every nontrivial parameterized problem

(Q′, κ′) we have (Q, κ) ≤fpt (Q′, κ′).

Example 2.4.

p-Clique ≡fpt p-Independent-Set.

The complement of a graph G = (V, E) is the graph G :=
(
V,

{
{v, w}

∣∣ v, w ∈
V, v �= w, {v, w} �∈ E

})
. It is easy to see that the mapping R : (G, k) �→ (G, k)

is an fpt-reduction both from p-Clique to p-Independent-Set and from
p-Independent-Set to p-Clique.

More precisely, suppose we encode instances of p-Clique and p-Inde-
pendent-Set by strings over the alphabet Σ. Let enc(G, k) ∈ Σ∗ denote the
encoding of the instance (G, k). Then formally, our reduction is the mapping
R : Σ∗ → Σ∗ defined by

R(x) :=

{
enc(G, k), if x = enc(G, k) for some graph G and k ∈ N,

x, otherwise.
�

The reduction in Example 2.4 is the standard polynomial time reduction
from Clique to Independent-Set. One has to be careful, though; not all
polynomial time reductions are fpt-reductions.

Example 2.5. The standard polynomial time reduction (G, k) �→ (G, |V |−k),
where G = (V, E), from p-Independent-Set to p-Vertex-Cover, which is
based on the fact that the complement of an independent set is a vertex cover
and vice versa, is not an fpt-reduction. It violates condition (3) of Defini-
tion 2.1. Indeed, results presented later in this book make it seem unlikely that
there is an fpt-reduction from p-Independent-Set to p-Vertex-Cover. �

While the notion of tractability of parameterized complexity theory, FPT,
relaxes the classical tractability notion PTIME, the following proposition
shows that the corresponding notions of reducibility are incomparable. In par-
ticular, as mentioned in Example 2.5, parameterized complexity theory can
differentiate between NP-complete problems and thus differentiate between
problems that classically share the same worst-case complexity.

For two classical problems Q and Q′, let us write Q ≤ptime Q′ if there is a
polynomial time many-one reduction from Q to Q′.
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Proposition 2.6. There are parameterized problems (Q, κ) and (Q′, κ′) such
that

(Q, κ) <fpt (Q′, κ′) and Q′ <ptime Q.

Proof: Let Σ be an arbitrary finite alphabet. Let Q, Q′ ⊆ Σ∗ be such that

Q′ <ptime Q, Q′ /∈ PTIME, and Q is decidable.

For example, Q might be 2EXPTIME-complete and Q′ EXPTIME-complete.
Let κ := κsize and κ′ := κone. That is, let κ, κ′ : Σ∗ → N be defined by

κ(x) = max{1, |x|}, and κ′(x) = 1,

for all x ∈ Σ∗. Then, (Q, κ) ∈ FPT and (Q′, κ′) is nontrivial, and thus
(Q, κ) ≤fpt (Q′, κ′) by Lemma 2.3(2).

Finally, we claim that (Q′, κ′) �≤fpt (Q, κ). Suppose for contradiction that
R is an fpt-reduction from (Q′, κ′) to (Q, κ). Let g : N → N be such that
κ(R(x)) ≤ g(κ′(x)) for all x ∈ Σ∗. Then

|R(x)| ≤ g(1)

for all x ∈ Σ∗. Thus R reduces Q′ to the finite set {x ∈ Q | |x| ≤ g(1)}.
Furthermore, since there is a function f and an algorithm computing R(x) in
time

f(κ′(x)) · |x|O(1) = f(1) · |x|O(1) = |x|O(1)

for all x ∈ Σ∗, R is a polynomial time reduction. Thus Q′ is polynomial time
reducible to a finite set, which implies that Q′ ∈ PTIME, a contradiction. 
�

Example 2.7.

p-Dominating-Set ≡fpt p-Hitting-Set.

To see that p-Dominating-Set ≤fpt p-Hitting-Set, recall that the domi-
nating sets of a graph G = (V, E) are precisely the hitting sets of the hyper-
graph(

V, {ev | v ∈ V }
)
, where ev := {v} ∪

{
w ∈ V

∣∣ {v, w} ∈ E
}

for v ∈ V

(we used this in the proof of Corollary 1.20).
To prove p-Hitting-Set ≤fpt p-Dominating-Set, let (H, k) with H =

(V, E) be an instance of p-Hitting-Set. We may assume that |V | ≥ k and
that every e ∈ E is nonempty. We introduce the graph

G = (V ∪ E, E1 ∪ E2),

where E1 := {{v, e} | v ∈ V, e ∈ E, v ∈ e}, and where E2 contains edges
between all pairs of distinct vertices of V . That is, E2 := {{v, w} | v, w ∈
V, v �= w}.
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Then (H, k) ∈ p-Hitting-Set if and only if (G, k) ∈ p-Dominating-Set,
which proves that p-Hitting-Set ≤fpt p-Dominating-Set. The direction
from left to right is easy: Every nonempty hitting set of H is a dominating
set of G. For the other direction, let S be a dominating set of G of size k. If
S ⊆ V , then S is a hitting set of H. Otherwise, we can change S in order to
achieve this form: Assume e ∈ E ∩ S. We show that we can replace e by a
vertex of V . The vertex e of G only has edges to the elements of e. Therefore,
for every v ∈ e, the set Sv := (S \ {e})∪{v} is a dominating set, too. If v /∈ S
for some v ∈ e, then the corresponding Sv has cardinality k, and we are done.
If e ⊆ S, then we add to S \ {e} any vertex v ∈ V not contained in S (recall
that |V | ≥ k). Since e �= ∅, the new set is still a dominating set. �

There is also a natural notion of parameterized Turing reduction:

Definition 2.8. Let (Q, κ) and (Q′, κ′) be parameterized problems over the
alphabets Σ and Σ′, respectively. An fpt Turing reduction from (Q, κ) to
(Q′, κ′) is an algorithm A with an oracle to Q′ such that:
(1) A decides (Q, κ).
(2) A is an fpt-algorithm, that is, there is a computable function f : N → N

and a polynomial p(X) such that the running time of A on input x ∈ Σ∗

is bounded by f(κ(x)) · p(|x|).
(3) There is a computable function g : N→ N such that for all oracle queries

“y ∈ Q′?” posed by A on input x we have κ′(y) ≤ g(κ(x)). �

Note how condition (3) of Definition 2.8 corresponds to condition (3) of Defini-
tion 2.1. We write (Q, κ) ≤fpt-T (Q′, κ′) if there is an fpt Turing reduction from
(Q, κ) to (Q′, κ′), and we write (Q, κ) ≡fpt-T (Q′, κ′) if (Q, κ) ≤fpt-T (Q′, κ′)

and (Q′, κ′) ≤fpt-T (Q, κ). We let
[
(Q, κ)

]fpt-T
be the class of parameter-

ized problems fpt Turing reducible to (Q, κ). We define C-hardness and C-
completeness for and closure of a class C of parameterized problems under
fpt Turing reductions in the usual way.

Exercise 2.9. Prove that FPT is closed under fpt Turing reductions. That
is, if (Q, κ) ≤fpt-T (Q′, κ′) and (Q′, κ′) ∈ FPT then (Q, κ) ∈ FPT. �

Turing reductions only play a minor role in this book. Turing reductions
between decision problems will only be used in Chap. 16. Turing reductions
play a more important role in the theory of parameterized counting problems,
which we will study in Chap. 14.

2.2 The Class para-NP

The class FPT may be viewed as the analogue of PTIME in the world of
parameterized complexity theory. Is there a class that plays the role of NP
in the parameterized world? In this section, we will make a first attempt
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to defining such a class. The resulting class para-NP, obtained by replacing
“algorithm” by “nondeterministic algorithm” in the definition of FPT, turns
out to be an unsatisfactory candidate for a “parameterized analogue of NP,”
but nevertheless it is a natural and interesting class that will help us to clarify
a few basic issues. Furthermore, it will lead us to the definition of the much
more important class W[P] in the next chapter.

Definition 2.10. A parameterized problem (Q, κ) over the alphabet Σ is in
para-NP, if there is a computable function f : N→ N, a polynomial p ∈ N0[X ],
and a nondeterministic algorithm that, given x ∈ Σ∗, decides if x ∈ Q in at
most f(κ(x)) · p(|x|) steps. �

Clearly, if Q ∈ NP then (Q, κ) ∈ para-NP for every parameterization κ.
In particular, the problems p-Clique, p-Independent-Set, p-Dominating-
Set, and p-Hitting-Set are all in para-NP.

Recall the parameterized colorability problem:

p-Colorability
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G is k-colorable.

In Example 1.12 we saw that, unless PTIME = NP, p-Colorability is not
fixed-parameter tractable. From the fact that the unparameterized colorability
problem Colorability is NP, it follows that p-Colorability ∈ para-NP.
We shall see below that p-Colorability is para-NP-complete under fpt-
reductions.

Exercise 2.11. Prove that para-NP is closed under fpt-reductions. �

In Theorem 1.37 we gave two alternative characterizations of the class
FPT. The following proposition shows that the class para-NP is similarly
robust.

Proposition 2.12. Let (Q, κ) be a parameterized problem over the alphabet
Σ. Then the following statements are equivalent:
(1) (Q, κ) is in para-NP.
(2) “(Q, κ) is in NP after a precomputation on the parameter.” That is, there

exist an alphabet Π, a computable function π : N → Π∗, and a problem
X ⊆ Σ∗ ×Π∗ such that X ∈ NP and for all instances x of Q we have

x ∈ Q ⇐⇒ (x, π(κ(x))) ∈ X.

(3) Q is decidable and “(Q, κ) is eventually in NP.” That is, there are a
computable function h : N → N and a nondeterministic polynomial time
algorithm that on input x ∈ Σ∗ decides if x ∈ Q in case |x| ≥ h(κ(x)).
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Proof: Analogously to the proof of Theorem 1.37. 
�

Corollary 2.13. FPT = para-NP if and only if PTIME = NP.

Proof: If PTIME = NP then the characterization of para-NP given by Propo-
sition 2.12(2) coincides with the characterization of FPT given by Theo-
rem 1.37(2). Thus FPT = para-NP.

For the converse direction, suppose that FPT = para-NP. For every prob-
lem Q ⊆ Σ∗ in NP we have (Q, κone) ∈ para-NP for the trivial parame-
terization κone with κone(x) = 1 for all x ∈ Σ∗. By hypothesis, it follows
that (Q, κone) ∈ FPT. Thus x ∈ Q is decidable by a deterministic algorithm
in time f(κone(x)) · |x|O(1) = f(1) · |x|O(1) for some computable function f .
Hence Q ∈ PTIME. 
�

Recall that the slices of a parameterized problem (Q, κ) are the sets

(Q, κ)k = {x ∈ Q | κ(x) = k},

for k ≥ 1. Clearly, if (Q, κ) ∈ para-NP then (Q, κ)k ∈ NP.
Recall that a parameterized problem (Q, κ) over the alphabet Σ is non-

trivial if Q �= ∅ and Q �= Σ∗.

Theorem 2.14. Let (Q, κ) be a nontrivial parameterized problem in para-
NP. Then the following statements are equivalent:
(1) (Q, κ) is para-NP-complete under fpt-reductions.
(2) The union of finitely many slices of (Q, κ) is NP-complete. That is, there

are �, m1, . . . , m� ∈ N such that

(Q, κ)m1 ∪ . . . ∪ (Q, κ)m�

is NP-complete under polynomial time (many-one) reductions.

Proof: Let Σ be the alphabet of (Q, κ). For the implication (1)⇒ (2), suppose
that (Q, κ) is para-NP-complete. Let Q′ ⊆ (Σ′)∗ be an arbitrary NP-complete
problem. Then (Q′, κone) ∈ para-NP. Let R : (Σ′)∗ → Σ∗ be an fpt-reduction
from (Q′, κone) to (Q, κ), and let f, p(X), g be chosen according to Defini-
tion 2.1. Then for all x′ ∈ (Σ′)∗, the value R(x′) can be computed in time
f(1) · p(|x′|), and κ(R(x′)) ≤ g(1). Thus R is a polynomial time reduction
from Q′ to

(Q, κ)1 ∪ (Q, κ)2 ∪ . . . ∪ (Q, κ)g(1).

Since Q′ is NP-complete, this implies that (Q, κ)1 ∪ (Q, κ)2 ∪ . . . ∪ (Q, κ)g(1)

is NP-complete.
For the implication (2) ⇒ (1), suppose that (Q, κ)m1 ∪ . . . ∪ (Q, κ)m�

is
NP-complete. Let (Q′, κ′) be a problem in para-NP over the alphabet Σ′. We
show that (Q′, κ′) ≤fpt (Q, κ). By Proposition 2.12, (Q′, κ′) is in NP after a
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precomputation on the parameter. Let π : N→ Π∗ be a computable function
and X ∈ NP such that for all x ∈ (Σ′)∗ we have

x ∈ Q′ ⇐⇒
(
x, π(κ′(x))

)
∈ X.

Since (Q, κ)m1 ∪ . . . ∪ (Q, κ)m�
is NP-complete, there is a polynomial time

reduction from X to (Q, κ)m1 ∪ . . . ∪ (Q, κ)m�
, that is, a polynomial time

computable mapping R : (Σ′)∗×Π∗ → Σ∗ such that for all (x, y) ∈ (Σ′)∗×Π∗

we have

(x, y) ∈ X ⇐⇒ R(x, y) ∈ (Q, κ)m1 ∪ . . . ∪ (Q, κ)m�
.

Fix an arbitrary x0 ∈ Σ∗ \Q. Such an x0 exists because (Q, κ) is nontrivial.
We claim that the mapping S : (Σ′)∗ → Σ∗ defined by

S(x) :=

{
R(x, π(κ′(x))), if κ(R(x, π(κ′(x))) ∈ {m1, . . . , m�},
x0, otherwise

is an fpt-reduction from (Q′, κ′) to (Q, κ): In fact, one easily checks that

x ∈ Q′ ⇐⇒ (x, π(κ′(x))) ∈ X

⇐⇒ R(x, π(κ′(x))) ∈ (Q, κ)m1 ∪ . . . ∪ (Q, κ)m�

⇐⇒ S(x) ∈ Q.

It is also not hard to see that the mapping S is computable by an fpt-
algorithm. Since κ(S(x)) ∈ {m1, . . . , m�, κ(x0)}, the condition “κ(S(x)) ≤
g(κ′(x)) for some computable g” is trivially satisfied. 
�

The following exercise shows that the assumption “(Q, κ) is nontrivial” in
Theorem 2.14 is relevant only if FPT = para-NP, and hence PTIME = NP:

Exercise 2.15. Let (Q, κ) be a parameterized problem that is not fixed-
parameter tractable. Prove that (Q, κ) is nontrivial. �

Corollary 2.16. A nontrivial parameterized problem in para-NP with at least
one NP-complete slice is para-NP-complete.

Example 2.17. p-Colorability is para-NP-complete under fpt-reductions.
�

Example 2.18. The following parameterization of the satisfiability problem
for propositional formulas in conjunctive normal form is para-NP-complete
under fpt-reductions:

Instance: A propositional formula α in conjunctive normal
form.

Parameter: Maximum number of literals in a clause of α.
Problem: Decide whether α is satisfiable. �
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While this gives us a few problems that are complete for para-NP, the
more important consequences of Theorem 2.14 are negative. For example,
the theorem shows that, unless PTIME = NP, the problems p-Clique, p-
Independent-Set, p-Dominating-Set, and p-Hitting-Set are not para-
NP-complete under fpt-reductions. As a matter of fact, the theorem shows
that all para-NP-complete problems are, in some sense, uninteresting from
the parameterized point of view because their hardness is already witnessed
by finitely many parameter values.

2.3 The Class XP

The examples at the end of the previous section highlighted an important
point: The slices of many interesting parameterized problems (and in partic-
ular, those of problems in FPT) are decidable in polynomial time. We now
study the class of problems with this property.

Definition 2.19. XPnu, nonuniform XP, is the class of all parameterized
problems (Q, κ) whose slices (Q, κ)k for k ≥ 1 are all in PTIME. �

Proposition 2.20. If PTIME �= NP then para-NP �⊆ XPnu.

Proof: If para-NP ⊆ XPnu, then p-Colorability ∈ XPnu. Hence 3-Colora-
bility ∈ PTIME, which implies PTIME = NP. 
�

The class XPnu itself is slightly at odds with our theory because it is a
nonuniform class; the following example shows that XPnu contains problems
that are not decidable.

Example 2.21. Let Q ⊆ {1}∗ be a set that is not decidable, and let κ :=
κsize, that is, κ : {1}∗ → N is defined by κ(x) = max{1, |x|}. Then (Q, κ) is in
XPnu. �

The following uniform version of the class XPnu fits better into the theory:

Definition 2.22. Let (Q, κ) be a parameterized problem over the alphabet
Σ. Then (Q, κ) belongs to the class XP if there is a computable function
f : N→ N and an algorithm that, given x ∈ Σ∗, decides if x ∈ Q in at most

|x|f(κ(x)) + f(κ(x))

steps. �

The bound |x|f(κ(x))+f(κ(x)) in this definition is somewhat arbitrary and
could be replaced by pκ(x)(|x|) for some computable function that associates
a polynomial pk(X) with every positive integer k.
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Exercise 2.23. Prove that (Q, κ) is in XP if and only if there is a computable
function that associates a pair (Mk, pk) consisting of a Turing machine Mk

and a polynomial pk(X) with every k ≥ 1 such that Mk decides the kth slice
of (Q, κ) in time pk(n), where n is the size of the input. �

It is easy to see that XP is closed under fpt-reductions. The class XP will
serve as a framework for our theory. Almost all problems we will study in this
book are contained in XP, and almost all complexity classes are subclasses of
XP. The only notable exception is the class para-NP.

Example 2.24. The problems p-Clique, p-Independent-Set, p-Hitting-
Set, and p-Dominating-Set are in XP. �

Intuitively, the class XP plays the role of the classical class EXPTIME in
the world of parameterized complexity. This is underlined by the following
result:

Theorem 2.25. The following parameterized problem is XP-complete under
fpt-reductions:

p-Exp-DTM-Halt
Instance: A deterministic Turing machine M, n ∈ N in unary,

and k ∈ N.
Parameter: k.

Problem: Decide whether M accepts the empty string in at
most nk steps.

Proof: An algorithm to witness the membership of p-Exp-DTM-Halt in XP
simulates the input machine for nk steps.

To prove hardness, let (Q, κ) ∈ XP. Let f : N → N be a computable
function and A an algorithm such that A decides x ∈ Q in time |x|f(κ(x)) +
f(κ(x)). Let M(x) be a Turing machine that first writes x on its tape and
then simulates the algorithm A on input x. We may assume that for some
computable function g : N → N, the machine M(x) needs at most (|x| +
2)g(κ(x)) steps to carry out this computation (|x|+ 2 to take care of |x| ≤ 1).
We let n(x) := |x| + 2 and k(x) := g(κ(x)). Then x �→ (M(x), n(x), k(x)) is
an fpt-reduction from (Q, κ) to p-Exp-DTM-Halt. 
�

Corollary 2.26. FPT ⊂ XP.

Proof: Obviously, FPT ⊆ XP. To prove that the containment is strict, suppose
for contradiction that p-Exp-DTM-Halt ∈ FPT. Then for some constant c ∈
N, every slice of p-Exp-DTM-Halt is solvable in DTIME(nc). In particular,
the (c + 1)th slice of p-Exp-DTM-Halt is solvable in DTIME(nc). It is easy
to see that this implies DTIME(nc+1) ⊆ DTIME(nc), contradicting the well-
known time hierarchy theorem. 
�

Figure 2.1 shows the relations among the classes FPT, para-NP, and XP.
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FPT

para-NP XP

Fig. 2.1. The relations among the classes FPT, para-NP, and XP

Exercise 2.27. Let para-EXPTIME be the class of all parameterized prob-
lems (Q, κ) such that x ∈ Q is decidable in time

f(κ(x)) · 2p(|x|)

for some computable function f and polynomial p(X). Prove that

XP ⊂ para-EXPTIME. �

Notes

The notion of fpt-reduction was introduced by Downey and Fellows in [79].
The class para-NP and more generally, the class para-C for any classical com-
plexity class C, was introduced in [100]. Theorem 2.14 is from [100]. The class
XP, and more generally the class XC for any classical complexity class C,
was introduced in Downey and Fellows [83]. Corollary 2.26 was proved there.
Further XP-complete problems can be found in [70, 83]. For more results con-
cerning the classes para-C and XC for arbitrary complexity classes C, we refer
the reader to [100].
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The Class W[P]

In the previous section, we made a first attempt to define a parameterized
analogue of the class NP, without much success. In this section we will take
up this question again.

We shall see in the course of this book that there is no definite single class
that can be viewed as “the parameterized NP.” Rather, there is a whole hier-
archy of classes playing this role. The class W[P] studied in this section can be
placed on top of this hierarchy. It is one of the most important parameterized
complexity classes.

3.1 Definition and Basic Results

In the following, we work with a standard model of multitape Turing machines
(cf. the Appendix).

Definition 3.1. (1) Let Σ be an alphabet and κ : Σ∗ → N a parameteri-
zation. A nondeterministic Turing machine M with input alphabet Σ is
called κ-restricted if there are computable functions f, h : N → N and
a polynomial p ∈ N0[X ] such that on every run with input x ∈ Σ∗ the
machine M performs at most f(k) ·p(n) steps, at most h(k) · log n of them
being nondeterministic.1 Here n := |x|, and k := κ(x).

(2) W[P] is the class of all parameterized problems (Q, κ) that can be decided
by a κ-restricted nondeterministic Turing machine. �

1Recall that by log n we mean �log n� if an integer is expected.
Here, and in a few other places in this book, we are also facing the problem that for
n = 0 the term log n is undefined. Instead of introducing a artificial work-arounds,
such as writing log(n + 1) instead of log n, we trust the reader’s common sense to
interpret the terms reasonably. For example, in the present definition, on the empty
input, a κ-restricted is not allowed to perform any nondeterministic steps.
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One intuitive way to see this definition is that the class W[P] is defined to
be the subclass of para-NP obtained by restricting the amount of nondeter-
minism that may be used by an algorithm in such a way that it only accepts
problems in XP. This is reflected by the second containment of the following
proposition, which is illustrated by Fig. 3.1.

FPT

W[P]

para-NP XP

Fig. 3.1. The relations among the classes

Proposition 3.2. FPT ⊆ W[P] ⊆ XP ∩ para-NP.

Proof: The inclusions FPT ⊆ W[P] and W[P] ⊆ para-NP are trivial, and
W[P] ⊆ XP follows from the fact that the simulation of h(k) · log n nondeter-
ministic steps of a Turing machine with s states by a deterministic algorithm
requires time O(sh(k)·log n) = nO(h(k)). Note that the number s of states of the
Turing machine can be treated as a constant here. 
�

Exercise 3.3. Prove that W[P] is closed under fpt-reductions. �

Example 3.4. p-Clique, p-Independent-Set, p-Dominating-Set, and
p-Hitting-Set are all in W[P].

To see this, note that all these problems can be solved by nondeterminis-
tically guessing k times an element, each of which can be described by log n
bits, and then deterministically verifying that the elements are pairwise dis-
tinct and constitute a solution of the problem. �

Example 3.5. Consider the following parameterization of the halting prob-
lem for nondeterministic Turing machines:
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p-Bounded-NTM-Halt
Instance: A nondeterministic Turing machine M, n ∈ N in

unary, and k ∈ N.
Parameter: k.

Problem: Decide whether M accepts the empty string in at
most n steps and using at most k nondeterministic
steps.

To show that p-Bounded-NTM-Halt ∈W[P], we construct a nondetermin-
istic Turing machine that proceeds as follows: Let M be a nondeterministic
Turing machine with t worktapes. Then in each nondeterministic step, the
number of possible transitions the machine can choose from is bounded by the
size of the transition table and hence by the size ||M|| of M. Our algorithm
guesses the k · log ||M|| bits describing the behavior of M in the nondetermin-
istic steps and then simulates n steps of M accordingly.

We will see in the next section that p-Bounded-NTM-Halt is W[P]-
complete. �

Example 3.6. Let ā = a1 . . . an and b̄ = b1 . . . bs be strings over the alphabet
Σ. We say that b̄ is a subsequence of ā if s ≤ n and b1 = ai1 , . . . , bs = ais

for
some i1, . . . , is with 1 ≤ i1 < . . . < is ≤ n.

We consider the following parameterization of the longest common subse-
quence problem:

p-LCS
Instance: Strings ā1, . . . , ām ∈ Σ∗ for some alphabet Σ and k ∈ N.

Parameter: k.
Problem: Decide whether there is a string of length k in Σ∗ that

is a subsequence of āi for i = 1, . . . , m.

To show that p-LCS ∈ W[P], we consider a nondeterministic Turing ma-
chine that runs as follows: Given an instance of p-LCS as above, it guesses
a string b̄ ∈ Σ∗ of length k in O(k · log |Σ|) steps and then deterministically
verifies that b̄ is a subsequence of every āi. �

We are mostly interested in parameterized problems whose underlying
unparameterized problem is in NP. The next result is a characterization of
such problems within the class W[P].

Proposition 3.7. Let (Q, κ) be a parameterized problem over the alphabet Σ.
Then the following statements are equivalent:
(1) (Q, κ) ∈W[P], and Q ∈ NP.
(2) There is a computable function h : N → N, a polynomial p(X), and a

nondeterministic Turing machine M deciding Q such that on every run
with input x ∈ Σ∗ the machine M performs at most p(n) steps, at most
h(k) · log n of them being nondeterministic. Here n := |x|, and k := κ(x).
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Proof: The implication from (2) to (1) is trivial. To prove that (1) implies
(2), assume (Q, κ) ∈ W[P] with Q ∈ NP. Choose a nondeterministic Turing
machine M0, computable functions f0, h0, and a polynomial p0(X) according
to the definition of W[P]. Then on input x with n := |x| and k := κ(x), the
machine M0 decides x ∈ Q in time f0(k) · p0(n) with at most h0(k) · log n
nondeterministic steps. By Lemma 1.35, without loss of generality we may
assume that f0 is increasing and is time constructible. Moreover, let p1(X)
be a polynomial and M1 a nondeterministic Turing machine such that M1

decides x ∈ Q in p1(n) steps.
Now let M be the following nondeterministic Turing machine: On input

x with n := |x| and k := κ(x), machine M first checks if f0(k) ≤ n. If so, it
simulates M0 on input x, otherwise, it simulates M1 on input x. Clearly, M

decides Q.
We calculate the total number of steps and the number of nondetermin-

istic steps that M performs on each run. Since f0 is time constructible, the
condition f0(k) ≤ n can be checked in time O(n). If f0(k) ≤ n, the machine
M performs at most O(n)+ f0(k) · p0(n) ≤ O(n)+n · p0(n) steps and at most
h0(k) · log n nondeterministic steps. If f0(k) > n, the machine M performs
O(n) + p1(n) steps and at most p1(n) ≤ p1(f0(k)) nondeterministic steps.
Altogether, we see that the total number of steps of M can be bounded by
p(n) for some polynomial p(X), and the number of nondeterministic steps by
h(k) · log n, where h(k) := max{h0(k), p1(f0(k))}. 
�

We close this section with a reformulation of the definition of W[P]. It is
similar to the characterization of NP as the class of all problems that are ex-
istential quantifications of polynomially decidable and polynomially balanced
relations.

Lemma 3.8. A parameterized problem (Q, κ) over the alphabet Σ is in W[P]
if and only if there are computable functions f, h : N→ N, a polynomial p(X),
and a Y ⊆ Σ∗ × {0, 1}∗ such that:
(1) For all (x, y) ∈ Σ∗×{0, 1}∗, it is decidable in time f(κ(x)) ·p(|x|) whether

(x, y) ∈ Y (in particular, the problem (Y, κ′) with κ′(x, y) := κ(x) is fixed-
parameter tractable).

(2) For all (x, y) ∈ Σ∗ × {0, 1}∗, if (x, y) ∈ Y then |y| = h(κ(x)) · �log |x|�.
(3) For every x ∈ Σ∗

x ∈ Q ⇐⇒ there exists a y ∈ {0, 1}∗ such that (x, y) ∈ Y .

Proof: For the forward direction, suppose that (Q, κ) ∈W[P]. Choose f ′, h′, p′

and a Turing machine M′ according to Definition 3.1. There is some constant
c = c(M′) such that every nondeterministic step of M′ can be described by c
bits. Thus all nondeterministic decisions on a single run of M′ on input x can
be described by a string of at most c · h′(k) · log n ≤ 2c · h′(k) · �log n� bits,
where n := |x| and k := κ(x). Let h := 2c · h′, and
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Y :=
{
(x, y) ∈ Q× {0, 1}∗

∣∣ |y| = h(κ(x)) · �log |x|�, and y describes
the nondeterministic steps of an accept-
ing run of M′ on input x

}
.

Clearly, there is a function f such that f , h, and Y satisfy (1), (2), and (3).
The backward direction is straightforward. 
�

3.2 W[P]-Complete Problems

We define (Boolean) circuits in the standard way as directed acyclic graphs
with each node of in-degree > 0 labeled as and-node, as or-node, or, if the
in-degree is exactly 1, as negation node. Nodes of in-degree 0 are either labeled
as Boolean constants 0 or 1, or as input nodes . In addition, one node of out-
degree 0 is labeled as the output node. In this section, we think of the input
nodes as being numbered 1, . . . , n.

A circuit C with n input nodes defines an n-ary Boolean function in the
natural way. We denote the value computed by C on input x ∈ {0, 1}n by
C(x). If C(x) = 1, we say that x satisfies C. We call C satisfiable if there
is some tuple x ∈ {0, 1}n that satisfies C. We define the weight of a tuple
x = (x1, . . . , xn) ∈ {0, 1}n to be

∑n
i=1 xi, the number of 1-entries of x. We

call C k-satisfiable if it is satisfied by a tuple of weight k.
The following weighted satisfiability problem for the class CIRC of all cir-

cuits is of fundamental importance for parameterized complexity theory:

p-WSat(CIRC)
Instance: A circuit C and k ∈ N.

Parameter: k.
Problem: Decide whether C is k-satisfiable.

Theorem 3.9. p-WSat(CIRC) is W[P]-complete under fpt-reductions.

For the proof of this result, which will be given below, we use the well-
known fact (Fact 3.10 below) that Turing machines can be simulated by cir-
cuits of size polynomial in the running time of the machines. We say that a
family (Cn)n≥0 of circuits decides a problem Q ⊆ {0, 1}∗ if for every n ≥ 0
the circuit Cn has precisely n input nodes, and for x ∈ {0, 1}n we have

Cn(x) = 1 ⇐⇒ x ∈ Q.

We define the size ||C|| of a circuit C to be the number of nodes plus the
number of edges of C. The family (Cn)n≥0 is uniform if there is an algorithm
that, given n ∈ N0, computes Cn in time polynomial in ||Cn||.
Fact 3.10. Let t : N0 → N0 be such that t(n) ≥ n for all n ∈ N0. If Q ⊆
{0, 1}∗ can be decided by a deterministic Turing machine in time t(n), then
there is a uniform family (Cn)n≥0 of circuits such that (Cn)n≥0 decides Q and
||Cn|| ∈ O(t(n)2).
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A proof can, for example, be found in [20] (Theorem 5.19).
The following lemma will not only be used in the proof of Theorem 3.9,

but also forms the basis for the results of Sect. 3.3.

Lemma 3.11. Let (Q, κ) ∈ W[P] be a parameterized problem over the al-
phabet Σ. Then there are a computable function h and an fpt-algorithm that,
given an instance x ∈ Σ∗ of (Q, κ), computes a circuit Cx with h(k) · �log |x|�
input nodes such that

Cx is satisfiable ⇐⇒ x ∈ Q.

Proof: Without loss of generality, we may assume that Σ = {0, 1}. If this
is not the case, we first reduce (Q, κ) to an equivalent problem (Q′, κ′) over
{0, 1}.

Choose f, h, p, Y according to Lemma 3.8. Let M be a deterministic Turing
machine deciding (x, y) ∈ Y in time f(κ(x)) · p(|x|).

By Fact 3.10, there exists a uniform family (Cm)m≥0 of circuits such that
for all n, k ∈ N and m := n + h(k) · �log n� we have:

(i) For all x ∈ {0, 1}n with κ(x) = k and y ∈ {0, 1}h(k)·�log n�,

Cm((x, y)) = 1 ⇐⇒ (x, y) ∈ Y.

(ii) ||Cm|| ≤
(
f(k) · p(n)

)2
.

Now let x = (x1, . . . , xn) ∈ {0, 1}∗ be an instance of (Q, κ). Let k := κ(x).
Let Cx be the circuit obtained from Cn+h(k)·�log n� by replacing the first n
input nodes by the Boolean constants x1, . . . , xn. Then Cx is a circuit with
h(k) · �log n� input nodes, and we have:

Cx is satisfiable ⇐⇒ ∃y ∈ {0, 1}h(k)·�log n� : (x, y) ∈ Y

⇐⇒ x ∈ Q.

By the uniformity of the family (Cm)m≥0, the mapping x �→ Cx is computable
by an fpt-algorithm. 
�

The previous lemma shows how we can reduce a parameterized problem
in W[P] to the satisfiability problem for circuits. With the help of the next
lemma we will be able to reduce it to the weighted satisfiability problem for
circuits. We think of the bits of a nonnegative integer as being numbered
from the right to the left starting with 0, that is, the 0th bit is the bit of
lowest precedence. We denote the ith bit in the binary representation of n by
bit(i, n).

Lemma 3.12. (1) For all n, k ∈ N, there is a circuit Sn,k of size O(k · n2)
with k · n input nodes vij , for i ∈ [k] and j ∈ [0, n− 1], such that for all
x = (xij)i∈[k],j∈[0,n−1] with xij ∈ {0, 1} we have:

Sn,k(x) = 1 ⇐⇒ for all i ∈ [k] there is exactly one j ∈ [0, n−1]
such that xij = 1.
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(2) Let n ∈ N and e0, . . . , en−1 ∈ {0, 1}n be given by

e0 := (1, 0 . . . , 0), e1 := (0, 1, 0, . . . , 0), . . . , en−1 := (0, . . . , 0, 1).

For every j ∈ [0, �log n�], there is a circuit Bn,j of size O(n) with n input
nodes such that for all i ∈ [0, n− 1]

Bn,j(ei) = bit(j, i).

Proof: We use Boolean formulas to describe the nodes of the circuits we
construct. We first construct Sn,k: The input nodes are vij , for i ∈ [k] and
j ∈ [0, n− 1]. For all i ∈ [k] there is a node

si that computes

n−1∨
j=0

vij ,

and a node
ti that computes

∧
0≤j<j′≤n−1

(¬vij ∨ ¬vij′ ).

(By definition, the conjunction (disjunction) over the empty set is a node

labeled by 1 (0).) The output node computes
∧k

i=1(si ∧ ti). Of course, Sn,k

also contains nodes for the subformulas ¬vij , ¬vij ∨ ¬vij′ , and si ∧ ti.
The construction of Bn,j is even simpler: Let v0, . . . , vn−1 be the input

nodes. The output node computes ∨
i∈[0,n−1]
bit(j,i)=1

vi. 
�

Proof of Theorem 3.9: It is straightforward to prove that p-WSat(CIRC) ∈
W[P]: Let C be a circuit with n input nodes and k ∈ N. An input tuple x =
(x1, . . . , xn) of weight k can be described using k · log n bits by specifying the
binary representations of the indices of the 1-entries of x. A nondeterministic
Turing machine adhering to Definition 3.1 first guesses k · log n bits describing
an input tuple for C of weight k and then deterministically verifies that it
satisfies C.

To prove hardness, let (Q, κ) ∈W[P]. Let x be an instance of (Q, κ), and let
Cx be the circuit and h the computable function obtained from Lemma 3.11.
Let n := |x|, � := �log n�, and k′ := h(k). Then Cx has k′ · � input nodes.
We think of these input nodes as being arranged in k′ blocks of length �.
To emphasize this, let us denote the input nodes by uij for i ∈ [k′] and
j ∈ [0, �− 1].

We shall construct a circuitDx with k′·n input nodes, arranged in k′ blocks
each of n input nodes, that is k′-satisfiable if and only if Cx is satisfiable. The
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crucial idea underlying the construction has become known as the “k · log n-
trick”: Since � ≤ log n every input to the nodes of the ith block (uij)j∈[0,�−1] of
input nodes of Cx can be described by the bits of a single number in [0, n−1],
that is, it can be described by choosing a single input node of the ith block of
input nodes of Dx. Thus an assignment to all k′ blocks of input nodes of Cx
can be described by a k′-tuple of numbers in [0, n− 1], or by an input tuple
of weight k′ for Dx.

We construct the circuit Dx as follows (Fig. 3.2 illustrates the construc-
tion): We start with the circuit Cx and add k′ · n new input nodes vij for
i ∈ [k′], j ∈ [0, n − 1]. For i ∈ [k′] and j ∈ [0, � − 1] we take a copy
Bi

n,j of the circuit Bn,j of Lemma 3.12(2) and identify its input nodes with
vi0, . . . , vi(n−1) and its output node with uij . Then we add a copy of the cir-
cuit Sn,k′ of Lemma 3.12(1) and identify its input nodes with the nodes vij

for i ∈ [k′], j ∈ [0, n − 1]. Finally, we add a new output node that computes
the conjunction of the output node of Cx and the output node of Sn,k′ . It is

vi0 vi(n−1)

ith input block

uij

Bi
n,j

Sn,k′

. . . . . .

. . . . . .

Cx

Dx

Fig. 3.2. The k · log n-trick

easy to see that

Cx is satisfiable ⇐⇒ Dx is satisfiable (3.1)

⇐⇒ Dx is k′-satisfiable. (3.2)

Since Cx can be computed from x by an fpt-algorithm andDx can be computed
from Cx in polynomial time, the reduction x �→ Dx is an fpt-reduction from
(Q, κ) to p-WSat(CIRC). 
�

For further reference we note the essence of the k · log n trick:
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Corollary 3.13 (k ··· log n trick). There is an algorithm that associates with
every circuit C with k · log n input nodes a circuit D with ‖C‖ ≤ ‖D‖ and with
k · n input nodes in time O(‖C‖+ k · n2) such that

C is satisfiable ⇐⇒ D is k-satisfiable.

The hardness result of Theorem 3.9 can be strengthened by restricting the
input circuits of the weighted satisfiability problem. A circuit is monotone if
it does not contain any negation nodes. We denote the class of all monotone
circuits by CIRC+ and the restriction of p-WSat(CIRC) to monotone input
circuits by p-WSat(CIRC+).

Theorem 3.14. p-WSat(CIRC+) is W[P]-complete under fpt-reductions.

Proof: Clearly, p-WSat(CIRC+) ∈W[P]. To prove W[P]-hardness, we follow
the proof of Theorem 3.9 and modify it where necessary. Let (Q, κ) ∈ W[P],
and let x be an instance of (Q, κ). Let Cx be the circuit and h the function
obtained from Lemma 3.11. Let n := |x|, � := �log n�, and k′ := h(k). Let uij ,
where i ∈ [k′] and j ∈ [0, �− 1], be the input nodes of Cx.

We construct a new monotone circuit C′x with input nodes

(uij)i∈[k′],j∈[0,�−1], (ūij)i∈[k′ ],j∈[0,�−1]

such that for all (xij)i∈[k′],j∈[0,�−1] with xij ∈ {0, 1} we have

(xij)i∈[k′],j∈[0,�−1] satisfies Cx
⇐⇒ (xij)i∈[k′],j∈[0,�−1], (1− xij)i∈[k′ ],j∈[0,�−1] satisfies C′x.

To achieve this, using de Morgan’s rules we first transform Cx to an equivalent
circuit where negation nodes only appear immediately above input nodes.
Then we add new input nodes playing the role of the negated old input nodes.

We observe next that the circuit Bn,j of Lemma 3.12(2) is monotone; recall
that the output node of Bn,j is simply the disjunction

∨
i∈[n]

bit(j,i)=1

vi of certain

input nodes vi. We also have a monotone circuit Bn,j of size O(n) with n
input nodes such that for all i ∈ [0, n− 1]

Bn,j(ei) = 1− bit(j, i).

The output node of Bn,j is the disjunction∨
i∈[0,n−1]
bit(j,i)=0

vi.

We are now ready to construct the circuit D′
x: We start with the circuit

C′x and add k′ ·n new input nodes vij for i ∈ [k′], j ∈ [0, n−1]. For i ∈ [k′] and
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j ∈ [0, �− 1] we take a copy of the circuit Bn,j of Lemma 3.12(2) and identify
its input nodes with vi0, . . . , vi(n−1) and its output node with uij . In addition,

we take a copy of Bn,j and identify its input nodes with vi0, . . . , vi(n−1) and
its output node with ūij .

In the proof of Theorem 3.9 we continued by adding a copy of the circuit
Sn,k′ of Lemma 3.12(1) to make sure that for all i ∈ [k′], exactly one input
node vij is set to 1. It is not possible to achieve this by a monotone circuit.
However, we can easily force at least one input node vij to be set to 1 for all
i ∈ [k′]: We let S+

n,k′ be a monotone circuit whose output node computes

k′∧
i=1

n∨
j=1

vij .

We use S+
n,k′ instead of Sn,k′ in our construction. Then instead of (3.1) and

(3.2) we only have

C′x is satisfiable ⇐⇒ D′
x is k′-satisfiable,

but this is all we need to complete the proof. 
�

Exercise 3.15. A circuit is antimonotone if every input node has out-
degree 1 and is connected to a negation node and if there are no nega-
tion nodes besides these. We denote the class of antimonotone circuits by
CIRC− and the restriction of p-WSat(CIRC) to antimonotone input circuits
by p-WSat(CIRC−). Prove that p-WSat(CIRC−) is W[P]-complete under
fpt-reductions. �

Theorem 3.16. p-Bounded-NTM-Halt is W[P]-complete.

Proof: We saw in Example 3.5 that p-Bounded-NTM-Halt ∈ W[P]. To
prove hardness, we reduce p-WSat(CIRC) to p-Bounded-NTM-Halt.

Given a circuit C and k ∈ N, we construct a nondeterministic Turing ma-
chine MC,k as follows: The alphabet of MC,k has a symbol for every input
node of the circuit C (among other symbols). The machine first nondetermin-
istically guesses k input nodes to be set to true, and then deterministically
evaluates the circuit in time q(‖C‖) for some polynomial q(X). Then

C is k-satisfiable ⇐⇒ (MC,k, k + q(‖C‖), k) ∈ p-Bounded-NTM-Halt,

which gives the desired reduction. 
�

Exercise 3.17. Show that there is a polynomial time algorithm that asso-
ciates with every circuit C a circuit C′ without nodes labeled by the constants
0 or 1 such that for all k ∈ N

C is k-satisfiable ⇐⇒ C′ is k-satisfiable.
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Moreover, if C is monotone (antimonotone), then C′ can be chosen to be
monotone (antimonotone), too.

Hint: If k ≥ 1, a k-satisfiable circuit must contain at least one input node. �

Exercise 3.18. Show that the following parameterized partitioned satisfia-
bility problem is W[P]-complete under fpt-reductions:

p-PSat(CIRC+)
Instance: A monotone circuit C without nodes labeled by 0

or 1, k ∈ N, and a partition I1, . . . , Ik of the input
nodes of C.

Parameter: k.
Problem: Decide whether (C, I1, . . . , Ik) is satisfiable, that is,

whether C has a satisfying assignment that sets
exactly one node in each I� to 1.

Hint: Reduce p-WSat(CIRC+) to p-PSat(CIRC+): Let (C, k) be an instance
of p-WSat(CIRC+) without nodes labeled by 0 or 1. Assume that |I| ≥ k
for the set I of input nodes of C. Set I� := I × {�} for � ∈ [k]. The circuit D
with input nodes I1 ∪ . . . ∪ Ik is obtained from C by converting every input
node i of C into an or-gate with in-going edges (i, 1), . . . , (i, k). Show that the
instance (D, I1, . . . , Ik) of p-PSat(CIRC+) is equivalent to (C, k). �

Let A be a finite set and F : A×A→ A a binary function on A. A subset
B of A is F -closed if

b, b′ ∈ B =⇒ F (b, b′) ∈ B.

The subset B is a set of generators (of F ) if the smallest F -closed subset of
A containing B is A. We set

p-Generators
Instance: n, k ∈ N and a binary function F on [n].

Parameter: k.
Problem: Decide whether F has a set of generators of cardi-

nality k.

Theorem 3.19. p-Generators is W[P]-complete under fpt-reductions.

Proof: It is easy to prove that p-Generators ∈ W[P]: A nondeterministic
Turing machine according to Definition 3.1, given F : [n] × [n] → [n] and
k ∈ N, first guesses k · logn bits describing a subset B of [n] of size k and then
deterministically verifies that it is a set of generators.

To prove hardness, we show p-PSat(CIRC+) ≤ p-Generators (this suf-
fices by Exercise 3.18). Let (C, I1, . . . , Ik) be an instance of p-PSat(CIRC+).
We may assume that every and-gate and every or-gate of C has in-degree two,
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that C contains at least one or-gate, and that I� is nonempty for � ∈ [k]. The
main idea of the reduction is the following: Essentially the function F of an
equivalent instance of p-Generators will be a binary function on the nodes
of C. We define it in such a way that for every subset I of the input nodes
the closure of I under F contains all gates of C that get the value 1 under the
assignment; moreover, we ensure that if the closure contains the output node
o, it contains all nodes of C.

Let a be a node of C distinct from output node o. We must be able to
distinguish the different occurrences of a as input node to other gates. There-
fore, let d(a) be the out-degree of a. We enumerate the out-going edges from
a so that we can speak of the jth edge. We set

A :=I1 ∪ . . . ∪ Ik ∪ {o}∪
{(a, j) | a node of C, a �= o, j ∈ [d(a)]} ∪ {s1, . . . , sk, u}.

We say that (a, j) is an input of b if (a, b) is the jth out-going edge of a. For
� ∈ [k], let i�,1, . . . , i�,n�

be the input nodes in I�. The function F : A×A→ A
is defined as follows:

(1) F (s�, i) := (i, 1) for � ∈ [k] and i ∈ I�;
(2) F ((a, j), (a, j)) := (a, j + 1) for every node a of C with a �= o and j ∈

[d(a)− 1];
(3) If a �= o is an and-gate of C with inputs (b, j) and (b′, j′), then

F ((b, j), (b′j′) := (a, 1).
(4) If a �= o is an or-gate of C, and (b, j) an input of a, then F ((b, j), u) :=

(a, 1).
(5) If o is an and-gate with inputs (b, j) and (b′, j′), then F ((b, j), (b′j′) := o.
(6) If o is an or-gate and (b, j) an input of o, then F ((b, j), u) := o.
(7) F (o, i�,j) := i�,j+1 for � ∈ [k] j ∈ [n�] (where we identify n� + 1 with 1).

We set all other values of F equal to the first argument. We show that

(C, I1, . . . , Ik) is satisfiable ⇐⇒ F has a set of generators of

cardinality 2k + 1.

In fact, if I is a set of input nodes and the assignment setting the input nodes
in the set I to 1 satisfies (C, I1, . . . , I�), then the set B := I ∪ {s1, . . . , sk, u}
is a set of generators of F of cardinality 2k + 1: By (1)–(6) all gates that
have value 1 under this assignment are in the closure of B; hence, by (7),
the closure also contains all input gates and thus all elements of A, again by
(1)–(4).

For the other direction, assume that B is a set of generators of F of
cardinality 2k + 1. Since each b in {s1, . . . , sk, u} cannot be written in the
form F (b1, b2) for b1 �= b, b2 �= b, we see that s1, . . . , sk, u ∈ B. For � ∈ [k],
every generation of an element of I� involves another member of I�. Hence,
B must contain at least one element of every I� and thus has the form B =
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{s1, . . . , sk, u, i1, . . . , ik} with i� ∈ I� for � ∈ [k]. Since the output node is
in the closure of B, one easily verifies that the assignment setting the input
nodes in the set {i1, . . . , ik} to 1 satisfies (C, I1, . . . , I�). 
�

Exercise 3.20. Prove that the following problem is W[P]-complete under
fpt-reductions:

p-Minimum-Axiom-Set
Instance: A finite set A, a binary relation R consisting of

pairs (B, a) with B ⊆ A and a ∈ A, and k ∈ N .
Parameter: k.

Problem: Decide whether there is a subset B of A with |B| =
k such that the closure of B under R is A, where
the closure of B under R is the smallest subset B′

of A with B ⊆ B′ such that (C, a) ∈ R and C ⊆ B′

imply a ∈ B′.

Hint: Show that p-Generators ≤fpt p-Minimum-Axiom-Set. �

Exercise 3.21. Prove that the following problem is W[P]-complete under
fpt-reductions:

p-Linear-Inequality-Deletion
Instance: A system S of linear inequalities over the rationals

and k ∈ N.
Parameter: k.

Problem: Decide whether it is possible to delete k inequalities
from S such that the remaining system is solvable.

�

3.3 Is FPT �= W[P]?

Since FPT ⊆ W[P] ⊆ para-NP, we know that FPT �= W[P] would imply
FPT �= para-NP. Hence by Corollary 2.13,

FPT �= W[P] =⇒ PTIME �= NP.

We are unable to establish the reverse implication (although we believe it to
be true simply because we believe that both FPT �= W[P] and PTIME �= NP
are true).

In this section, we present two statements from classical complexity that
are equivalent to FPT �= W[P].
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W[P] and Subexponential Algorithms for the Circuit Satisfiability
Problem

We consider the satisfiability problem for circuits:

Circuit-Sat
Instance: A circuit C.
Problem: Decide whether C is satisfiable.

The brute-force algorithm for Circuit-Sat that checks all possible assign-
ments has a running time of 2n ·mO(1) for a circuit of size m and with n input
nodes. Essentially, the main result of this section (Theorem 3.25) states that
FPT = W[P] if and only if there is an algorithm deciding Circuit-Sat in
time 2o(n) ·mO(1). There is a subtlety in that the “little-oh of n” needs to be
effective in the following sense:

Definition 3.22. Let f, g : N→ N be computable functions. Then f ∈ oeff(g)
if there is a computable function h such that for all � ≥ 1 and n ≥ h(�), we
have

f(n) ≤ g(n)

�
. �

We often write f(n) ∈ oeff(g(n)) instead of f ∈ oeff(g), as, for example,
in n ∈ oeff(n2). It is usually more convenient to work with the following
characterization of a function f being in oeff(g):

Lemma 3.23. Let f, g : N→ N be computable functions. Then f ∈ oeff(g) if
and only if there exist n0 ∈ N and a computable function ι : N → N that is
nondecreasing and unbounded such that for all n ≥ n0,

f(n) ≤ g(n)

ι(n)
.

We leave the straightforward proof to the reader, as we do for the next lemma.
We usually use the letter ι to denote computable functions that are non-

decreasing and unbounded, but that possibly grow very slowly.

Lemma 3.24. Let f : N → N be increasing and time constructible. Let ιf :
N→ N be defined by

ιf (n) :=

{
max{i ∈ N | f(i) ≤ n}, if n ≥ f(1),

1, otherwise.

Then f(ιf (n)) ≤ n for all n ≥ f(1). The function ιf is nondecreasing and
unbounded. Furthermore, there is an algorithm that computes ιf (n) in time
O(n2).
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Theorem 3.25.

FPT = W[P] ⇐⇒ Circuit-Sat ∈ DTIME
(
2oeff(n) ·mO(1)

)
,

where n is the number of input nodes and m the size of the input circuit of
the problem Circuit-Sat.

The proof is based on the following lemma, which for now should be viewed
as a technical tool, but will be put into a wider context in Chap. 16:

Lemma 3.26. The following problem is W[P]-complete under fpt-reductions:

p-log-Circuit-Sat
Instance: A circuit C of size m with n input nodes.

Parameter: �n/logm�.
Problem: Decide whether C is satisfiable.

Proof: Clearly, there is a Turing machine that decides whether a given circuit
C of size m with n input nodes is satisfiable in polynomial time using

n ≤ �n/log m� · log m

nondeterministic bits. This shows that p-log-Circuit-Sat is in W[P].
To prove hardness, let (Q, κ) ∈ W[P], and let x be an instance of (Q, κ).

Let Cx be the circuit obtained from Lemma 3.11. Let n := |x| and k := κ(x).
The number of input nodes is nx := h(k) · �log |x|� for some computable
function h. Without loss of generality we may assume that the size mx of
Cx is at least |x|, because we can always artificially increase the size of a
circuit without changing the function it computes. View Cx as an instance of
p-log-Circuit-Sat. The parameter value is⌈

nx

log mx

⌉
≤ h(k) · �log |x|�

log |x| + 1 ≤ h(k) + 1.

Thus, the mapping x �→ Cx is an fpt-reduction from (Q, κ) to p-log-Circuit-
Sat. 
�

Proof of Theorem 3.25: Suppose first that FPT = W[P]. Then the problem
p-log-Circuit-Sat is in FPT. Let f be a computable function and A an fpt-
algorithm that solves p-log-Circuit-Sat in time f(k) ·mO(1), where k is the
parameter and m the size of the input circuit. Without loss of generality we
may assume that f is increasing and time constructible. Let ι := ιf be the
“inverse” of f as defined in Lemma 3.24.

Let C be a circuit of size m with n input nodes, and let k = �n/ log m�.
Assume first that m ≥ 2n/ι(n). Note that

k =

⌈
n

log m

⌉
≤ ι(n).



60 3 The Class W[P]

Thus, since f is nondecreasing, we have f(k) ≤ f(ι(n)) ≤ n, and we can
simply decide if C is satisfiable with our fpt-algorithm A in time

f(k) ·mO(1) ≤ n ·mO(1) = mO(1).

Assume next that m < 2n/ι(n). Let m′ = 2	n/ι(n)
. We can artificially increase
the size of C (by adding useless nodes) to obtain a circuit C′ with m′ ≤ ||C′|| ∈
O(m′) that computes the same Boolean function as C. This construction can
be carried out in time O(m′).

Let k′ := n/ log ||C′||. Then k′ ≤ ι(n). We can decide if C′ is satisfiable
with our fpt-algorithm A in time

f(k′) · (m′)O(1) ≤ n · 2O(n/ι(n)).

Since O(n/ι(n)) ≤ oeff(n) and n ≤ m, this completes the proof of the forward
direction.

For the backward direction, suppose that A is an algorithm that solves
Circuit-Sat in time 2n/ι(n) ·mO(1) for some computable function ι : N→ N

that is nondecreasing and unbounded. Let f : N→ N be defined by

f(i) :=

{
max{2n | n ∈ N, ι(n) ≤ i} if ι(1) ≤ i,

1 otherwise.

Then f is total and computable, because ι is computable, nondecreasing,
and unbounded. Furthermore, f is nondecreasing, and for all n ∈ N we have
f(ι(n)) ≥ 2n.

We claim that p-log-Circuit-Sat can be solved in time f(k)·mO(1). By the
W[P]-completeness of p-log-Circuit-Sat, this implies FPT = W[P]. Let C be
a circuit of size m with n input nodes, and let k := �n/ logm�. If m ≥ 2n/ι(n)

then we can use the algorithm A to decide if C is satisfiable in time

2n/ι(n) ·mO(1) = mO(1).

If m < 2n/ι(n), then

k =

⌈
n

log m

⌉
≥ ι(n),

and thus f(k) ≥ 2n. Then we can decide if C is satisfiable by exhaustive search
in time f(k) ·mO(1). 
�

W[P] and Limited Nondeterminism

Limited nondeterminism is an interesting concept (of classical complexity the-
ory) to explore the space between PTIME and NP. We will see that it has
various close connections to parameterized complexity.
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Definition 3.27. Let f : N→ N. A problem Q ⊆ Σ∗ is in NP[f ] if there is a
polynomial p(X) and a nondeterministic Turing machine M deciding Q such
that for every input x on every run M performs at most p(|x|) steps, at most
f(|x|) of them being nondeterministic. �

For a class F of functions, we let

NP[F ] :=
⋃

f∈F
NP[f ].

We often write NP[f(n)] instead of NP[f ]. Note that

NP[log n] = PTIME, and NP[nO(1)] = NP.

Besides these two classes, arguably the most interesting of the classes of lim-
ited nondeterminism is NP[log2 n], which we consider in detail in the next
chapter and in Chap. 15.

Observe that for all f we have

NP[f ] = NP[O(f)],

because we can simulate any constant number of nondeterministic steps by a
single step of a nondeterministic Turing machine simply by adding sufficiently
many states. If we want to control the amount of nondeterminism more pre-
cisely, for f : N → N we can consider the class NPbin[f ] of problems Q such
that there is a polynomial p(X) and a nondeterministic Turing machine M

with binary branching deciding Q such that for every input x on every run M

performs at most p(|x|) steps, at most f(|x|) of them being nondeterministic.
Clearly,

NPbin[f ] ⊆ NP[f ] ⊆ NPbin[O(f)],

but NPbin[f ] and NPbin[O(f)] seem to be different in general.

Lemma 3.28. Let f : N→ N be nondecreasing. Then

NPbin[f ] = PTIME ⇐⇒ NP[f ] = PTIME.

Proof: The direction from right to left is trivial. For the converse direction,
assume NPbin[f ] = PTIME. Let Q ∈ NP[f ], where Q ⊆ Σ∗, and let M be a
Turing machine witnessing that Q ∈ NP[f ]. Clearly, for some c ∈ N, machine
M can be simulated by a Turing machine M′ with binary branching witnessing
that Q ∈ NPbin[c · f ]. Hence, it suffices to show that NPbin[c · f ] = PTIME
for c ∈ N. We show this equality for c = 2, the general case being obtained by
induction on c. So, assume Q ∈ NPbin[2f ]. Define Q′ ⊆ Σ∗ × {0, 1}∗ by

(x, y) ∈ Q′ ⇐⇒ there is a run of M′ accepting x in which M′ performs
at most 2|y| nondeterministic steps and branches in
the first |y| of these steps according to y.
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This definition of Q′ shows that Q′ ∈ NPbin[f ] and hence Q′ ∈ PTIME. Since
(x ∈ Q ⇐⇒ for some y: (x, y) ∈ Q′), we get Q ∈ NPbin[f ] = PTIME. 
�

There is an obvious similarity between the definitions of the classical
classes NP[F ] and the parameterized class W[P] (the similarity is even more
obvious for the W[P]-problems in NP as characterized by Proposition 3.7).
The next theorem establishes a formal connection.

Theorem 3.29. The following statements are equivalent:
(1) FPT = W[P].
(2) There is a computable, nondecreasing, and unbounded function ι : N→ N

such that PTIME = NP[ι(n) · log n].

Proof: For the direction from (1) to (2), assume that FPT = W[P]. Then
by Lemma 3.26, p-log-Circuit-Sat ∈ FPT. Let f be a computable function
and A an fpt-algorithm that solves p-log-Circuit-Sat in time f(k) ·mO(1),
where k is the parameter and m the size of the input circuit. Without loss
of generality we may assume that f is increasing and time constructible. Let
ι := ιf be the “inverse” of f as defined in Lemma 3.24. Recall that ι(n) is
computable in time O(n2), nondecreasing, and unbounded.

We claim that PTIME = NPbin[ι(n) · log n], which shows (2) by the pre-
ceding lemma. Let Q ∈ NPbin[ι(n) · log n]. Let x be an instance of Q. Us-
ing a variant of Fact 3.10 for nondeterministic Turing machines with binary
branching (see Proposition A.4 of the Appendix) it is easy to construct in
time polynomial in |x| a circuit Cx with ι(|x|) · log |x| input nodes such that

x ∈ Q ⇐⇒ Cx is satisfiable.

We can further assume that |x| ≤ ||Cx|| ≤ |x|O(1). Using our fpt-algorithm A,
we can decide if Cx is satisfiable in time

f

(⌈
ι(|x|) · log |x|

log ||Cx||

⌉)
· ||Cx||O(1) ≤ f (ι(|x|)) · |x|O(1) ≤ |x|O(1).

Thus we can solve Q in polynomial time.

For the converse direction, assume that PTIME = NP[ι(n) · log n] for a ι
as in (2). Let (Q, κ) be a W[P]-complete problem with Q ∈ NP (for exam-
ple, p-WSat(CIRC)). Choose a computable function h according to Proposi-
tion 3.7 such that Q is solvable by a nondeterministic Turing machine in time
nO(1), at most h(k) · log n steps being nondeterministic, where n denotes the
size of the input and k the parameter. Let f : N→ N be a time constructible
function such that for n ≥ f(k),

h(k) ≤ ι(n).

Then the set
{x | |x| ≥ f(κ(x)) and x ∈ Q}
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can be decided by a nondeterministic Turing machine in polynomial time
with at most ι(|x|) · log |x| nondeterministic steps. Therefore, this set is in
PTIME by the assumption PTIME = NP[ι(n) · log n]. This shows that (Q, κ)
is eventually in PTIME and hence, by Theorem 1.37, in FPT. 
�

Exercise 3.30. In this exercise, we encode natural numbers in unary and
view them as strings over the alphabet {1}.

Let f : N → N. A problem P ⊆ Σ∗ × N is in NP∗[f(m)] if there is a
polynomial p and a nondeterministic Turing machine M deciding P such that
for every instance (x, m) of P on every run M

(a) performs at most p(|x|+ m) steps;
(b) performs at most f(m) nondeterministic steps.
Similarly, a problem P ⊆ Σ∗ × N is in SUBEXPTIME∗[f(m)] if there is a
computable function g ∈ oeff(f) and polynomial p and a deterministic Turing
machine M that, given an instance (x, m) of P , decides if (x, m) ∈ P in at
most p(|x| + m) · 2g(m) steps.

Prove that the following statements are equivalent:
(a) W[P] = FPT.
(b) NP∗[f(m)] ⊆ SUBEXPTIME∗[f(m)] for every function f : N → N com-

putable in polynomial time.
(c) NP∗[m] ⊆ SUBEXPTIME∗[m]. (Here we just write m instead of id(m)

for the identity function id.) �

Notes

The class W[P] was introduced in Downey and Fellows [79] as the class of
problems fpt-reducible to p-WSat(CIRC). A first systematic analysis of W[P]
was due to Abrahamson et al. [1]. In particular, the k · log n trick (see Corol-
lary 3.13) was first applied there. The characterization of W[P] in terms of
machines, which is taken as definition of the class W[P] here, is from [51]. The
machine characterization of the NP-problems in W[P] (Theorem 3.7) and the
W[P]-completeness of the halting problem p-Bounded-NTM-Halt (Theo-
rem 3.16) were shown by Cai et al. [36] and by Cesati [40], respectively. The
completeness results of Theorem 3.14 and Exercise 3.20 were proved in [1].
The proof of Theorem 3.19 is based on ideas from [167].

The concept of limited nondeterminism was introduced by Kintala and
Fisher [146]; for a more detailed discussion we refer the reader to the notes
at the end of Chap. 15. Based on a slightly different model of limited non-
determinism due to Cai and Chen [34, 35], Theorem 3.29 was proved in [36].
The relationship between fixed-parameter tractability and subexponential al-
gorithms was first analyzed by Abrahamson et al. [1]. In particular, Theo-
rem 3.25 was shown there.
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Logic and Complexity

The most important classical time and space complexity classes, such as
PTIME, NP, or PSPACE, have clean definitions in terms of resource-bounded
Turing machines. It is well-known (though still surprising) that most natu-
ral decision problems are complete for one of these classes; the consequence
is a clear and simple complexity theoretic classification of these problems.
However, if more refined complexity issues such as approximability, limited
nondeterminism, or parameterizations are taken into account, the landscape
of complexity classes becomes much more unwieldy. This means that the nat-
ural problems tend to fall into a large number of apparently different classes.
Furthermore, these classes usually do not have clean machine characteriza-
tions, but can only be identified through their complete problems.

Logic can serve as a tool to get a more systematic understanding of such
classes. The basic results of descriptive complexity theory [87, 135] show that
all of the standard classical complexity classes have natural logical character-
izations. For example, Fagin’s Theorem characterizes NP as the class of all
problems that can be defined in the fragment Σ1

1 of second-order logic.1 One
advantage that such logical characterizations have over machine characteriza-
tions is that they allow for more fine tuning. For instance, one may ask which
problems can be defined by a Σ1

1-formula whose first-order part only contains
universal quantifiers. While for decision problems in NP such restrictions do
not lead to any remarkable new classes, there are interesting classes of NP-
optimization problems obtained by restricting syntactic definitions this way.
The best-known of these classes is Papadimitriou and Yannakakis’ MAXSNP.

This approach seems to open the door to an endless variety of syntactically
defined complexity classes, but fortunately it turns out that a fairly limited
number of syntactic forms suffices to define those classes that have natural
complete problems. Remarkably, these syntactic forms tend to be similar even
in different application domains.

1All the logics discussed here are introduced in Sect. 4.2.
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In the next chapter, we will apply the syntactic approach in the context of
parameterized complexity theory. In this chapter, we provide the background.
In Sects. 4.1–4.3 we introduce the necessary prerequisites from mathematical
logic and review some basic facts about the complexity of propositional, first-
order, and second-order logic. We define two important families of problems,
namely, weighted satisfiability problems and Fagin-definable problems (based
on Fagin’s characterization of NP). In Sect. 4.4 we digress from the main line
of our exposition and briefly sketch how syntactic methods have been applied
to optimization problems and limited nondeterminism. We believe that this
may serve as a useful illustration of the methods before we apply them to
parameterized complexity theory in Chap. 5.

4.1 Propositional Logic

Formulas of propositional logic are built up from a countable infinite set of
propositional variables by taking conjunctions, disjunctions, and negations.
The negation of a formula α is denoted by ¬α. Besides the normal binary con-
junctions and disjunctions, it will be useful to explicitly include conjunctions
and disjunctions over arbitrary finite sequences of formulas in our language
(instead of just treating them as abbreviations). The normal binary conjunc-
tions of two formulas α, β are called small conjunctions and are denoted by
(α ∧ β). Similarly, binary disjunctions are called small disjunctions and are
denoted by ∨. Conjunctions over finite sequences (αi)i∈I of formulas are called
big conjunctions and are denoted by

∧
i∈I αi. Here I may be an arbitrary fi-

nite nonempty index set. Disjunctions over finite sequences of formulas are
called big disjunctions and are denoted by

∨
. A formula is small if it neither

contains big conjunctions nor big disjunctions. Of course, every formula is
equivalent to a small formula, but the precise syntactic form of formulas is
important for us. For example, the formulas∧

i∈[5]

αi and ((((α1 ∧ α2) ∧ α3) ∧ α4) ∧ α5)

are not the same. We do, however, omit unnecessary parentheses and write

α1 ∧ α2 ∧ α3 ∧ α4 ∧ α5 instead of ((((α1 ∧ α2) ∧ α3) ∧ α4) ∧ α5).

Propositional variables are usually denoted by the uppercase letters X, Y, Z,
and propositional formulas by the Greek letters α, β, γ, δ, λ (λ is specifically
used for literals). A literal is a variable or a negated variable.

The class of all propositional formulas is denoted by PROP. For t ≥ 0,
d ≥ 1, we inductively define the following classes Γt,d and Δt,d of formulas:

Γ0,d := {λ1 ∧ . . . ∧ λc | c ∈ [d], λ1, . . . , λc literals},
Δ0,d := {λ1 ∨ . . . ∨ λc | c ∈ [d], λ1, . . . , λc literals},
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Γt+1,d := {
∧
i∈I

δi | I finite nonempty index set, and δi ∈ Δt,d for all i ∈ I},

Δt+1,d := {
∨
i∈I

γi | I finite nonempty index set, and γi ∈ Γt,d for all i ∈ I}.

Γ2,1 is the class of all formulas in conjunctive normal form, which we usually
denote by CNF. For d ≥ 1, Γ1,d is the class of all formulas in d-conjunctive
normal form, which we often denote by d-CNF. Similarly, Δ2,1 is the class
of all formulas in disjunctive normal form (DNF), and Δ1,d the class of all
formulas in d-disjunctive normal form (d-DNF). If α =

∧
i∈I

∨
j∈Ji

λij is a
formula in CNF, then the disjunctions

∨
j∈Ji

λij are the clauses of α. If α =∨
i∈I

∧
j∈Ji

λij is a formula in DNF, then the conjunctions
∧

j∈Ji
λij are the

terms of α.
A formula α is in negation normal form if negation symbols occur only in

front of variables. A formula α is positive if it contains no negation symbols,
and it is negative if it is in negation normal form and there is a negation
symbol in front of every variable. For every class A of propositional formulas,
A+ denotes the class of all positive formulas in A and A− denotes the class
of all negative formulas in A.

Each formula of propositional logic has a parse tree, which may formally
be defined as a “derivation tree” in the grammar underlying the formula
formation rules. For example, the parse tree of the Γ2,3-formula∧

i∈[2]

∨
j∈[3]

(
(Xij ∧ ¬Yi) ∧ Zj

)
(4.1)

is displayed in Fig. 4.1.
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∧

X23 ¬
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Fig. 4.1. Parse tree of the formula in (4.1)
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The set of variables of a formula α is denoted by var(α). We occasion-
ally write α = α(X1, . . . , Xn) to indicate that var(α) ⊆ {X1, . . . , Xn}. An
assignment is a mapping V from a set of variables to {true, false}.2 In the
obvious way one defines what it means that an assignment (at least defined
for all variables in var(α)) satisfies the propositional formula α. Formulas α
and β are equivalent if they are satisfied by the same assignments defined on
var(α) ∪ var(β).

It is well-known that every formula α is equivalent to a formula α′ in CNF,
that is, in Γ2,1, but there is no function α �→ α′ computable in polynomial
time. The following transitions to equivalent formulas are even computable
in linear time: Every propositional formula α is equivalent to

∨
i∈[1] α and to∧

i∈[1] α; hence every formula in Γt,d and every formula in Δt,d is equivalent
to a formula in Δt+1,d and to a formula in Γt+1,d, respectively. By replacing
the iterated conjunction and disjunction in formulas of Γ0,d and Δ0,d by a big
conjunction and a big disjunction, respectively, we see that every formula in
Γt,d (in Δt,d) is equivalent to a formula in Γt+1,1 (in Δt+1,1). We will often
use these facts tacitly.

With each propositional formula we can associate a circuit that computes
the same Boolean function in a canonical way. We sometimes do not distin-
guish between a formula and the corresponding circuit and thus view PROP
as a subclass of the class CIRC of circuits.

We often use the closure properties of Γt,d and Δt,d (for t ≥ 2) contained
in the following exercise.

Exercise 4.1. Let t ≥ 2 and d ≥ 1. Show that there are polynomial time
algorithms
• associating with α, β ∈ Γt,d formulas in Γt,d equivalent to (α ∧ β) and

(α ∨ β);
• associating with α, β ∈ Δt,d formulas in Δt,d equivalent to (α ∧ β) and

(α ∨ β). �

Exercise 4.2. Let t, d ≥ 1, say, t is even. Every α ∈ Δt,d has the form∨
i1∈I

∧
i2∈Ii1

. . .
∧

it∈Ii1...it−1

δi1...it
, (4.2)

with δī ∈ Δ0,d. Show that in polynomial time we can translate a formula α
of the form given in (4.2) into an equivalent formula α′ with |α′| ≤ O(|α|t) of
the form ∨

j1∈J

∧
j2∈J

. . .
∧

jt∈J

δ′j1...jt
,

where each δ′
j̄

occurs among the δī. Formulate and prove the analogous result
for odd t and for Γt,d. �

2In the previous chapter, we used 1 and 0 to denote the Boolean values, respec-
tively. Henceforth, we use true and false also in the context of circuits.
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Satisfiability Problems

For each class A of propositional formulas or (Boolean) circuits, we let Sat(A)
denote the satisfiability problem for formulas or circuits in A. For example,
Sat(3-CNF), that is, Sat(Γ1,3), is the familiar 3-satisfiability problem, and
Sat(CIRC) is the satisfiability problem for circuits, which we denoted by
Circuit-Sat in the previous chapter. p-Sat(A) is the parameterization by
the number of variables of the input formula, a problem which we considered
in the introductory chapter for the class of all propositional formulas (see
Example 1.2). It is well known that Sat(A) is NP-hard for every class A ⊇
Γ1,3 and that Sat(Δ2,2) is in polynomial time. p-Sat(A) is fixed-parameter
tractable for every class A of formulas whose membership problem is fixed-
parameter tractable. So for now, the parameterized problems p-Sat(A) are
not particularly interesting. This will change when in Chap. 16 we will study
subexponential fixed-parameter tractability.

However, for now the following version of the satisfiability problem is much
more important; it is the decision problem associated with the optimization
problem that tries to maximize (or minimize) the number of variables set to
true in a satisfying assignment. The weight of an assignment V is the number
of variables set to true.

A formula α is k-satisfiable, for some nonnegative integer k if there is a
satisfying assignment V : var(α)→ {true, false} for α of weight k. We often
identify an assignment V : var(α)→ {true, false} with the set {X | V(X) =
true}. For any class A of propositional formulas, the weighted3 satisfiability
problem for A is defined as follows:

WSat(A)
Instance: α ∈ A and k ∈ N.
Problem: Decide whether α is k-satisfiable.

We consider the parameterized weighted satisfiability problem for A:

p-WSat(A)
Instance: α ∈ A and k ∈ N.

Parameter: k.
Problem: Decide whether α is k-satisfiable.

It is known that WSat(2-CNF) and WSat(CIRC) and hence WSat(A)
for all polynomial time decidable classes A of formulas or circuits containing

3A note of warning: Slightly at odds with common terminology for optimization
problems, we use the term “weighted” here just to indicate that the “weight” or
“size” of the solution matters and not to indicate that some weight function is defined
on the instance. In parameterized complexity, this usage has become standard. We
will adopt this usage of the word “weighted” throughout this book, for example,
when introducing weighted Fagin definable problems in Sect. 4.3.
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2-CNF are NP-complete; thus all these problems are equivalent under poly-
nomial time reductions. This equivalence does not seem to carry over to the
parameterized problems and fpt-reductions. Clearly, we have

p-WSat(Γ1,1) ≤fpt p-WSat(Γ1,2)

≤fpt p-WSat(Γ2,1)

≤fpt p-WSat(Γ3,1) (4.3)

...

≤fpt p-WSat(PROP) ≤fpt p-WSat(CIRC).

Structural theory for parameterized intractability relies on the conjecture that
all these inequalities are strict, that is, that there are no converse reductions.
We will see later that the levels of this hierarchy of problems correspond to
the levels of the W-hierarchy of parameterized complexity classes.

For now, let us make a few observations about fixed-parameter tractable
weighted satisfiability problems.

Exercise 4.3. Prove that WSat(Δ2,1) is in polynomial time and hence that
p-WSat(Δ2,1) is fixed-parameter tractable. �

Recall that for a class A of propositional formulas, A+ denotes the class of
all formulas in A that are positive, that is, that contain no negation symbols.

Proposition 4.4. For d ≥ 1, the problem p-WSat(Γ+
1,d) is fixed-parameter

tractable.

Proof: Fix d ≥ 1. We shall reduce p-WSat(Γ+
1,d) to p-d-Hitting-Set, the

hitting set problem restricted to hypergraphs with edges of at most d elements,
which we showed to be fixed-parameter tractable in Corollary 1.18.

Let (α, k) be an instance of p-WSat(Γ+
1,d), say,

α =
∧
i∈I

(Yi1 ∨ . . . ∨ Yici
),

where ci ∈ [d] for all i ∈ I. Let V := var(α), and let E be the following family
of subsets of V :

E := {{Yi1, . . . , Yici
} | i ∈ I}.

Recall that a set S ⊆ V is a hitting set of the hypergraph (V, E) if it contains
at least one element of every set in E. For every subset S of V , one easily
verifies the equivalence

S satisfies α ⇐⇒ S is a hitting set of (V, E).

Thus
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α is k-satisfiable ⇐⇒ (V, E) has a hitting set of k elements.

This gives the desired fpt-reduction from p-WSat(Γ+
1,d) to p-d-Hitting-Set.


�
Note that for every class A of formulas, if p-WSat(A) is fixed-parameter

tractable, then so is p-WSat(
∨

A), where
∨

A denotes the class of all dis-
junctions of formulas in A.

Corollary 4.5. For every d ≥ 1, the problem p-WSat(Δ+
2,d) is fixed-param-

eter tractable.

Alternating Satisfiability Problems

A quantified propositional formula is an expression of the form

Q1X1 Q2X2 . . . QnXn α,

where Qi ∈ {∃, ∀} for 1 ≤ i ≤ n, and α is a formula of propositional logic with
variables X1, . . . , Xn. The semantics is defined in the obvious way; a quantified
propositional formula is either true or false. The alternating satisfiability
problem is defined as follows:4

ASat
Instance: A quantified propositional formula θ.
Problem: Decide whether θ is true.

A quantified propositional formula is t-alternating, where t ≥ 1, if it is of the
form

∃X11 . . .∃X1n1 ∀X21 . . .∀X2n2 . . . QtXt1 . . . QtXtnt
α,

where Qt = ∀ if t is even, and Qt = ∃ if t is odd. We also need the following
restrictions of ASat:

ASatt

Instance: A t-alternating quantified propositional formula θ.
Problem: Decide whether θ is true.

The following theorem states the most fundamental completeness results for
the polynomial hierarchy and PSPACE. (A definition of the polynomial hier-
archy can be found in the Appendix.)

Theorem 4.6. (1) For every t ≥ 1, the problem ASatt is complete for the
tth level ΣP

t of the polynomial hierarchy.
(2) ASat is complete for PSPACE.

In Chap. 8, we will also introduce an alternating version of the weighted
satisfiability problem.

4The problem is better known as the quantified Boolean formula problem (QBF)
[115] or the quantified satisfiability problem (QSAT) [168]. We chose the name alter-
nating satisfiability problem to emphasize a connection with alternating machines.
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4.2 First-Order and Second-Order Logic

Relational Structures

A (relational) vocabulary τ is a set of relation symbols. Each relation symbol
R has an arity arity(R) ≥ 1. A structure A of vocabulary τ , or τ-structure (or
simply structure), consists of a set A called the universe and an interpretation
RA ⊆ Aarity(R) of each relation symbol R ∈ τ . We synonymously write ā ∈ RA

or RAā to denote that the tuple ā ∈ Aarity(R) belongs to the relation RA. If
R is binary, we also write a1R

Aa2 instead of (a1, a2) ∈ RA.

Proviso 4.7. We only consider nonempty finite vocabularies and finite struc-
tures, that is, structures with a finite universe.

The arity of τ is the maximum of the arities of the symbols in τ .

Example 4.8 (Graphs). Let τGraph be the vocabulary that consists of the
binary relation symbol E. A directed graph may be represented by a τGraph-
structure G = (G, EG). An undirected graph, or just graph, may be repre-
sented by a τGraph-structure G in which the edge relation EG is symmetric.
We always assume graphs and directed graphs to be loop-free, that is, we
assume the edge relation to be irreflexive. The class of all graphs (directed
graphs) is denoted by GRAPH (DIGRAPH, respectively).

Unless we want to emphasize in some situations that we view a graph G
as an {E}-structure, we continue to denote the vertex set of a graph G by V
and the edge set by E (instead of G and EG). We usually denote undirected
edges in set notation (as in {v, w}). �

Example 4.9 (Hypergraphs). Let τHG be the vocabulary that consists of
the unary relation symbols VERT and EDGE and the binary relation symbol
I. A hypergraph (V, E) may be represented by a τHG-structure H, where:
• H := V ∪ E.
• VERTH := V and EDGEH := E.
• IH := {(v, e) | v ∈ V, e ∈ E, and v ∈ e} is the incidence relation.
Note that graphs can also be viewed as hypergraphs in which all edges are
incident with exactly two vertices. This gives us an alternative representation
of graphs by structures, which we call the hypergraph representation. Note that
the hypergraph representation also works for multigraphs, that is, graphs that
may have multiple edges between the same pair of vertices. �

Example 4.10 (Circuits). Let τCirc be the vocabulary consisting of the bi-
nary relation symbol E and unary relation symbols OUT , AND , OR, NEG ,
IN , TRUE , FALSE . A (Boolean) circuit (cf. Sect. 3.2) may be represented
by a τCirc-structure C, where:
• (C, EC) is a directed acyclic graph.
• OUTC contains exactly one node, and this node has out-degree 0 (the

output node).
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• The sets ANDC ,ORC ,NEGC form a partition of the set of all nodes of
in-degree at least 1 (the and-nodes, or-nodes, and negation nodes, respec-
tively). Nodes in NEGC have in-degree 1.

• The sets IN C ,TRUEC ,FALSEC form a partition of the set of all nodes
of in-degree 0 (the input nodes and the nodes computing the Boolean
constants true and false, respectively). �

Example 4.11 (Strings). For a finite alphabet Σ, let τΣ be the vocabulary
that consists of a binary relation symbol ≤ and, for each a ∈ Σ, a unary
relation symbol Pa. A string ā = a1 . . . an ∈ Σ∗ may be represented by the
τΣ-structure S = S(a1 . . . an), where:
• The universe of S is the set [n].
• ≤S is the natural order on [n].
• For all a ∈ Σ, we have PS

a := {i ∈ [n] | ai = a}.
The class of all structures representing strings over an alphabet Σ is denoted
by STRING[Σ]. More precisely, we let

STRING[Σ] :=
{
S | S is isomorphic to S(ā) for some ā ∈ Σ∗}.

Let STRING be the union of the classes STRING[Σ] for all alphabets Σ. �

Let τ ⊆ τ ′ be vocabularies. A τ -structure A is the τ-reduct of a τ ′-structure
A′, or A′ is a τ ′-expansion of A if A = A′ and RA = RA′

for all R ∈ τ . For
example, the τGraph-reduct of a circuit C (viewed as a τCirc-structure) is the
directed acyclic graph (C, EC) underlying the circuit.

Next, let A and B be structures of the same vocabulary τ . A is a sub-
structure of B (we write A ⊆ B), and B is an extension of A if A ⊆ B and
RA ⊆ RB for all R ∈ τ . A is an induced substructure of B if A ⊆ B and
RA = RB ∩Aarity(R) for all R ∈ τ .5

A homomorphism from A to B is a mapping h : A → B such that for all
R ∈ τ , say, of arity r, and for all ā = (a1, . . . , ar) ∈ Ar,

ā ∈ RA =⇒ h(ā) ∈ RB,

where h(ā) =
(
h(a1), . . . , h(ar)

)
. If h satisfies the stronger condition

ā ∈ RA ⇐⇒ h(ā) ∈ RB

(for all R ∈ τ and ā ∈ Aarity(R)), then it is a strong homomorphism. An
embedding (strong embedding) from A into B is a homomorphism (strong
homomorphism, respectively) that is one-to-one. Note that there is an em-
bedding from A into B if and only if A is isomorphic to a substructure of B,
and there is a strong embedding of A into B if and only if A is isomorphic to
an induced substructure of B.

5Note that in most logic and model theory texts the term substructure is used in
the sense of our induced substructure. Our notion of substructure is a generalization
of the standard graph-theoretic notion of subgraph.
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An isomorphism is a strong embedding that is onto, and two structures
are isomorphic if there is an isomorphism from one to the other. We usually
do not distinguish between isomorphic structures. An automorphism is an
isomorphism of a structure to itself.

Example 4.11 shows how to represent strings by structures. In order to
use structures as inputs of computations, we also need a converse encoding of
structures by strings. As structures appear as inputs of algorithmic problems
very often in this book, we think it is worthwhile to discuss this issue carefully.

As our alphabet for encoding structures as inputs for Turing machines,
we use Σe := {0, 1, 〈, 〉}. Without loss of generality we assume that all rela-
tion symbols and elements of structures are strings over {0, 1}. Let A be a
τ -structure and suppose that τ = {R1, . . . , Rt} ⊆ {0, 1}∗ (sorted lexicograph-
ically) and A = {a1, . . . , an} ⊆ {0, 1}∗ (also sorted lexicographically). In our
encoding, the universe A = {a1, . . . , an} is represented by the string

〈A〉 := 〈〈a1〉 · · · 〈an〉〉.

For a tuple ā := (a1, . . . , ak) ∈ Ak we let 〈ā〉 = 〈〈a1〉 · · · 〈ak〉〉. For 1 ≤ i ≤ t,
we represent the relation RA

i by the string

〈RA
i 〉 := 〈〈Ri〉〈ā1〉 · · · 〈ām〉〉,

where ā1, . . . , ām is the lexicographic enumeration of all tuples in the relation.
The encoding of the whole structure A is

〈A〉 := 〈〈A〉〈RA
1 〉 · · · 〈RA

t 〉〉.

We have the following estimates for the length |〈A〉| of the encoding:

|τ |+ |A|+
∑
R∈τ

|RA| · arity(R)

≤ |〈A〉| ≤ O
(
�τ · |τ | + �A ·

(
|A|+

∑
R∈τ

|RA| · arity(R)
))

,

where �τ := max{|R| | R ∈ τ} and �A := max{|a| | a ∈ A}. Since we usually
do not care what the names of the relation symbols and elements of the
universe are, we can always assume that �τ ∈ O(log |τ |) and �A ∈ O(log |A|).

The exact encoding of structures will never be important; all we need to
know is that the encoding length |〈A〉| is within a polynomial factor of the
term

||A|| := |τ |+ |A|+
∑
R∈τ

|RA| · arity(R),

which we call the size of A.
To encode structures as inputs for random access machines (cf. the Ap-

pendix for the definition of random access machines), we do not necessarily
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need a fixed input alphabet, but can represent the elements of the universe
of the structure by natural numbers, which only have size 1 with respect to
the uniform cost measure. If we choose such a representation for structures
A, then ||A|| is indeed the size of the representation. When analyzing specific
algorithms, we always take random access machines with a uniform cost mea-
sure as our underlying machine model and assume such a representation of
structures. Note that this is common practice in the analysis of graph algo-
rithms, which is based on representations of graphs by data structures such
as adjacency lists, where vertices can be stored in a single memory cell and
accessed in a single step.

Observe that ||A|| may be exponentially larger than the cardinality |A|
of the universe of A. Most of the time, we consider structures with a fixed
vocabulary τ , for example, graphs. In this case, ||A|| = Θ

(
|A|+

∑
R∈τ |RA|

)
.

For example, for a graph G with n vertices and m edges this yields the fa-
miliar ||G|| = Θ(n + m). Similarly, for hypergraphs H = (V, E) we have
‖H‖ = Θ(HHG), where ‖H‖ := |V |+

∑
e∈E |e| as defined on p. 12 and where

HHG is the size (as just defined) of the τHG-structure representing H (see
Example 4.9).

First-Order Logic

We briefly recall the syntax and semantics of first-order logic. We fix a count-
ably infinite set of (individual) variables. Henceforth, we use the letters x, y, . . .
with or without indices for variables. Let τ be a vocabulary. Atomic formulas
of vocabulary τ are of the form x = y or Rx1 . . . xr, where R ∈ τ is r-ary and
x1, . . . , xr, x, y are variables. First-order formulas of vocabulary τ are built
from the atomic formulas using the Boolean connectives ¬,∧,∨ and existen-
tial and universal quantifiers ∃, ∀. The connectives → and ↔ are not part of
the language, but we use them as abbreviations: ϕ→ ψ for ¬ϕ∨ψ and ϕ↔ ψ
for (ϕ→ ψ) ∧ (ψ → ϕ).

By free(ϕ) we denote the set of free variables of ϕ, that is, the set of vari-
ables x with an occurrence in ϕ that is not in the scope of a quantifier binding
x. A sentence is a formula without free variables. We write ϕ(x1, . . . , xk) to
indicate that ϕ is a first-order formula with free(ϕ) ⊆ {x1, . . . , xk}.

We also use the notation ϕ(x1, . . . , xk) to conveniently indicate substitu-
tions. For example, if ϕ(x) is a formula, then ϕ(y) denotes the formula ob-
tained from ϕ(x) by replacing all free occurrences of x by y, renaming bound
variables if necessary.

To define the semantics, for each first-order formula ϕ(x1, . . . , xk) of vo-
cabulary τ and each τ -structure A we define a relation ϕ(A) ⊆ Ak inductively
as follows:6

• If ϕ(x1, . . . , xk) = Rxi1 . . . xir
with i1, . . . , ir ∈ [k], then

6If we write ϕ(A) without mentioning any variables explicitly, we mean
ϕ(x1, . . . , xk), where x1, . . . , xk are the free variables of ϕ (in their natural order).
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ϕ(A) := {(a1, . . . , ak) ∈ Ak | (ai1 , . . . , air
) ∈ RA}.

Equalities are treated similarly.
• If ϕ(x1, . . . , xk) = ψ(xi1 , . . . , xi�

)∧χ(xj1 , . . . , xjm
) with i1, . . . , i�, j1, . . . , jm

∈ [k], then

ϕ(A) :=
{
(a1, . . . , ak) ∈ Ak

∣∣ (ai1 , . . . , ai�
) ∈ ψ(A), and

(aj1 , . . . , ajm
) ∈ χ(A)

}
.

The other connectives are treated similarly.
• If ϕ(x1, . . . , xk) = ∃xk+1ψ(xi1 , . . . , xi�

) with i1, . . . , i� ∈ [k + 1], then

ϕ(A) :=
{
(a1, . . . , ak) ∈ Ak

∣∣ there exists an ak+1 ∈ A such that

(ai1 , . . . , ai�
) ∈ ψ(A)

}
.

Universal quantifiers are treated similarly.

The definition also applies for k = 0; in this case, ϕ(A) is either the empty
set or the set consisting of the empty tuple. If ϕ(x1, . . . , xk) is a formula and
A a structure of a vocabulary τ that does not contain all relation symbols
occurring in ϕ(x1, . . . , xk), then we let ϕ(A) := ∅.

We usually write A |= ϕ(a1, . . . , ak) instead of (a1, . . . , ak) ∈ ϕ(A). If ϕ
is a sentence, we simply write A |= ϕ instead of ϕ(A) �= ∅ and say that A
satisfies ϕ or A is a model of ϕ. Note that for a sentence ϕ the condition
ϕ(A) �= ∅ just means that ϕ(A) contains the empty tuple.

Occasionally, we use the abbreviation ∃≥kx ϕ to denote the formula

∃x1 . . .∃xk

( ∧
1≤i<j≤k

xi �= xj ∧
∧

i∈[k]

ϕ(xi)
)
.

Similarly, we use ∃=kx ϕ to denote ∃≥kx ϕ∧ ¬∃≥k+1x ϕ. We denote inequal-
ities in formulas by x �= y instead of ¬x = y.

Example 4.12. Recall that τGraph = {E} and that we represent directed
graphs and graphs as τGraph-structures G = (G, EG) (cf. Example 4.8).

Let k ≥ 1 and consider the following formula

vc′k(x1, . . . , xk) := ∀y∀z
(
Eyz →

∨
i∈[k]

(xi = y ∨ xi = z)
)
.

Then for every graph G and every tuple (a1, . . . , ak) ∈ Gk,

G |= vc′k(a1, . . . , ak) ⇐⇒ {a1, . . . , ak} is a vertex cover of G.

A bit sloppily, we will say that “the formula vc′k(x1, . . . , xk) defines the set of
all vertex covers of at most k elements of a graph.” Let
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vck := ∃x1 . . .∃xk

( ∧
1≤i<j≤k

xi �= xj ∧ vc′k(x1, . . . , xk)
)
.

Then a graph G satisfies the sentence vck if and only if G has a vertex cover
of k elements.

Similarly, the following formulas say that a graph has a clique of k ele-
ments, an independent set of k elements, and a dominating set of k elements:

cliquek := ∃x1 . . .∃xk

( ∧
1≤i<j≤k

xi �= xj ∧
∧

1≤i<j≤k

Exixj

)
,

isk := ∃x1 . . .∃xk

( ∧
1≤i<j≤k

xi �= xj ∧
∧

1≤i<j≤k

¬Exixj

)
,

dsk := ∃x1 . . .∃xk

( ∧
1≤i<j≤k

xi �= xj ∧ ∀y
∨

i∈[k]

(
Exiy ∨ xi = y

))
. �

Example 4.13. The depth of a node c of a circuit is the length of the longest
path from an input node to c. The depth of a circuit is the depth of its output
node. Recall that a circuit is k-satisfiable if it has a satisfying assignment in
which precisely k input nodes are set to true. In this example, for every d
we shall define a sentence wsatk,d saying in circuits of depth at most d that
they are k-satisfiable.

To this end, we inductively define a family of first-order formulas

truek,d(x1, . . . , xk, y)

for d ≥ 0 such that for all circuits C, all input nodes a1, . . . , ak ∈ IN C , and
nodes b ∈ C of depth at most d we have

C |= truek,d(a1, . . . , ak, b) ⇐⇒ Node b evaluates to true under the as-
signment that sets a1, . . . , ak to true
and all other input nodes to false.

We let
truek,0(x1, . . . , xk, y) := TRUE y ∨

∨
i∈[k]

xi = y,

and, for d ≥ 0,

truek,d+1(x1, . . . , xk, y) := truek,0(x1, . . . , xk, y)

∨
(
AND y ∧ ∀z

(
Ezy → truek,d(x1, . . . , xk, z)

))
∨
(
OR y ∧ ∃z

(
Ezy ∧ truek,d(x1, . . . , xk, z)

))
∨
(
NEG y ∧ ∃z

(
Ezy ∧ ¬truek,d(x1, . . . , xk, z)

))
.
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It is not hard to see that the formulas truek,d have the desired meaning. Now
we let

wsatk,d := ∃x1 . . .∃xk∃y
( ∧

1≤i<j≤k

xi �= xj ∧
∧

i∈[k]

IN xi ∧OUT y

∧ truek,d(x1, . . . , xk, y)
)
.

The reader may wonder whether we need to fix the depth d of a circuit in
order to be able to define k-satisfiability in first-order logic. We do; it can be
proved by standard techniques from finite model theory (see [87, 153]) that
there is no first-order formula wsatk saying that a circuit of arbitrary depth
is k-satisfiable. �

Next, we shall define a few important classes of first-order formulas. The
class of all first-order formulas is denoted by FO. We occasionally consider
the following subclasses of a class Φ of formulas: For a vocabulary τ , the class
Φ[τ ] consists of all formulas of vocabulary τ in Φ. For an r ≥ 1, the class Φ[r]
consists of all formulas in Φ whose vocabulary has arity at most r.

Recall that an atomic formula, or atom, is a formula of the form x = y or
Rx1 . . . xr. A literal is an atom or a negated atom. A quantifier-free formula is
a formula that contains no quantifiers. A formula is in negation normal form
if negation symbols only occur immediately in front of atoms. A formula is in
prenex normal form if it is of the form Q1x1 . . . Q�x�ψ, where ψ is quantifier-
free and Q1, . . . , Q� ∈ {∃, ∀}.

Both Σ0 and Π0 denote the class of quantifier-free formulas. For t ≥ 0, we
let Σt+1 be the class of all formulas

∃x1 . . .∃xk ϕ,

where ϕ ∈ Πt, and Πt+1 the class of all formulas

∀x1 . . .∀xk ϕ,

where ϕ ∈ Σt. Hence, ∃x1∃x2∀y∃z∀u1∀u2∀u3(Rx1yz ∨ Rx2u3u2 ∨ ¬Ryu1x2)
is a Σ4-formula.

Example 4.14. Consider the formulas introduced in Example 4.12: vc′k is a
Π1-formula, cliquek and isk are Σ1-formulas. Furthermore, vck and dsk can
easily be turned into equivalent Σ2-formulas. �

Exercise 4.15. Propositional formulas may also be viewed as circuits and
thus can be represented by τCirc-structures. Note that formulas in conjunctive
normal form (CNF-formulas for short) correspond to circuits of depth at most
3 whose output node is an ‘and’-node, which is connected to a layer of ‘or’-
nodes, which are connected with input nodes and negated input nodes.

Prove that there is a Σ3-sentence wsat-cnfk such that for every τCirc-
structure C representing a CNF-formula, C |= wsat-cnfk if and only if C is
k-satisfiable.
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We will see in Chap. 7 that there is a more sophisticated representation
of CNF-formulas by structures for which there is a Σ2-sentence saying that a
formula is k-satisfiable. �

Exercise 4.16. (a) Prove that Π1-sentences are preserved under taking in-
duced substructures. That is, if a structure A satisfies a Π1-sentence ϕ, then
all induced substructures of A also satisfy ϕ.

(b) Prove that Σ1-sentences are preserved under strong embeddings. That is,
if A and B are structures and ϕ is a Σ1-sentence such that A satisfies ϕ and
there is a strong embedding from A into B, then B also satisfies ϕ. �

Formulas of vocabulary τ are strings over the (infinite) alphabet

ΣFO[τ ] := {v1, v2, . . .} ∪ τ ∪ {∧,∨,¬, ∃, ∀, =, (, )},

where {v1, v2, . . .} is the countably infinite set of variables. The length of a for-
mula ϕ is denoted by |ϕ|. Formulas will often serve as inputs of computations
and therefore have to be encoded by strings over some finite alphabet; we use
the same alphabet Σe = {0, 1, 〈, 〉} as for structures. We fix some one-to-one
mapping e : ΣFO[τ ] → {0, 1}∗ and encode a formula ϕ = α1 . . . αn ∈ Σ∗

FO[τ ]

by the string
〈ϕ〉 = 〈〈e(α1)〉 · · · 〈e(αn)〉〉.

If we assume that τ ⊆ {0, 1}∗ as before, we can define the mapping e uniformly
over all τ , for example, by letting e(R) = 0R for all relation symbols R ∈
{0, 1}∗ and letting the first letter of e(α) be 1 for all other symbols. Since we
do not care about the names of the relation symbols and the indices of the
variables, we can always assume that

|〈ϕ〉| ≤ O(|ϕ| · log |ϕ|).

Of course, we always have |ϕ| ≤ |〈ϕ〉|.

Second-Order Logic

The difference between first-order and second-order logic is that the latter
allows quantification not only over elements of the universe of a structure
but also over subsets of the universe and even relations on the universe. Our
introduction will be very brief and informal. For more detailed treatments we
refer the reader to [87, 88].

In addition to the individual variables of first-order logic, formulas of
second-order logic may also contain relation variables, each of which has a
prescribed arity. Unary relation variables are also called set variables. We use
lowercase letters (usually x, y, z) to denote individual variables and uppercase
letters (usually X, Y, Z) to denote relation variables. To obtain second-order
logic, the syntax of first-order logic is enhanced by new atomic formulas of the
form Xx1 . . . xk, where X is k-ary relation variable. Quantification is allowed
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over both individual and relation variables. The semantics is defined in the
straightforward way, the meaning of the formula Xx1 . . . xk being: “The tuple
of elements interpreting (x1, . . . , xk) is contained in the relation interpreting
X .”

Example 4.17. For set variables X1, . . . , Xk the following sentence of second-
order logic says that a graph is k-colorable:

colk :=

“Xi is the set of
elements of color i.”︷ ︸︸ ︷
∃X1 . . .∃Xk ∀x∀y

( “Each element has exactly one color.”︷ ︸︸ ︷∨
i∈[k]

Xix ∧
∧

1≤i<j≤k

¬(Xix ∧Xjx)

∧
∧

i∈[k]

(
Exy → ¬(Xix ∧Xiy)

))
.

︸ ︷︷ ︸
“Adjacent elements do not have the same color.”

�

Example 4.18. For a set variable X the following sentence of second-order
logic says that a circuit is satisfiable:

sat := ∃X∀y
( (

TRUE y → Xy
)
∧
(
FALSE y → ¬Xy

)
∧
(
AND y →

(
Xy ↔ ∀z(Ezy → Xz)

))
∧
(
OR y →

(
Xy ↔ ∃z(Ezy ∧Xz)

))
∧
(
NEG y →

(
Xy ↔ ∃z(Ezy ∧ ¬Xz)

))
∧
(
OUT y → Xy

))
. �

Exercise 4.19. Define a second-order sentence saying that a graph has a
Hamiltonian cycle. �

The class of all second-order formulas is denoted by SO. A second-order
formula is monadic if it only contains unary relation variables. For example,
the formulas in Examples 4.17 and 4.18 are monadic. On the other hand, it can
be proved that there is no monadic second-order formula saying that a graph
has a Hamiltonian cycle. The class of all monadic second-order formulas is
denoted by MSO. Monadic second-order logic is the restriction of second-order
logic to monadic formulas. The class of all monadic second-order formulas is
denoted by MSO.

Σ1
0 and Π1

0 both denote the class of all second-order formulas without
any quantification over relation variables. Alternatively, Σ1

0 and Π1
0 may be

viewed as the class of all “first-order formulas with free relation variables.”
In the following, it will often be convenient to allow free relation variables in
first-order formulas.7 We will do so freely, and also extend classes such as Σt

7The crucial difference between first-order logic and second-order logic is not
that we have relation variables, but that we can quantify over relations.
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or Πt to formulas with free relation variables. However, it will always be clear
from the context if free relation variables are allowed in first-order formulas.

For t ≥ 0, we let Σ1
t+1 be the class of all second-order formulas

∃X1 . . .∃Xk ϕ,

where ϕ ∈ Π1
t , and Π1

t+1 the class of all second-order formulas

∀X1 . . .∀Xk ϕ,

where ϕ ∈ Σ1
t .

Exercise 4.20. Prove that every Σ1
1-formula is equivalent to a formula of the

form ∃X1 . . .∃Xmϕ, where ϕ ∈ Π2.
Hint: Generalize the idea we use in the following example: Consider the Σ1

1-
formula ψ := ∃X∀x∃y∀z ϕ with first-order ϕ. Let Y be a binary relation
variable. Then ψ is equivalent to

ψ′ := ∃X∃Y (∀x∃y Y xy ∧ ∀x∀y∀z(Y xy → ϕ)),

which is easily seen to be equivalent to a formula of the desired form. �

Exercise 4.21. Formulas of the form ∃X1 . . .∃Xkϕ, where ϕ ∈ Π1, are some-
times called strict Σ1

1-formulas. Prove that Σ1
1 is more expressive than strict

Σ1
1, that is, there is a Σ1

1-formula not equivalent to any strict Σ1
1-formula.

Hint: Strict Σ1
1-formulas are preserved under taking induced substructures. �

Exercise 4.22. Let ϕ(X) be a first-order or second-order formula with a free
relation variable X , say, of arity s. The formula ϕ(X) is monotone in X if for
every structure A and every relation S ⊆ As if A |= ϕ(S) then A |= ϕ(S′) for
all S′ ⊆ As with S′ ⊇ S. The formula ϕ(X) is positive in X if it is in negation
normal form and no occurrence of X in ϕ is preceded by the negation symbol.
(a) Prove that if ϕ(X) is positive in X then it is monotone in X .
(b) State and prove a corresponding statement for formulas that are negative,

resp. antimonotone in a relation variable. �

4.3 The Complexity of First-Order and Second-Order
Logic

Evaluation and Model-Checking

Let Φ be a class of formulas. The evaluation problem for Φ is the following
problem:

Eval(Φ)
Instance: A structure A and a formula ϕ ∈ Φ.
Problem: Compute ϕ(A).
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Most of the time, we restrict our attention to the decision version of this
problem, which we call the model-checking problem for Φ:

MC(Φ)
Instance: A structure A and a formula ϕ ∈ Φ.
Problem: Decide whether ϕ(A) �= ∅.

Occasionally, we consider the restrictions Eval(C, Φ) and MC(C, Φ) of the
problems Eval(Φ) and MC(Φ) to input structures from a class C of struc-
tures.

In this section, we investigate the complexity of the problems Eval(FO)
and MC(FO). A crucial parameter is the width of a first-oder formula ϕ, which
we define to be the maximum number of free variables of a subformula of ϕ.
The width is trivially bounded by the total number of variables appearing in
ϕ, and, of course, by the length of ϕ.

Exercise 4.23. Prove that every formula of width w is equivalent to a for-
mula in which only w variables appear. �

Theorem 4.24. Eval(FO) and MC(FO) can be solved in time

O(|ϕ| · |A|w · w),

where w denotes the width of the input formula ϕ.8

Proof: The recursive definition of ϕ(A) immediately gives rise to a recursive
algorithm. Observe that for a formula ϕ(x1, . . . , xk), computing ϕ(A) from the
immediate subformulas of ϕ requires time O(w · |A|w). For example, suppose
that

ϕ(x1, . . . , xk) := ψ(xi1 , . . . , xir
) ∧ χ(xj1 , . . . , xjs

),

where {i1, . . . , ir}∪{j1, . . . , js} = [k]. Suppose that {i1, . . . , ir}∩{j1, . . . , js} =
{�1, . . . , �t}. We sort the tuples in the relations ψ(A) and χ(A) lexicographi-
cally by the components �1, . . . , �t (based on an arbitrary order of the under-
lying universe A). Then we “join” the two sorted lists to obtain ϕ(A). If we
use bucket sort, the sorting requires time O(t · |A|max{r,s}). Joining the two
lists requires time O(w · |A|k).

Since the number of subformulas of a formula ϕ is bounded by |ϕ|, this
algorithm achieves the claimed time bound. 
�

Corollary 4.25. Let k ≥ 1, and let FOk denote the fragment of FO consist-
ing of all formulas with at most k variables. Then Eval(FOk) and MC(FOk)
can be solved in polynomial time.

8To be absolutely precise here, we have to add O(|〈A〉| + |〈ϕ〉|) to the running
time. Recall that 〈A〉 and 〈ϕ〉 denote the encoding of A and ϕ, respectively. This is
because the whole input has to be read to extract the relevant parts and build the
appropriate data structures used by the algorithm.
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Actually, it can be proved that MC(FO2) is complete for PTIME under log-
arithmic space reductions. Occasionally, we are interested in the restrictions
of the problem to a fixed formula ϕ.

Corollary 4.26. For every first-order formula ϕ, the following problems can
be solved in polynomial time:

Evalϕ

Instance: A structure A.
Problem: Compute ϕ(A).

MCϕ

Instance: A structure A.
Problem: Decide whether ϕ(A) �= ∅.

This result can be strengthened. It is not hard to see that the problem MCϕ

belongs to the circuit complexity class uniform-AC0.
It is worthwhile to note the following variant of Corollary 4.26 for formu-

las with free relation variables. Let ϕ(x1, . . . , x�, X1, . . . , Xm) be a first-order
formula with free individual variables among x1, . . . , x� and free relation vari-
ables among X1, . . . , Xm. Let τ be the vocabulary of ϕ, and, for i ∈ [m], let si

be the arity of Xi. For every τ -structure A and every tuple S̄ = (S1, . . . , Sm)
of relations, where Si ⊆ Asi for i ∈ [m], we let

ϕ(A, S1, . . . , Sm) := {(a1, . . . , a�) ∈ A� | A |= ϕ(a1, . . . , a�, S1, . . . , Sm)}.

Corollary 4.27. For every first-order formula ϕ(x1, . . . , x�, X1, . . . , Xm), the
following problem (and its decision version) can be solved in polynomial time:

Instance: A structure A and a tuple S̄ = (S1, . . . , Sm) of rela-
tions, where Si ⊆ Aarity(Xi) for i ∈ [m].

Problem: Compute ϕ(A, S̄).

Let us turn to the complexity of the model-checking problem.

Proposition 4.28. (1) For every t ≥ 1, the problem MC(Σt) is complete for
the tth level ΣP

t of the polynomial hierarchy.
(2) MC(FO) is complete for PSPACE.

Proof: The hardness follows from Theorem 4.6: For a quantified propositional
formula θ, we let ϕθ be the first-order sentence obtained from θ as follows:
For every propositional variable X occurring in θ, we let x, x′ be two new
individual variables. We replace each quantification QX in θ by QxQx′ and
each occurrence of X in the propositional part of θ by the atomic first-order
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formula x = x′. Then for every structure A with at least two elements, we
have

A |= ϕθ ⇐⇒ θ is true.

Note that for every t ≥ 1, the formula ϕθ is in Σt if and only if θ is t-
alternating. This gives a reduction proving the hardness results.

Using alternating Turing machines, it is easy to see that the model-
checking problems are contained in the respective complexity classes. 
�

Remark 4.29. The proof of Proposition 4.28 shows that the hardness re-
sults already hold for the restriction of the model-checking problems to input
formulas that do not contain relation symbols and to a fixed input structure
with at least two elements. �

The parameterized model-checking problem for a class Φ of formulas is
defined as follows:

p-MC(Φ)
Instance: A structure A and a formula ϕ ∈ Φ.

Parameter: |ϕ|.
Problem: Decide whether ϕ(A) �= ∅.

The restriction of p-MC(Φ) to input structures from a class C of structures
is denoted by p-MC(C, Φ).

As another immediate consequence of Theorem 4.24, we obtain:

Corollary 4.30. p-MC(FO) ∈ XP.

Exercise 4.31. Let C be a class of structures such that p-MC(C, FO) is
fixed-parameter tractable. Prove that C is decidable in polynomial time.

Hint: Recall our treatment of problems with restricted classes of inputs (see
p. 9). �

The goal of the following exercise, which will be accomplished in part (c),
is to prove that first-order model-checking problems for unary vocabularies
are fixed-parameter tractable and hence “easy” from the parameterized point
of view. Compare this to Proposition 4.28 and Remark 4.29, which show that
such model-checking problems are PSPACE-complete and hence “hard” from
the classical point of view.

Exercise 4.32. Let τ be a unary vocabulary and STR[τ ] the class of all
τ -structures.

(a) Let k ∈ N and A,B ∈ STR[τ ]. Let us call two tuples (a1, . . . , ak) ∈ Ak,
(b1, . . . , bk) ∈ Bk indistinguishable if and only if for all P ∈ τ and i, j ∈ [k],(

ai ∈ PA ⇐⇒ bi ∈ PB) and
(
ai = aj ⇐⇒ bi = bj

)
.

Prove that for all (a1, . . . , ak), (a′
1, . . . , a

′
k) ∈ Ak the following three statements

are equivalent:
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(i) (a1, . . . , ak) and (a′
1, . . . , a

′
k) are indistinguishable.

(ii) For all first-order formulas ϕ(x1, . . . , xk) we have
(
A |= ϕ(a1, . . . , ak) ⇐⇒

A |= ϕ(a′
1, . . . , a

′
k)
)
.

(iii) There is an automorphism h of A such that h(ai) = a′
i for all i ∈ [k].

(b) Let us call two structures A,B ∈ STR[τ ] k-indistinguishable if for every
ā ∈ Ak there exists a b̄ ∈ Bk such that ā and b̄ are indistinguishable and
conversely, for every b̄ ∈ Bk there exists a ā ∈ Ak such that ā and b̄ are
indistinguishable.

Prove that if A and B are k-indistinguishable, then for every sentence
ϕ ∈ FOk we have A |= ϕ ⇐⇒ B |= ϕ.

(c) Prove that p-MC(STR[τ ], FO) is fixed-parameter tractable. �

Fagin’s Theorem

In descriptive complexity theory, instances of decision problems are viewed as
structures of some vocabulary instead of languages over some finite alphabet.
In a sense, this is more general, because, as we have seen in Example 4.11,
strings can easily be represented by structures. Often, it is more natural be-
cause most problems are originally defined on structures such as graphs and
only then translated to strings. We do not distinguish between isomorphic
structures. In this section, a decision problem is an isomorphism closed class
of τ -structures, for some vocabulary τ .

Then, of course, a decision problem C belongs to a complexity class K
if the language 〈C〉 := {〈A〉 | A ∈ C} ⊆ Σ∗

e belongs to K.9 We say that a
problem C is definable in a logic L if there is a sentence ϕ ∈ L such that C is
the class of all models of ϕ.

Theorem 4.33 (Fagin’s Theorem). A decision problem belongs to NP if
and only if it is definable in Σ1

1.

Note that Fagin’s Theorem not only says that there are Σ1
1-definable NP-

complete problems (we already saw this in the examples in Sect. 4.2), but that
all problems in NP are Σ1

1-definable. In other words, NP is not only the closure
of the class of Σ1

1-definable problems under polynomial time reductions, but
it is the class of Σ1

1-definable problems.
Fagin’s Theorem can be generalized to the higher levels of the polynomial

hierarchy:

Theorem 4.34. For every t ≥ 1, a decision problem belongs to ΣP
t if and

only if it is definable in Σ1
t .

9If for a language L ⊆ Σ∗ we let Str(L) be the class of all τΣ-structures repre-
senting strings from L as in Example 4.11, then L and 〈Str(L)〉 are equivalent with
respect to logarithmic space reductions (even lower-level reductions). Thus for the
standard complexity classes K, a language belongs to K if and only if its represen-
tation as a class of structures belongs to K.
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So we have three logical characterizations of the polynomial hierarchy. The
first of these characterizations, Theorem 4.6, is in terms of the alternating
satisfiability problem for formulas of propositional logic; the second, Propo-
sition 4.28(1), is in terms of the model-checking problem for the classes Σt

of first-order formulas; and the third, Theorem 4.34, is in terms of model-
checking problems for fixed second-order formulas from the classes Σ1

t . The
first two characterizations are essentially the same, while the third is stronger
because it provides a logical description of all problems of the polynomial
hierarchy and not just a family of complete problems.

To motivate the introduction of various syntactically defined complexity
classes in different domains, it will be useful to reformulate Fagin’s Theo-
rem. Let ϕ(X1, . . . , X�) be a first-order formula with free relation variables
X1, . . . , X�. Let τ be the vocabulary of ϕ, and, for i ∈ [�], let si be the ar-
ity of Xi. A solution for ϕ in a τ-structure A is a tuple S̄ = (S1, . . . , S�),
where Si ⊆ Asi for i ∈ [�] such that A |= ϕ(S̄). We call the following decision
problem the problem Fagin-defined by ϕ:

FDϕ

Instance: A structure A.
Problem: Decide whether there is a solution for ϕ in A.

For a class Φ ⊆ FO, we let FD-Φ be the class of all problems FDϕ, where
ϕ(X1, . . . , X�) ∈ Φ. By Fagin’s Theorem (for the first equality) and Exer-
cise 4.20 (for the second equality), we have:

Corollary 4.35.
NP = FD-FO = FD-Π2

Example 4.36. c-Colorability is Fagin-defined by ϕ(X1, . . . , Xc), where
ϕ(X1, . . . , Xc) is the formula (cf. Example 4.17):

∀x∀y
( ∨

i∈[c]

Xix ∧
∧

1≤i<j≤c

¬(Xix ∧Xjx) ∧
∧

i∈[c]

(
Exy → ¬(Xix ∧Xiy)

))
. �

The class FD-Π1, which can equivalently be characterized as the class of
all problems definable by a strict Σ1

1-formula, is often denoted by SNP. By
Exercise 4.21, SNP is strictly contained in NP. The previous example shows
that NP is the closure of SNP under polynomial time reductions.

Exercise 4.37. Prove that FD-Σ1 ⊆ PTIME. �

Exercise 4.38. Prove that for every formula ϕ(X1, . . . , X�) there is a formula
ϕ′(X) with just one free relation variable X such that

FDϕ = FDϕ′ . �
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Many of the best-known decision problems studied in complexity theory,
such as Clique, Vertex-Cover, or Dominating-Set, are derived from
optimization problems. The input of such problems consists of a structure
representing the actual problem instance and a number k, and the problem is
to decide not only if a solution exists, but if a solution of the given cardinality
k exists. Such problems are more naturally defined by the following variant
of Fagin definability, which we call weighted Fagin definability—seeFagin de-
finability: Let ϕ(X) be a formula with one free relation variable X of arity
s.

WDϕ

Instance: A structure A and k ∈ N.
Problem: Decide whether there is a solution S ⊆ As for ϕ of

cardinality |S| = k.

The restriction of WDϕ to input structures from a class C of structures is
denoted by WDϕ(C). Observe that if C is decidable in polynomial time, then
WDϕ(C) is reducible to WDϕ in polynomial time.

We could easily extend the definition of weighted Fagin-definable problems
to formulas ϕ with more than one free relation variable, but this would neither
allow us to define any interesting problems more naturally nor give us any new
theoretical insights.

For a class Φ ⊆ FO, we let WD-Φ be the class of all problems WDϕ,
where ϕ(X) ∈ Φ. Observe that for every formula ϕ(X), the problem FDϕ is
polynomial time Turing reducible to WDϕ.

Example 4.39. Clique is WDclique(GRAPH) for the formula

clique(X) := ∀x∀y
(
(Xx ∧Xy ∧ x �= y)→ Exy

)
,

and hence, Clique is WDclique′ for

clique′(X) :=
(
graph ∧ clique(X)

)
,

where graph := ∀x∀y(¬Exx ∧ (Exy → Eyx)) defines the class of graphs.
Thus, Clique is in WD-Π1. �

In the following examples and most examples that appear later in the book,
we do not include the axiomatization of the underlying class of structures
explicitly.

Example 4.40. Vertex-Cover is WDvc for the following formula:

vc(X) := ∀x∀y
(
Exy → (Xx ∨Xy)

)
.

Thus, Vertex-Cover is in WD-Π1. �
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Example 4.41. Dominating-Set is WDds for the following formula:

ds(X) := ∀x∃y
(
Xy ∧ (Eyx ∨ y = x)

)
.

Thus Dominating-Set is in WD-Π2. �

Example 4.42. Recall that a hitting set of a hypergraph H is a set S of
vertices that intersects each hyperedge of H. Recall from Example 4.9 that
we represent hypergraphs as structures of vocabulary {VERT ,EDGE , I}.

Hitting-Set is WDhs for the following formula:

hs(X) := ∀x∃y
(
EDGEx→ (Xy ∧ VERT y ∧ Iyx)

)
.

Thus Hitting-Set is in WD-Π2. �

4.4 Digression: Optimization Problems and Problems
Solvable With Limited Nondeterminism

A syntactical analysis of problems contained in a complexity class can often
reveal a fine structure within the class that is helpful to fully classify the
problems in question. The reader should be reminded that we still have not
classified parameterized problems such as p-Independent-Set, p-Clique,
p-Hitting-Set, and p-Dominating-Set; so far, we only know that all these
problems are contained in W[P]. We will achieve a classification of these prob-
lems and a better understanding of the fine structure of the class W[P] by
considering syntactically defined problems such as (weighted) Fagin-defined
problems and model-checking problems; they will serve as generic complete
problems for various subclasses.

However, before we do so, in this section we illustrate the main ideas of
the syntactic approach by sketching its application in two different areas,
optimization problems and limited nondeterminism.

Optimization Problems

The starting point for a syntactic analysis of optimization problems is the
class SNP, that is, the class of all problems Fagin-definable by a Π1-formula.
Consider a formula ϕ(X1, . . . , Xm) := ∀x1 . . .∀x� ψ(x1, . . . , x�, X1, . . . , Xm),
where ψ is quantifier-free. The problem FDϕ asks for a solution S̄ :=
(S1, . . . , Sm) in a given structure A such that A |= ψ(ā, S̄) for all tuples
ā = (a1, . . . , a�) ∈ A�. A natural maximization problem associated with this
problem asks to maximize the number of tuples ā such that A |= ψ(ā, S̄).
More generally, for every first-order formula ψ(x1, . . . , x�, X1, . . . , Xm) of vo-
cabulary τ with free individual variables x1, . . . , x� and free relation variables
X1, . . . , Xm, we can define the following maximization problem:
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Maxψ

Instance: A structure A.
Solutions: Tuple S̄ = (S1, . . . , Sm), where Si ⊆ Aarity(Xi) for

i ∈ [m], such that ψ(A, S̄) �= ∅.
Cost: |ψ(A, S̄)|.
Goal: max.

For every class Φ of first-order formulas, we let MAX-Φ be the class of all
problems Maxϕ, where ϕ ∈ Φ. Usually, theses classes are closed under suitable
approximation preserving reductions. In particular, MAXSNP is the closure
of MAX-Π0 under so-called L-reductions.

Example 4.43. A cut of a graph G = (G, EG) is a partition (S, S�) of the
vertex set G of G. The cost of a cut (S, S�) is the number of edges crossing
it, that is, the number of edges (u, v) ∈ EG such that u ∈ S and v ∈ S�.
Max-Cut is the problem of finding a cut of maximum cost.

Let cut(x1, x2, X) = Ex1x2 ∧ Xx1 ∧ ¬Xx2. Then for every graph G and
every set S ⊆ G (representing the cut (S, S�)),

cut(G, S)

is the set of all edges crossing the cut, and thus |cut(G, S)| is the cost of the cut.
Thus, Maxϕ is the Max-Cut problem, and thus Max-Cut ∈MAXSNP. �

Another example of a problem in MAXSNP is the maximum 3-satisfiability
problem, which asks for an assignment for a given 3-CNF formula that satisfies
the maximum number of clauses.

The crucial observation is that the syntactical form of ϕ has consequences
for the approximability of Maxϕ. Recall that an optimization problem is
constant approximable if it has a polynomial time ε-approximation algorithm
for some ε > 0 (see Definition 1.30).

Theorem 4.44. All problems in MAXSNP are constant approximable.

We omit the proof of this theorem.
The syntactic approach to optimization problems not only yields the class

MAXSNP, but also other interesting, though less well-known classes. Kolaitis
and Thakur [147, 148] studied the classes MAX-Φ and the corresponding
classes MIN-Φ for a number of other fragments Φ of first-order logic and
obtained further approximability results.

But we leave the theory of NP-optimization problems here. Let us just
note in passing the following fixed-parameter tractability result:

Exercise 4.45. Prove that for every Π0-formula ϕ(x1, . . . , x�, X1, . . . , Xm)
the standard parameterization (see Definition 1.27) of the problem Maxϕ is
fixed-parameter tractable.
Hint: Prove that there is a constant c only depending on ϕ such that for every
structure A and every tuple ā ∈ A� the probability that A |= ϕ(ā, B̄), where
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the assignment B̄ for X̄ in A is chosen uniformly at random, is either 0 or at
least 2−c. �

Limited Nondeterminism

Recall that NP[f ], for a function f : N→ N, denotes the subclass of NP con-
sisting of all decision problems that can be solved by a nondeterministic poly-
nomial time algorithm that given an input of length n makes at most f(n) non-
deterministic steps (see Definition 3.27). Observe that NP[log n] = PTIME.
Probably the most interesting of these limited nondeterministic classes is
NP[log2n]. Many optimization problems give rise to problems in this class,
for example:

Log-Clique
Instance: A graph G = (V, E) and k ≤ log ‖G‖.
Problem: Decide whether G has a clique of k elements.

Log-Dominating-Set
Instance: A graph G = (V, E) and k ≤ log ‖G‖.
Problem: Decide whether G has a dominating set of k elements.

To solve these problems, a nondeterministic algorithm guesses a subset
S of the vertex set V of the input graph G of cardinality k ≤ log |V | and
then verifies in deterministic polynomial time that S is a clique or dominat-
ing set, respectively. Guessing the set S requires O(k · log |V |) = O(log2 |V |)
nondeterministic bits.

While Log-Clique and Log-Dominating-Set and related problems of
this type are in NP[log2n] “by design,” there are other natural problems for
which membership in NP[log2n] is not so obvious, because their definitions
do not make any explicit reference to a logarithm. Three of the best-known
examples are the hypergraph traversal problem, the tournament dominating
set problem, and the VC-dimension problem. We only define the last two here.
A tournament is a directed graph such that for each pair of distinct vertices
v, w there is either an edge from v to w or an edge from w to v, but not both.
A dominating set of a tournament or a directed graph G = (V, E) is a subset
S ⊆ V such that for all w ∈ V \ S there is a v ∈ S such that (v, w) ∈ E.

Tournament-Dominating-Set
Instance: A tournament T and k ∈ N.
Problem: Decide whether T has a dominating set of k elements.

The following exercise implies that Tournament-Dominating-Set is in
NP[log2n].
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Exercise 4.46. Prove that every tournament with n vertices has a dominat-
ing set of at most �log n� elements.
Hint: Prove that a tournament T = (T, E) with |T | = n contains a vertex a
such that |{b ∈ T | Eab}| ≥ (n− 1)/2. �

We turn to the VC-dimension problem now. Let H = (V, E) be a hyper-
graph. We say that E shatters a set W ⊆ V if

W ∩E := {W ∩ e | e ∈ E}

is the power set of W . The Vapnik–Chervonenkis dimension of H, denoted by
VC(H), is the maximum cardinality of a set W ⊆ V that is shattered by E.

VC-Dimension
Instance: A hypergraph H = (V, E) and k ∈ N.
Problem: Decide whether VC(H) ≥ k, that is, whether there is

a subset W ⊆ V of k elements that is shattered by E.

Observe that the VC-dimension of H = (V, E) with |E| ≤ n is at most log n.
This implies that VC-Dimension is in NP[log2n].

Unfortunately, none of the problems in NP[log2n] we have defined so far
is known to be complete for the class NP[log2n]. Even worse, they seem
to fall into distinct subclasses of NP[log2n]. It is only known that Log-
Clique is polynomial time reducible to Log-Dominating-Set and that
Log-Dominating-Set is polynomial time reducible to VC-Dimension. Fur-
thermore, Log-Dominating-Set and Tournament-Dominating-Set are
equivalent with respect to polynomial time reductions.

Let us try to analyze these problems using syntactical tools. We proceed
as we did for optimization problems and adapt Fagin definability to the new
situation. It is convenient here to start from the weighted version of Fagin
definability. For every first-order formula ϕ(X) with one free relation variable
X of arity s, we consider the following problem:

Log-WDϕ

Instance: A structure A and k ≤ log ‖A‖.
Problem: Decide whether there is a relation S ⊆ As of cardi-

nality |S| = k such that A |= ϕ(S).

For a class Φ of first-order formulas, we let Log-WD-Φ be the class of
all problems Log-WDϕ, where ϕ = ϕ(X) ∈ Φ. One usually studies the

closure
[
Log-WD-Φ

]ptime
of the classes Log-WD-Φ under polynomial time

reductions.
Observe that [Log-WD-FO]ptime ⊆ NP[log2n]. We will see in Chap. 15

that [Log-WD-FO]ptime = NP[log2n] would have very surprising conse-
quences in parameterized complexity theory and thus seems unlikely. So there
is not even a weak analogue of Fagin’s Theorem for NP[log2n].
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Nevertheless, many of the natural problems in NP[log2n] are contained
in the subclass Log-WD-FO. We can try to classify these problems within
the hierarchy of subclasses Log-WD-Πt. For example, Log-Clique is in
Log-WD-Π1, and both Log-Dominating-Set and Tournament-Domi-
nating-Set are in Log-WD-Π2. It can further be proved that VC-Dimen-
sion is polynomial time equivalent to a problem in Log-WD-Π3. Unfortu-
nately, neither of these problems seems to be complete for the respective class.
To obtain completeness results, we need a further refinement. For t, d ≥ 1, let
Πt/d be the class of all Πt-formulas ϕ(X) with one free relation variable X
that occurs at most d times in ϕ.

Definition 4.47. For t ≥ 2, we let LOG[t] be the closure of Log-WD-Πt/1

under polynomial time reductions. The classes LOG[t], for t ≥ 1, form the
LOG-hierarchy. �

The classes LOG[2] and LOG[3] were originally introduced under the
names LOGSNP and LOGNP, respectively.

Theorem 4.48. (1) Log-Dominating-Set and Tournament-Dominat-
ing-Set are complete for LOG[2] under polynomial time reductions.

(2) VC-Dimension is complete for LOG[3] under polynomial time reductions.

Theorem 4.49. Log-Clique is complete for Log-Π1/2 under polynomial
time reductions.

The hierarchy of classes LOG[t], for t ≥ 2, is closely related to the concept
of bounded fixed-parameter tractability, which will be discussed in Chap. 15.
Theorem 4.48 and Theorem 4.49 will be proved there.

Exercise 4.50. Prove that Log-WD-Π1/1 ⊆ PTIME. �

Exercise 4.51. Show that the following problem is NP[log2 n]-complete un-
der polynomial time reductions:

Instance: A circuit C with at most log2 ‖C‖ input nodes.
Problem: Decide whether C is satisfiable.

Hint: For the NP[log2 n]-hardness use Proposition A.4 of the Appendix. �

Notes

For introductory texts to mathematical logic we refer the reader to [31, 88,
131]. More specific background on descriptive complexity theory can be found
in [87, 135, 153].

The complexity of model-checking and evaluation problems for first-order
logic and various other logics has been analyzed in detail in the context of
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database theory. Vardi [205] distinguished between the combined complexity of
a model-checking problem, where both structure and formula are considered
part of the input, as in our problems MC(Φ), and the data complexity, where
the formula is fixed and only the structure is the input, as in our problems
MCϕ. There is also a notion of expression complexity, where the structure is
fixed and the formula is the input. The complexity of model-checking problems
for FOk and other finite variable logics was studied in [86, 206].

Theorem 4.6 is due to Meyer and Stockmeyer [162, 195]. Fagin’s Theorem
is from [92], and its generalization to the higher levels of the polynomial hier-
archy is due to Stockmeyer [194]. Immerman (for example, [132, 133, 134]) and
others gave similar logical characterizations of most other standard classical
complexity classes. They have been extended to the main classes of parame-
terized complexity theory in [99, 100].

The idea of identifying interesting complexity classes by syntactic means
was first applied by Papadimitriou and Yannakakis in the context of opti-
mization problems [169]. In this article, the class MAXSNP was introduced
and Theorem 4.44 was proved. In [167], Papadimitriou and Yannakakis used
the syntactic approach to analyze problems in NP[log2 n]. They identified the
classes LOG[2] and LOG[3] (under the names LOGSNP and LOGNP, respec-
tively) and proved Theorem 4.48. The LOG-hierarchy was introduced in [104].
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Two Fundamental Hierarchies

In this chapter, we introduce two hierarchies of parameterized complexity
classes that play a central role in the theory of parameterized intractability:
the W-hierarchy and the A-hierarchy. The two hierarchies will be studied in
detail in the following chapters. The definitions of the two hierarchies are
based on two types of logically defined decision problems we have introduced
in the previous chapter: Fagin-defined problems and model-checking problems.

5.1 The W-Hierarchy

Let ϕ(X) be a first-order formula with a free relation variable X of arity s.
Let

p-WDϕ

Instance: A structure A and k ∈ N.
Parameter: k.

Problem: Decide whether there is a relation S ⊆ As of car-
dinality |S| = k such that A |= ϕ(S).

For a class Φ of first-order formulas, we let p-WD-Φ be the class of all param-
eterized problems p-WDϕ, where ϕ ∈ Φ.

Examples 4.39–4.42 show that p-Clique and p-Vertex-Cover are in
p-WD-Π1 and p-Dominating-Set and p-Hitting-Set are in p-WD-Π2.
Thus many natural parameterized problems are contained in p-WD-FO.

For a robust theory, one has to close the p-WD-FO and its subclasses
p-WD-Πt under fpt-reductions.

Definition 5.1. For every t ≥ 1, we let

W[t] := [p-WD-Πt]
fpt.

The classes W[t], for t ≥ 1, form the W-hierarchy. �
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Note the similarity between the W-hierarchy and the LOG-hierarchy intro-
duced in Sect. 4.4. Both hierarchies result from an attempt to analyze the
complexity of problems WDϕ for instances (A, k) with a “small” k. We shall
see in Chap. 15 that there are close connections between the hierarchies. In-
tuitively, the W-hierarchy structures the class W[P] in a similar way as the
LOG-hierarchy structures NP[log2 n].

By Examples 4.39, 4.41, and 4.42 we get:

Example 5.2. (1) p-Clique ∈W[1].
(2) p-Dominating-Set, p-Hitting-Set ∈W[2]. �

Proposition 5.3.
p-WD-FO ⊆W[P].

Thus W[t] ⊆W[P] for every t ≥ 1.

Proof: Let ϕ(X) be a first-order formula, where X is s-ary. An algorithm for
the problem p-WDϕ proceeds as follows: Given a structure A and a k ∈ N, it
nondeterministically guesses k times a tuple in As and then deterministically
verifies that the set S of these tuples has cardinality k andA |= ϕ(S). Guessing
S requires s · k · log |A| nondeterministic bits, and the verification that A |=
ϕ(S) can be done in polynomial time by Corollary 4.27. Thus p-WDϕ is in
W[P]. 
�

Figure 5.1 illustrates the relations among the classes we have defined so
far. From now on, we will use more schematic figures, such as Fig. 5.3 on
p. 102, to illustrate the relations among our complexity classes.

Proposition 5.4. (1) p-WD-Σ1 ⊆ FPT.
(2) For every t ≥ 1, p-WD-Σt+1 ⊆ p-WD-Πt.

Proof: To prove (1), let ϕ(X) := ∃x1 . . .∃xqψ(x1, . . . , xq, X), where ψ is
quantifier-free. Let τ be the vocabulary of ϕ and s the arity of X .

Let A be a τ -structure. As ψ is quantifier-free, for every tuple ā =
(a1, . . . , aq) ∈ Aq and for all relations S, S′ ⊆ As, if S ∩ {a1, . . . , aq}s =
S′ ∩ {a1, . . . , aq}s, then

A |= ψ(ā, S) ⇐⇒ A |= ψ(ā, S′).

Thus for a k ≥ 1, there is a relation S ⊆ As cardinality |S| = k such that
A |= ψ(ā, S) if and only if there is a relation S′ ⊆ {a1, . . . , aq}s such that
A |= ψ(ā, S′), |S′| ≤ k, and |As \ {a1, . . . , aq}s| ≥ k − |S′|.

This shows that the algorithm WD-phi (Algorithm 5.2) correctly solves
p-WDϕ. Since q and ψ are fixed, the running time of the algorithm is poly-
nomial in ||A||. This proves (1).

To prove (2), consider a Σt+1-formula ϕ(X) := ∃x1 . . .∃xqψ(x1, . . . , xq, X),
where ψ ∈ Πt. Let τ be the vocabulary of ϕ and s the arity of X . Without loss
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FPT

W[1]

W[2]

...

W[P]

para-NP XP

Fig. 5.1. The relations among the classes

WD-phi(A, k)
1. for all ā = (a1, . . . , aq) ∈ Aq

2. for all S ⊆ {a1, . . . , aq}
s with |S| ≤ k

3. if A |= ψ(ā, S) and |As \ {a1, . . . , aq}
s| ≥ k − |S|

4. then accept

5. reject

Algorithm 5.2. Weighted Fagin Definability

of generality we may assume that the variables x1, . . . , xq are not requantified
in ψ, that is, ψ does not contain any subformulas of the form ∃xiχ or ∀xiχ,
where i ∈ [q].

Let A be a τ -structure. Call a pair (ā, S), where ā ∈ Aq and S ⊆ As, such
that A |= ψ(ā, S), a witness for ψ in A. The problem p-WDϕ is simply to
decide whether in a given structure there is a witness (ā, S) for ψ with |S| = k.

The idea to rewrite this problem as a problem in p-WD-Πt is to represent
a witness (ā, S) by the (q + s)-ary relation{

ā} × S.

Let Y be a new (q + s)-ary relation variable. Let ψ′ be the formula obtained
from ψ by replacing each subformula of the form

Xy1 . . . ys by Y x1 . . . xqy1 . . . ys.

Let χ be the following formula stating that the first q components of all tuples
in Y are identical:
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χ := ∀x1 . . .∀xq+s∀y1 . . .∀yq+s

(
(Y x1 . . . xq+s ∧ Y y1 . . . yq+s)→

∧
i∈[q]

xi = yi

)
.

Let
ϕ′(Y ) := χ ∧ ∀x1 . . .∀xq+s

(
Y x1 . . . xq+s → ψ′).

Then for every τ -structure A and every k ≥ 1, there is a witness (ā, S) with
|S| = k for ψ in A if and only if there is a relation T ⊆ Aq+s with |T | = k
such that A |= ϕ′(T ). Thus p-WDϕ = p-WDϕ′ . Moreover, ϕ′ is equivalent to
a Πt-formula. 
�

Corollary 5.5. For every t ≥ 1 we have W[t] = [p-WD-Σt+1]
fpt.

Originally, the W-hierarchy was defined in terms of parameterized weighted
satisfiability problems instead of Fagin definable problems. Recall the hierar-
chy (4.3) of parameterized weighted satisfiability problems. It gives rise to an
alternative characterization of the W-hierarchy:

Theorem 5.6. For every t ≥ 1,

W[t] =
[{

p-WSat(Γt,d)
∣∣ d ≥ 1

}]fpt

.

The proof of this theorem is not very difficult. Nevertheless, we defer it to
Chap. 6 (for t = 1) and Chap. 7 (for t ≥ 2), where we study the structure of
the W-hierarchy in depth.

5.2 The A-Hierarchy

Recall that the parameterized model-checking problemfor a class Φ of formulas
is defined as follows:

p-MC(Φ)
Instance: A structure A and a formula ϕ ∈ Φ.

Parameter: |ϕ|.
Problem: Decide whether ϕ(A) �= ∅.

Definition 5.7. For every t ≥ 1, we let

A[t] := [p-MC(Σt)]
fpt.

The classes A[t], for t ≥ 1, form the A-hierarchy. �

In view of Proposition 4.28(1), the A-hierarchy can be seen as a natural ana-
logue of the polynomial hierarchy in the world of parameterized complexity
theory.



5.2 The A-Hierarchy 99

Example 5.8. For k ≥ 1, and

cliquek := ∃x1 . . .∃xk

( ∧
1≤i<j≤k

xi �= xj ∧
∧

1≤i<j≤k

Exixj

)
,

we have for every graph G,

G |= cliquek ⇐⇒ G has a clique of k elements.

Thus the mapping (G, k) �→ (G, cliquek) is an fpt-reduction from p-Clique to
p-MC(Σ1). This shows that p-Clique ∈ A[1]. �

Example 5.9. For every k ≥ 1, the sentence

dsk := ∃x1 . . .∃xk∀y
( ∧

1≤i<j≤k

xi �= xj ∧
∨

i∈[k]

(y = xi ∨ Exiy)
)

states that a graph has a dominating set of k elements. Thus the mapping
(G, k) �→ (G, dsk) is an fpt-reduction from p-Dominating-Set to p-MC(Σ2).
This shows that p-Dominating-Set ∈ A[2]. �

Exercise 5.10. Show that p-Hitting-Set ∈ A[2]. �

Example 5.11. The parameterized subgraph isomorphism problem is defined
as follows:

p-Subgraph-Isomorphism
Instance: Graphs G and H.

Parameter: The number of vertices of H.
Problem: Decide whether G has a subgraph isomorphic toH.

To prove that p-Subgraph-Isomorphism ∈ A[1], for every graph H =
(H, EH) with vertex set H = {h1, . . . , hk} and |H | = k, we let

subH := ∃x1 . . .∃xk

( ∧
1≤i<j≤k

xi �= xj ∧
∧

1≤i<j≤k

with (hi,hj)∈EH

Exixj

)
.

Then for every graph G,

G |= subH ⇐⇒ G has a subgraph isomorphic to H.

Thus (G,H) �→ (G, subH) is an fpt-reduction from p-Subgraph-Isomorphism
to p-MC(Σ1). �

Exercise 5.12. Define the parameterized induced subgraph isomorphism prob-
lem and the parameterized graph homomorphism problem and show that they
are both contained in A[1]. �
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Example 5.13. Let

p-Vertex-Deletion
Instance: Graphs G and H, and k ∈ N.

Parameter: k + �, where � is the number of vertices of H.
Problem: Decide whether it is possible to delete at most k

vertices from G such that the resulting graph has
no subgraph isomorphic to H.

This problem is a natural parameterization of a problem known as Gen-
eralized-Node-Deletion, which is complete for the second level of the
polynomial hierarchy [187, 188].

For every graph H with vertex set {h1, . . . , h�}, where the hi are pairwise
distinct, and positive integer k we let

delH,k := ∃x1 . . .∃xk∀y1 . . .∀y�

( ∧
i∈[k], j∈[�]

xi �= yj →

¬
( ∧

1≤i<j≤�

yi �= yj ∧
∧

1≤i<j≤�

with (hi,hj)∈EH

Eyiyj

))
.

It is easy to see that the mapping (G,H, k) �→ (G, delH,k) is an fpt-reduction
from p-Vertex-Deletion to p-MC(Σ2), which shows that the problem
p-Vertex-Deletion is in A[2]. �

Example 5.14. Let X and Y be sets of vertices of a graph G. X dominates
Y if there are v ∈ X and w ∈ Y such that v = w or EGvw. Let

p-Clique-Dominating-Set
Instance: A graph G and k, � ∈ N.

Parameter: k + �.
Problem: Decide whether G contains a set of k vertices that

dominates every clique of � elements.

For all k, � ∈ N we let

cdsk,� := ∃x1 . . .∃xk∀y1 . . .∀y�

( ∧
1≤i<j≤k

xi �= xj

∧
( ∧

1≤i<j≤�

Eyiyj →
∨

i∈[k], j∈[�]

(xi = yj ∨Exiyj)
))

.

Then the mapping (G, k, �) �→ (G, cdsk,�) is an fpt-reduction from Clique-
Dominating-Set to p-MC(Σ2), which shows that

p-Clique-Dominating-Set ∈ A[2]. �
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Let us now turn to a few structural observations concerning the A-
hierarchy. The existential closure of a class Φ of formulas is the class

∃Φ := {∃x1 . . .∃xqϕ | ϕ ∈ Φ, q ≥ 1, x1, . . . , xq variables}.

For example, for every t ≥ 0 the existential closure of Πt is Σt+1.

Lemma 5.15. For every class Φ of first-order formulas we have

p-MC(Φ) ≡fpt p-MC(∃Φ) ≡fpt p-MC((∃Φ)0),

where (∃Φ)0 is the class of all sentences in ∃Φ.

Proof: For any first-order formula ϕ(x1, . . . , xp), arbitrary variables y1, . . . , yq,
and any structure A, we have

(∃y1 . . .∃yqϕ)(A) �= ∅ ⇐⇒ ϕ(A) �= ∅.

The claim of the lemma immediately follows from this equivalence. 
�

Corollary 5.16. For every t ≥ 1 we have A[t] = [p-MC(Πt−1)]
fpt.

Recall that by Corollary 4.30 we have p-MC(FO) ∈ XP, which immedi-
ately implies A[t] ⊆ XP for all t ≥ 1.

Proposition 5.17.
A[1] ⊆W[P].

Proof: We shall prove that p-MC(Π0) ∈ W[P]. Given a structure A and
a Π0-formula ϕ(x1, . . . , x�) with free variables x1, . . . , x�, a nondeterministic
algorithm to check whether ϕ(A) �= ∅ nondeterministically guesses a tuple
ā ∈ A� and then verifies in polynomial time that A |= ϕ(ā). This requires
� · log |A| ≤ |ϕ| · log ||A|| nondeterministic bits. 
�

Proposition 5.18. For every t ≥ 1,

W[t] ⊆ A[t + 1].

Proof: Let ϕ(X) be a Πt-formula with one free relation variable X of arity s.
For every k ≥ 1, let ϕk be the Σt+1-sentence

∃x̄1 . . .∃x̄k(
∧

1≤i<j≤k

x̄i �= x̄j ∧ ϕ′),

where:

• for i ∈ [k], x̄i = (xi1, . . . , xis) is an s-tuple of variables that do not occur
in ϕ;
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• for 1 ≤ i < j ≤ k, by x̄i �= x̄j we mean the formula
∨

�∈[s] xi� �= xj�;

• ϕ′ is obtained from ϕ by replacing each subformula of the form Xy1 . . . ys

by ∨
i∈[k]

∧
j∈[s]

xij = yj .

Then for every structure A, there is a relation S ⊆ As with |S| = k such that
A |= ϕ(S) if and only if A |= ϕk. Thus the mapping (A, k) �→ (A, ϕk) is an
fpt-reduction from p-WDϕ to p-MC(Σt+1). Thus, p-WD-Πt ⊆ A[t + 1], and
hence, W[t] ⊆ A[t + 1]. 
�

We will see later that this proposition can be strengthened to W[t] ⊆
A[t] (cf. Fig. 5.3). While this may not be surprising in view of Example 5.8,
Example 5.9 and Exercise 5.10, it is not obvious how to prove it.

FPT

W[1]=A[1]

W[2]

W[3]

W[P]

para-NP

A[2]

A[3]

XP

Fig. 5.3. The relations among the classes (arrows indicate containment between
classes)

We may also ask whether the converse holds, that is, whether A[t] ⊆W[t].
Let us argue that this is unlikely: While p-WD-FO and thus the defining
problems of the W-hierarchy (viewed as classical problems) are all in NP,
the problems p-MC(Σt) defining the A-hierarchy are parameterizations of
problems that are complete for the levels of the polynomial hierarchy. In other
words: The W-hierarchy is a refinement of NP in the world of parameterized
complexity, while the A-hierarchy corresponds to the polynomial hierarchy.
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This lets it seem unlikely that the two coincide. (Of course, it does not prove
anything.)

Finally a note of care: While it follows immediately from the definitions
that

⋃
t≥1 W[t] = [p-WD-FO]fpt, it seems unlikely that⋃

t≥1

A[t] = [p-MC(FO)]fpt.

One reason for this is that
⋃

t≥1 A[t] = [p-MC(FO)]fpt would imply that

p-MC(FO) ≤fpt p-MC(Σt) for some t ≥ 1 and thus a collapse of the A-
hierarchy to the tth level. Intuitively, the class [p-MC(FO)]fpt, which is better
known as AW[∗], may be viewed as an analogue of alternating polynomial
time in the world of parameterized complexity. We will study the class AW[∗]
in Sect. 8.6.

Notes

The W-hierarchy was introduced by Downey and Fellows [79]. Its original
definition was in terms of the weighted satisfiability problem for restricted
classes of Boolean circuits. This definition is easily seen to be equivalent to
the characterization of the hierarchy in terms of the weighted satisfiability
problem for the classes Γt,d that we gave in Theorem 5.6 (see Chap. 7 for
details). The concept of Fagin definability was introduced in [84] and further
studied in [99]. Theorem 5.6 is due to Downey et al. [84].

The A-hierarchy was introduced in [99], originally in terms of the param-
eterized halting problem for alternating Turing machines. The equivalence of
the two definitions (Theorem 8.1 in this book) was proved in [99].
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The First Level of the Hierarchies

Recall that the W-hierarchy, defined in terms of Fagin definability, may be
viewed as a refinement of NP in the world of parameterized complexity theory,
whereas the A-hierarchy, defined in terms of model-checking problems, may be
viewed as a parameterized analogue of the polynomial hierarchy. Nevertheless,
in this section we shall prove that the first levels of both hierarchies coincide,
that is,

W[1] = A[1].

The class W[1] (or A[1]) is arguably the most important class of intractable
parameterized problems, simply because so many prominent problems are
complete for this class. Examples are the parameterized clique problem and
the halting problem for nondeterministic Turing machines with a single tape
parameterized by the number of steps of a computation.

We will prove the equality between W[1] and A[1] in the last section of
this chapter. In the first three sections, we will develop the theory of A[1].
The reader should keep in mind that results on A[1] are results on W[1], and
in fact, in subsequent chapters they will often be used in the context of the
W-hierarchy. The reason for our emphasis on A[1] here is technical; proving
membership in the class (and also completeness) is often much easier through
the model-checking problem underlying A[1].

We start by proving a few important A[1]-completeness results in Sect. 6.1.
The main result of Sect. 6.2 is a machine characterization of A[1]. Not sur-
prisingly, this characterization is obtained by suitably restricting W[P], and
it illustrates nicely how A[1] is embedded into W[P]. The machine character-
ization of A[1] can be conveniently used to prove membership of a number of
further problems in A[1]. In Sect. 6.3, we characterize A[1] in terms of proposi-
tional logic; this characterization was Downey and Fellows’ original definition
of the class. Finally, in Sect. 6.4 we prove that W[1] = A[1].
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6.1 A[1]-Complete Problems

Recall that A[1] is the class of all problems that are fpt-reducible to the
parameterized model-checking problem for Σ1-formulas,

A[1] = [p-MC(Σ1)]
fpt.

In Example 5.8 we saw that the parameterized clique problem p-Clique is
contained in A[1].

Theorem 6.1. p-Clique is A[1]-complete under fpt-reductions.

We defer the somewhat lengthy hardness proof to the end of this section.

Corollary 6.2. p-Independent-Set is A[1]-complete under fpt-reductions.

Clique and Independent-Set are specific examples of a whole family of
problems known as homomorphism and embedding (or substructure isomor-
phism) problems. Recall from p. 73 that a homomorphism from a τ -structure
A to a τ -structure B is a mapping that preserves membership in all relations.
A strong homomorphism also preserves nonmembership in all relations, and
a (strong) embedding is a (strong) homomorphism that is one-to-one.

The (strong) homomorphism problem asks whether there is a (strong) ho-
momorphism from a given structure A to a given structure B, and, similarly,
the (strong) embedding problem asks for a (strong) embedding. We param-
eterize these problems by the size of A and denote the resulting problems
by p-Hom, p-Strong-Hom, p-Emb, and p-Strong-Emb, respectively. For
example:

p-Hom
Instance: Structures A and B.

Parameter: ||A||.
Problem: Decide whether there exists a homomorphism from A

to B.

Clearly, if A and B have different vocabularies, then (A,B) is a “no”-instance
of any of these problems. So we can always assume that the two input struc-
tures have the same vocabulary. Note, however, that this vocabulary is not
fixed in advance, but is part of the input.

Theorem 6.3. p-Hom, p-Strong-Hom, p-Emb, and p-Strong-Emb are
A[1]-complete under fpt-reductions.

Proof: Let Kk be the complete graph with k vertices. Then for every graph
G, the following five statements are equivalent:

(i) G has a clique of k elements.

(ii) There is a homomorphism from Kk to G.
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(iii) There is a strong homomorphism from Kk to G.
(iv) There is an embedding of Kk into G.
(v) There is a strong embedding of Kk into G.
This yields a reduction from p-Clique to all four problems in the statement
of the theorem and thus shows their A[1]-hardness.

To prove that the problems are contained in A[1], we reduce them to
p-MC(Σ1). We use the same idea as in Example 5.11, where we showed that
the parameterized subgraph isomorphism problem is contained in A[1]. For
every τ -structure A with universe A = {a1, . . . , a�} of cardinality �, we define
the quantifier-free formula

ϕA :=
∧

R∈τ

∧
1≤i1,...,ir≤�

with (ai1 ,...,air )∈RA

Rxi1 . . . xir
.

Then for every τ -structure B with universe B and every mapping h : A→ B,

h is a homomorphism ⇐⇒ B |= ϕA(h(a1), . . . , h(a�)).

Thus there is a homomorphism from A to B if and only if B |= ∃x1 . . .∃x� ϕA.
Since ϕA can be computed from A, this yields an fpt-reduction from p-Hom
to p-MC(Σ1).

To reduce p-Strong-Hom to p-MC(Σ1), we proceed completely analo-
gously using the formula

ψA :=
∧

R∈τ

( ∧
1≤i1,...,ir≤�

with (ai1 ,...,air )∈RA

Rxi1 . . . xir
∧

∧
1≤i1,...,ir≤�

with (ai1 ,...,air ) �∈RA

¬Rxi1 . . . xir

)

instead of ϕA. To reduce p-Emb and p-Strong-Emb, we use the formulas
ϕA ∧ χ �= and ψA ∧ χ �=, where

χ�= :=
∧

1≤i<j≤�

¬xi = xj . 
�

Exercise 6.4. (a) Prove that for every vocabulary τ that contains at least
one at least binary relation symbol, the following restriction of p-Hom is A[1]-
complete:

Instance: τ -structures A and B.
Parameter: ||A||.

Problem: Decide whether there exists a homomorphism from A
to B.

(b) Prove that the problem considered in (a) remains A[1]-complete if we
parameterize it by |A| instead of ||A||.
(c) Prove that the following parameterization of Hom is A[1]-complete:
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Instance: Structures A and B.
Parameter: |A|.

Problem: Decide whether there exists a homomorphism from A
to B.

Hint: Show that the vocabulary of the input structures can be assumed to
consist of at most k-ary relations and then argue similarly as in (b). �

The next problem that we prove to be A[1]-complete is a parameteriza-
tion of the problem VC-Dimension of computing the Vapnik–Chervonenkis
dimension of a family of sets. We have seen in Theorem 4.48(2) that the
(unparameterized) problem plays an interesting role in the context of lim-
ited nondeterminism; it is complete for the subclass LOG[3] of NP[log2 n].
Recall the definitions regarding VC-dimension from p. 91. The parameterized
VC-dimension problem is defined as follows:

p-VC-Dimension
Instance: A hypergraph H = (V, E) and k ∈ N.

Parameter: k.
Problem: Decide whether VC(H) ≥ k, that is, whether there is a

subset of V of cardinality k that is shattered by E.

Theorem 6.5. p-VC-Dimension is A[1]-complete under fpt-reductions.

Proof: In Example 4.9, we saw how to represent a hypergraphH = (V, E) as a

{VERT,EDGE, I}-structure H′ = (H ′,VERTH′

,EDGEH′

, IH
′

), where H ′ =

V ∪E, VERTH′

= V , EDGEH′

= E, and IH
′

= {(v, e) | v ∈ V, e ∈ E, v ∈ e}.
For k ∈ N, let M1, . . . , M2k be a list of all subsets of [k] = {1, . . . , k}. Then

we have

VC(H) ≥ k ⇐⇒ H′ |= ϕk,

where ϕk is the following Σ1-sentence expressing that there are vertices
x1, . . . , xk and hyperedges y1, . . . , y2k such that every yj behaves with respect
to x1, . . . , xk as Mj does with respect to 1, . . . , k:

ϕk := ∃x1 . . .∃xk∃y1 . . .∃y2k

( ∧
i∈[k]

VERTxi ∧
∧

j∈[2k]

EDGE yj

∧
∧

j∈[2k]

( ∧
i∈[k]

i∈Mj

Ixiyj ∧
∧

i∈[k]

i/∈Mj

¬Ixiyj

))
.

The mapping (H, k) �→ (H′, ϕk) is an fpt-reduction from p-VC-Dimension
to p-MC(Σ1).
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To prove the A[1]-hardness we reduce p-Clique to p-VC-Dimension. Let
G = (V, E) be a graph and k ∈ N. Without loss of generality we may assume
that |V | ≥ k ≥ 4. We construct a hypergraph H = (W, F ) such that

G has a clique of k elements ⇐⇒ VC(H) ≥ k. (6.1)

We let W := V × [k]. For X ⊆W and j = 1, 2 we let πj(X) be the projection
of X to the jth component. We construct F with the idea in mind that a
subset X of W is shattered by F if and only if the set π1(X) is a clique in G.
For this purpose, we let F := F2 ∪F�=2, where F2 will take care of the subsets
of X of cardinality 2 and F�=2 of all other subsets of X ; we let

F2 := {{(v, i), (w, j)} | {v, w} ∈ E and i, j ∈ [k]};
F�=2 := {V × L | L ⊆ [k], |L| �= 2}.

We have |F | ∈ O(|V |2 · k2 + 2k). Thus once we have verified (6.1), we know
that (G, k) �→ (H, k) is an fpt-reduction from p-Clique to p-VC-Dimension.

To prove (6.1), assume first that K = {v1, . . . , vk} is a clique of k elements
in G. Let X := {(v1, 1), . . . , (vk, k)}. We claim that F shatters X . In fact, let Y
be an arbitrary subset of X , say, of cardinality �. Clearly, |π2(Y )| = �. If � �= 2,
then e := V × π2(Y ) ∈ F�=2 and Y = X ∩ e. If � = 2, say, Y = {(vi, i), (vj , j)}
with i �= j, then {vi, vj} ∈ E because K is a clique. Hence Y ∈ F2, and, of
course, Y = X ∩ Y .

For the converse direction, let X be a k-element subset of W that is shat-
tered by F . We want to show that π1(X) is a clique of k elements. We first
note that for this purpose it suffices to show that |π2(X)| = k: Indeed, if
|π2(X)| = k then X = {(v1, 1), . . . , (vk, k)} for some v1, . . . , vk ∈ V . Hence,
for any L ⊆ [k], the intersection X∩(V ×L) contains |L| elements. Therefore,
for distinct i, j ∈ [k], we have {(vi, i), (vj , j)} = X ∩ e for some e ∈ F2. Thus
{vi, vj} ∈ E. This implies that {v1, . . . , vk} is a clique of k elements in G.

It remains to prove that |π2(X)| = k. Suppose for contradiction that
|π2(X)| < k. Since k ≥ 4 there are i, j, m ∈ [k] and v, w, x, y ∈ V
such that (v, i), (w, i), (x, j), (y, m) are pairwise distinct elements of X . Set
Y := {(w, i), (x, j), (y, m)}. Since |Y | = 3 there must be a hyperedge e ∈ F�=2

with Y = X ∩ e. Hence e = V × L for some L with i ∈ L. But then,
(v, i) ∈ (X ∩ e) \ Y , a contradiction. 
�

Exercise 6.6. Prove that the following problem is A[1]-complete under fpt-
reductions:

p-Set-Packing
Instance: A family F of sets and k ∈ N.

Parameter: k.
Problem: Decide whether F contains at least k pairwise dis-

joint sets.
�
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Exercise 6.7. Prove that the following parameterization of the homomor-
phism problem is para-NP-complete under fpt-reductions:

Instance: Structures A and B.
Parameter: ||B||.

Problem: Decide if there is a homomorphism from A to B.

Hint: Reduce 3-Colorability to this problem. �

Exercise 6.8. Prove that the following parameterization of the strong ho-
momorphism problem is fixed-parameter tractable:

Instance: Structures A and B.
Parameter: ||B||.

Problem: Decide if there is a strong homomorphism from A
to B.

Hint: Let A and B be τ structures. Call elements a, a′ ∈ A equivalent if for
all r-ary R ∈ τ , all (a1, . . . , ar) ∈ Ar, and all i ∈ [r],

(a1, . . . , ai−1, a, ai+1, . . . , ar) ∈ RA ⇐⇒ (a1, . . . , ai−1, a
′, ai+1, . . . , ar) ∈ RA.

Intuitively, a and a′ are equivalent if and only if they have the same neigh-
borhood. Prove that if there is a strong homomorphism h from A to B and
a and a′ are equivalent, then there is a strong homomorphism h from A to B
with h(a) = h(a′).

Furthermore, for all a, a′ ∈ A, if h is a strong homomorphism from A to
B with h(a) = h(a′), then a and a′ are equivalent.

Use these two observations to design a kernelization (cf. Definition 1.38)
that reduces a given instance (A,B) to an equivalent instance (A′,B) with
|A′| ≤ |B|. �

Exercise 6.9. A conjunctive query (or positive primitive formula) is a first-
order formula of the form ∃x1 . . .∃xm(ψ1 ∧ . . . ∧ ψn), where ψ1, . . . , ψn are
atoms. Conjunctive queries are a very important class of relational database
queries. The following problem is a natural decision version of the problem of
evaluating a conjunctive query in a relational database, which is nothing but
a relational structure:

p-Conjunctive-Query-Evaluation
Instance: A structure A, a tuple (a1, . . . , a�) ∈ A�, and a

conjunctive query ϕ(y1, . . . , y�).
Parameter: |ϕ|.

Problem: Decide whether A |= ϕ(a1, . . . , a�).

Prove that p-Conjunctive-Query-Evaluation is W[1]-complete under fpt-
reductions. �
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Exercise 6.10. A conjunctive query ϕ(y1, . . . , y�) is contained in a conjunc-
tive query ψ(y1, . . . , y�) of the same vocabulary, say τ , if for every τ -structure
A we have ϕ(A) ⊆ ψ(A). The problem of deciding containment between
queries has applications in query optimization We consider two different pa-
rameterizations of the conjunctive query containment problem:
(a) Prove that the following parameterization of the containment problem is

para-NP-complete under fpt-reductions:

p-Conjunctive-Query-Containment-I
Instance: Conjunctive queries ϕ and ψ.

Parameter: |ϕ|.
Problem: Decide whether ϕ is contained in ψ.

(b) Prove that the following parameterization of the containment problem is
A[1]-complete under fpt-reductions:

p-Conjunctive-Query-Containment-II
Instance: Conjunctive queries ϕ and ψ.

Parameter: |ψ|.
Problem: Decide whether ϕ is contained in ψ.

Hint: Associate a τ -structure Aχ with every conjunctive query χ of vocabulary
τ in such a way that there is a homomorphism from Aψ to Aϕ if and only if
ϕ is contained in ψ. �

Proof of Theorem 6.1

Recalling that p-Clique ∈ A[1] was proved in Example 5.8, we only need to
prove that p-Clique is A[1]-hard. We shall reduce p-MC(Σ1) to p-Clique in
three steps. Let Σ+

1 be the class of Σ1-formulas without the negation symbols
and Σ1[2] the class of Σ1-formulas whose vocabulary is at most binary. We
shall prove

p-MC(Σ1) ≤fpt p-MC(Σ+
1 ) (Lemma 6.11)

≤fpt p-MC(Σ1[2]) (Lemma 6.13)

≤fpt p-Clique. (Lemma 6.14).

Lemma 6.11. p-MC(Σ1) ≤fpt p-MC(Σ+
1 ).

Proof: Let (A, ϕ) be an instance of p-MC(Σ1). Without loss of generality we
may assume that ϕ is in negation normal form (that is, all negation symbols
in ϕ are in front of atomic subformulas). Note that it is not possible to simply
introduce a new relation symbol for every R in the vocabulary of A and inter-
pret it by the complement of R, because if we have no a priori bound on the
arity of a relation, the size of its complement is not necessarily polynomially
bounded in the size of the relation.
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We give an fpt-reduction mapping (A, ϕ) to a pair (A′, ϕ′) with (A |=
ϕ ⇐⇒ A′ |= ϕ′), where ϕ′ is a Σ+

1 -formula.
Let τ be the vocabulary of A. The vocabulary τ ′ ⊇ τ of A′ extends τ by a

new binary relation symbol <, and for every R ∈ τ , say, of arity r, two r-ary
relation symbols Rf , Rl and one 2r-ary relation symbol Rs. The τ ′-structure

A′ is an expansion of A, that is, its universe is A, and RA′

= RA for every
R ∈ τ . The new relation symbols are interpreted as follows: <A′

is an arbitrary
linear order of the universe A. For every r-ary R ∈ τ , the relation RA′

f only

contains one tuple, the lexicographically first element of RA with respect to
<A′

. The relation RA′

l contains the lexicographically last element of RA. (The

relations RA′

f and RA′

l are empty in case RA is empty.) The relation RA′

s is

the successor relation on RA associated with the lexicographical order on Ar ,
that is, RA′

s contains (ā, b̄) if and only if (ā ∈ RA, b̄ ∈ RA, ā is less than b̄, and
no tuple in RA is between ā and b̄). Note that the size of A′ is polynomially
bounded in the size of A no matter what the arities of the relations are.

The crucial observation we use to eliminate negative occurrences of R is
the following: A tuple ā ∈ Ar is not contained in RA if it is lexicographically
smaller than the first element of RA, or it is strictly between two successive
elements of RA, or it is larger than the last element of RA. This can be
expressed positively in A′.

We first define a positive quantifier-free formula lex-smallerr(ȳ, z̄) of vo-
cabulary τ ′ expressing that ȳ is less than z̄ in the lexicographical order of the
r-tuples:

lex-smallerr(ȳ, z̄) :=
∨

i∈[r]

(yi < zi ∧
∧

j∈[i−1]

yj = zj).

In the following, we abbreviate lex-smallerr(ȳ, z̄) by ȳ <r z̄.
Now we replace every negative occurrence ¬Rx1 . . . xr of R in ϕ. If RA

is empty, then ¬Rx1 . . . xr always gets the value true in A and we replace
occurrences of ¬Rx1 . . . xr by x1 = x1. Otherwise, we replace every occurrence
of ¬Rx1 . . . xr by

∃y1 . . .∃yr∃z1 . . .∃zr

(
(Rf ȳ ∧ x̄ <r ȳ)

∨(Rsȳz̄ ∧ ȳ <r x̄ ∧ x̄ <r z̄) (6.2)

∨(Rlz̄ ∧ z̄ <r x̄)
)
,

and every subformula ¬x = y by (x < y ∨ y < x). The resulting formula is
easily seen to be equivalent to a Σ+

1 -formula ϕ′. Clearly, (A |= ϕ ⇐⇒ A′ |=
ϕ′). 
�

Definition 6.12. Let τ be a vocabulary, and let τI be the vocabulary that
contains a unary relation symbol PR for every R ∈ τ and binary relation
symbols E1, . . . , Es, where s is the arity of τ .

The incidence structure (or bipartite structure) of a τ -structure A is the
τI -structure AI defined as follows:
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• The universe AI of AI contains the elements of A and new elements bR,ā

for all R ∈ τ and ā ∈ RA.
• For i ∈ [s], the relation EAI

i consists of all pairs (ai, bR,ā), where R ∈ τ
has arity r ≥ i and ā = (a1, . . . , ar) ∈ RA.

• For R ∈ τ , the relation PAI

R consists of all elements bR,ā, where ā ∈ RA.�

Observe that for every structure A we have

||AI || ∈ O(||A||),

and AI can be computed from A in linear time.

Lemma 6.13. p-MC(Σ+
1 ) ≤fpt p-MC(Σ+

1 [2]).

Proof: Let (A, ϕ) be an instance of p-MC(Σ+
1 ). Let AI be the incidence struc-

ture of A. We define a sentence ϕI ∈ Σ+
1 [2] such that (A |= ϕ ⇐⇒ AI |= ϕI).

We let ϕI be a Σ+
1 -formula equivalent to the formula obtained from ϕ by

replacing every atomic formula Rx1 . . . xr by

∃y(PRy ∧ E1x1y ∧ . . . ∧ Erxry).

Clearly, (A |= ϕ ⇐⇒ AI |= ϕI). 
�

Lemma 6.14. p-MC(Σ1[2]) ≤fpt p-Clique.

Proof: Let (A, ϕ) be an instance of p-MC(Σ1[2]).
Let us first assume that ϕ has the form

∃x1 . . .∃xk

∧
i∈I

λi, (6.3)

where the λi are literals. By adding a dummy variable if necessary, we can
assume that k ≥ 2. We shall define a graph G(A, ϕ) such that

A |= ϕ ⇐⇒ G(A, ϕ) contains a clique of k elements. (6.4)

The vertex set of G = G(A, ϕ) is V := A× [k]. For a, b ∈ A and 1 ≤ r < s ≤ k
there is an edge between (a, r) and (b, s) if and only if for all i ∈ I such that
the variables of λi are among xr, xs, λi = λi(xr , xs), we have A |= λi(a, b).

Then for all a1, . . . , ak ∈ A we have (recall that k ≥ 2)

A |=
∧
i∈I

λi(a1, . . . , ak) ⇐⇒ {(a1, 1), . . . , (ak, k)} is a clique in G.

Since any clique of G of cardinality k must contain an element (a, j) for every
j ∈ [k], this equivalence yields the desired equivalence (6.4).
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Now let (A, ϕ) be an instance of p-MC(Σ1[2]) with an arbitrary Σ1[2]-
sentence ϕ. We first transform ϕ to an equivalent Σ1[2]-formula ϕ′ whose
quantifier-free part is in disjunctive normal form, say,

ϕ′ = ∃x1 . . .∃xk

∨
j∈J

∧
i∈I

λji.

Then ϕ′ is equivalent to
∨

j∈J ∃x1 . . .∃xk

∧
i∈I λji. For j ∈ J , we set ϕj :=

∃x1 . . .∃xk

∧
i∈I λji. Then, each ϕj is a Σ1-sentence of the form (6.3). We let

the graph G be the disjoint union of the graphs G(A, ϕj) for j ∈ J . One easily
verifies that G has a clique of k elements if and only if A |= ϕ. 
�

6.2 A[1] and Machines

First, we show that the halting problem for nondeterministic single-tape Tur-
ing machines parameterized by the number of computation steps is A[1]-
complete. Afterwards we present a machine characterization of A[1].

We introduce the parameterized problem p-Short-NSTM-Halt, the
short halting problem for nondeterministic single-tape Turing machines:

p-Short-NSTM-Halt
Instance: A nondeterministic single-tape Turing machine M

and k ∈ N.
Parameter: k.

Problem: Decide whether M accepts the empty string in at
most k steps.

In Chap. 7 (Theorem 7.28) we will see that the corresponding halting
problem for arbitrary (that is, multitape) nondeterministic Turing machines
is complete for the class W[2] and thus not in A[1] (=W[1]) unless the first two
levels of the W-hierarchy coincide. The following exercises contain variants of
p-Short-NSTM-Halt that are fixed-parameter tractable.

Exercise 6.15. Show that for every fixed alphabet Σ the parameterized short
halting problem for nondeterministic single-tape Turing machines and with
alphabet Σ is fixed-parameter tractable. �

Exercise 6.16. Show that the parameterized short halting problem restricted
to nondeterministic single-tape Turing machines that, in any configuration,
allow at most two transitions, is fixed-parameter tractable. �

Theorem 6.17. The halting problem p-Short-NSTM-Halt is A[1]-com-
plete under fpt-reductions.
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Proof: We prove hardness by showing that the parameterized clique problem
p-Clique is reducible to p-Short-NSTM-Halt. Let (G, k) be an instance of
p-Clique. We let M(G, k) be a nondeterministic single-tape Turing machine
whose alphabet is the vertex set V of G. On empty input, the machine first
guesses k vertices of G and writes them on its tape. Then it deterministically
checks that they form a clique of cardinality k in G. This can all be done in
O(k2) computation steps. This yields the desired reduction.

We prove that p-Short-NSTM-Halt ∈ A[1] by reducing p-Short-
NSTM-Halt to p-MC(Σ1). Suppose that we are given an instance (M, k)
of p-Short-NSTM-Halt. We shall define a structure AM and a Σ1-sentence
ϕk such that

(M, k) ∈ p-Short-NSTM-Halt ⇐⇒ AM |= ϕk.

Let M = (S, Σ, Δ, s0, F ) consist of the set S of states, the alphabet Σ, the
initial state s0 ∈ S, the set F of accepting states, and the transition relation
Δ ⊆ S× (Σ∪{$, �})×S× (Σ∪{$})×{left, right, stay}. Here $, � /∈ Σ denote
the left end marker and the blank symbol, respectively (cf. the Appendix for
details).

Let

τ := {BLANK,END, INIT,ACC, P0, . . . , Pk+1,LEFT,RIGHT,STAY},

where BLANK, END, INIT, ACC, P0, . . . , Pk+1 are unary relation symbols
and LEFT, RIGHT, STAY are 4-ary relation symbols. The τ -structure A =
AM is defined as follows:

• The universe is A := (Σ ∪ {$, �}) ∪ S ∪ [k + 1].
• BLANKA := {�}, ENDA := {$}, INITA := {s0}, ACCA := F .
• PA

i := {i} for i ∈ [0, k + 1].
• LEFTA :=

{
(s, a, s′, a′) | (s, a, s′, a′, left) ∈ Δ

}
,

RIGHTA :=
{
(s, a, s′, a′) | (s, a, s′, a′, right) ∈ Δ

}
,

STAYA :=
{
(s, a, s′, a′) | (s, a, s′, a′, stay) ∈ Δ

}
.

Here we describe configurations of the machine M that, besides the 0th cell
always carrying the end marker $, only involve the cells 1, . . . , k + 1 of the
tape as (k + 3)-tuples (s, p, a1, . . . , ak+1), where s ∈ S is the current state,
p ∈ [0, k + 1] is the head position, and a1, . . . , ak+1 ∈ (Σ ∪ {�}) are the
symbols written on the cells 1, . . . , k + 1. Since we are only interested in k-
step computations, we never have to consider configurations that involve other
cells.

The following quantifier-free formula init states that (x, y, z1, . . . , zk+1) is
the initial configuration:

init(x, y, z1, . . . , zk+1) := INIT x ∧ P1y ∧
∧

i∈[k+1]

BLANK zi.
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We define a quantifier-free formula trans(x, y, z1, . . . , zk+1, x
′, y′, z′1, . . . , z

′
k+1)

stating that a transition from configuration (x, y, z1, . . . , zk+1) to configuration
(x′, y′, z′1, . . . , z

′
k+1) is possible. The formula trans is a disjunction of three

formulas left, right, stay, where, for example,

left :=
∨

i∈[k]

(
Piy ∧ Pi−1y

′ ∧ LEFT xzix
′z′i ∧

∧
j∈[k+1]

j �=i

zj = z′j
)
.

The definition of the formula right is slightly more complicated because we
have to deal with the left end of the tape separately. Now we let ϕk be

∃x1∃y1∃z11 . . .∃z1k+1 ∃x2∃y2∃z21 . . .∃z2k+1 . . .

∃xk+1∃yk+1∃zk+11 . . .∃zk+1k+1

(
init(x1, y1, z11, . . . , z1k+1) ∧

∨
j∈[k+1]

(
ACCxj

∧
∧

i∈[j−1]

trans(xi, yi, zi1, . . . , zik+1, xi+1, yi+1, zi+11, . . . , zi+1k+1)
))

.

It is easy to see that

M accepts in ≤ k steps ⇐⇒ A |= ϕk.

Furthermore, the length of ϕk is O(k2). Thus the mapping (M, k) �→ (A, ϕk)
is an fpt-reduction. 
�

This is a good place to emphasize the obvious fact that A[1]-completeness
of a parameterized problem is by no means tied to NP-completeness of the
corresponding unparameterized problem. If the input integer k is given in
binary, then the problem Short-NSTM-Halt is complete for the class
NTIME(2O(n)) and thus provably not in NP (by the nondeterministic time
hierarchy theorem, cf. the Appendix). On the other hand, in Theorem 6.5 we
showed that the problem p-VC-Dimension is A[1]-complete; its unparame-
terized version belongs to the class NP[log2 n] and therefore is most likely not
NP-hard.

Exercise 6.18. A tile over a set C of colors is a quadruple c = (ct, cr, cb, cl) ∈
C4 (we think of ct, cr, cb, cl as the colors of the top, right, bottom, and left
side of the tile c, respectively). Let T be a set of tiles over C. A k × k-square
tiling with tiles from T is a mapping f : [k]× [k]→ T such that for 1 ≤ i ≤ k,
1 ≤ j ≤ k−1, we have f(i, j)r = f(i, j +1)l, and for 1 ≤ i ≤ k−1, 1 ≤ j ≤ k,
we have f(i, j)t = f(i + 1, j)b.
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Prove that the following problem is A[1]-complete under fpt-reductions:

p-Square-Tiling
Instance: A set T of tiles over a set C of colors and k ∈ N.

Parameter: k.
Problem: Decide whether there is a k × k-square tiling with

tiles from T .

Hint: For the hardness proof, reduce p-Short-NSTM-Halt to p-Square-
Tiling. To be able to fix the initial configuration, use a new set of tiles for
each of the k configurations describing a run of the nondeterministic Turing
machine. �

A Machine Characterization of A[1]

By Theorem 6.17, a parameterized problem (Q, κ) is in A[1] if and only if there
is an fpt-algorithm computing for every instance x of Q a nondeterministic
Turing machine Mx and a natural number kx with kx ≤ g(κ(x)) for some
computable g such that

x ∈ Q ⇐⇒ Mx accepts the empty string in ≤ kx steps.

This shows that there is a nondeterministic algorithm A deciding if x ∈ Q in
at most f(κ(x)) · p(|x|) steps: It first deterministically computes Mx and kx

and then simulates at most kx (nondeterministic) steps of Mx. Therefore the
nondeterministic steps of this algorithm A are among the last g(κ(x)) steps
of the computation. We will see that all problems in W[1] can be solved by
an algorithm whose nondeterministic steps are among the “last” steps of the
computation, where “last” means that the number of these steps is bounded
in terms of the parameter. This is the crucial property that distinguishes
problems in W[1] from problems in W[P].

Implementing our algorithm A on a nondeterministic Turing machine M

is not as straightforward as we might hope, because the size (of the alphabet,
of the state space, et cetera) of Mx depends on the input x (and not only on
κ(x)). Therefore, we cannot bound the number of nondeterministic steps of
M in terms of the parameter only. For this purpose, we need a machine model
able to handle, say, arbitrary numbers in one step. We use a nondeterministic
random access machine model. It is based on a standard deterministic random
access machine (RAM) model. Registers store nonnegative integers. Register
0 is the accumulator . The arithmetic operations are addition, subtraction
(cut off at 0), and division by two (rounded off), and we use a uniform cost
measure. More details are given in the Appendix.

We define a nondeterministic RAM, or NRAM, to be a RAM with an
additional instruction “GUESS” whose semantics is:

Guess a natural number less than or equal to the number stored in the
accumulator and store it in the accumulator.
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Acceptance of an input by an NRAM program is defined as usually for non-
deterministic machines. Steps of a computation of an NRAM that execute a
GUESS instruction are called nondeterministic steps .

While this form of nondeterminism may seem unnatural at first sight, we
would like to argue that it is very natural in many typical “applications”
of nondeterminism. For example, a nondeterministic algorithm for finding
a clique in a graph guesses a sequence of vertices of the graph and then
verifies that these vertices indeed form a clique. Such an algorithm is much
easier implemented on a machine that can guess the numbers representing the
vertices of a graph at once, rather than guessing their bits.

Definition 6.19. Let κ : Σ∗ → N be a parameterization.1An NRAM pro-
gram P is κ-restricted if there are computable functions f and g and a poly-
nomial p(X) such that on every run with input x ∈ Σ∗ the program P

• performs at most f(k) · p(n) steps, at most g(k) of them being nondeter-
ministic;

• uses at most the first f(k) · p(n) registers;
• contains numbers ≤ f(k) · p(n) in any register at any time.
Here n := |x|, and k := κ(x). �

Exercise 6.20. Let (Q, κ) be a parameterized problem. Prove that (Q, κ) ∈
W[P] if and only if there is a κ-restricted NRAM program deciding (Q, κ).

Hint: For one direction, simulate the g(κ(x)) “guesses” of the NRAM by
g(κ(x))·log |x| nondeterministic steps of a Turing machine. Conversely, replace
the g(κ(x)) · log |x| nondeterministic steps of a Turing machine by g(κ(x))
executions of the GUESS instruction. �

Definition 6.21. A κ-restricted NRAM program P is tail-nondeterministic if
there is a computable function h such that for every run of P on any input x all
nondeterministic steps are among the last h(κ(x)) steps of the computation.

�

Tail-nondeterminism alone implies that the number of nondeterministic steps
is bounded in terms of the parameter, so for tail-nondeterministic κ-restricted
NRAM programs we do not need the function g of Definition 6.19.

The machine characterization of A[1] reads as follows:

Theorem 6.22. Let (Q, κ) be a parameterized problem. Then (Q, κ) ∈ A[1]
if and only if there is a tail-nondeterministic κ-restricted NRAM program
deciding (Q, κ).

Proof: First assume that (Q, κ) ∈ A[1]. Then, by Theorem 6.17, (Q, κ) ≤fpt

p-Short-NSTM-Halt. Hence, there are computable functions f and g, a

1Recall that a random access machine only operates with nonnegative integers.
Thus we have to identify the letters of the alphabet Σ = {a1, . . . , am} with numbers,
say, ai with i.
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polynomial p(X), and an algorithm assigning to every instance x of Q, in
time ≤ f(k) · p(n) (where n := |x| and k := κ(x)), a nondeterministic Turing
machine Mx with a single tape and a natural number kx ≤ g(k) such that

x ∈ Q ⇐⇒ Mx accepts the empty string in at most kx steps.

We can assume that the states and the symbols of the alphabet of Mx are
natural numbers ≤ f(k) · p(n). On input x, the desired κ-restricted NRAM
program proceeds as follows:

1. It computes Mx and kx.
2. It guesses a sequence of kx configurations of Mx.
3. It verifies that the sequence of guessed configurations describes an accept-

ing computation of Mx.

Line 1 can be carried out by a deterministic fpt-algorithm (the reduction from
(Q, κ) to p-Short-NSTM-Halt). The number of steps needed by line 2 and
line 3 can be bounded in terms of kx and hence in terms of k. Therefore, the
program is tail-nondeterministic.

For the converse direction, assume that the tail-nondeterministic κ-restrict-
ed NRAM program P decides (Q, κ). We shall prove that (Q, κ) ≤fpt p-Short-
NSTM-Halt. Choose a computable function f and a polynomial p(X) for P

according to Definition 6.19 and a computable function h according to Defi-
nition 6.21.

Let x be an instance of (Q, κ) and n := |x|, k := κ(x). We shall define
a Turing machine Mx that simulates the last steps of the computation of
P on input x starting with the first nondeterministic step. Thus we have to
simulate at most h(k) steps. Let s1 be the first nondeterministic step of the
computation of P on input x.

The program P, the value of the program counter before the execution of
step s1 (that is, the line of the program that is executed in step s1), and the
contents of all registers will be hardwired in Mx. For each step s ≥ s1 of the
computation of P, the machine Mx writes on its tape which register changes
in step s and what its new contents is. Thus the contents of the tape of Mx at
any step of the computation will be a sequence of pairs (r, i), where r is the
address of a register and i its new contents. Note that by the choice of f and
p, only numbers in the range 0, . . . , f(k) · p(n) can occur as register addresses
or contents during the computation of P. The alphabet of Mx consists of the
numbers 0, . . . , f(k) · p(n) and a separator symbol, #.

To simulate a single step of the computation of P, the machine Mx reads
its tape to check if any of the registers involved in that step of the computation
have changed since step s1. If they have, it finds their current values. Then it
writes the new value of the register that is changed back to the tape. All this
can be easily implemented on a Turing machine with a transition table of size
polynomial in f(k) · p(n). 
�
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The machine characterization can be conveniently used to prove that fur-
ther problems are in A[1]. As an example, we consider the parameterized
perfect code problem. A perfect code in a graph G = (V, E) is a set C ⊆ V
of vertices such that for each vertex v ∈ V there is precisely one vertex in
N(v) ∩ C, where N(v) := {w | w = v or {v, w} ∈ E}.

p-Perfect-Code
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a perfect code of cardinality k.

Theorem 6.23. p-Perfect-Code is A[1]-complete under fpt-reductions.

Proof: To show that p-Perfect-Code ∈ A[1], we give a tail-nondeterministic
κ-restricted NRAM program P deciding the problem. On input (G, k), where
G = (V, E), the program P first computes two tables:

• Table 1 stores the values n[v] := |N(v)| for all v ∈ V .
• Table 2 stores the values

i[v, w] :=

{
1, if N(v) ∩N(w) = ∅,
0, otherwise.

for all v, w ∈ V .

The tables are arranged in such a way that for all v, w ∈ V the numbers
n[v] and i[v, w] can be accessed in constant time. The tables can easily be
computed in polynomial time.

Now the nondeterministic part of the computation starts: The program
P guesses k vertices v1, . . . , vk, checks that i[vi, vj ] = 1 for 1 ≤ i < j ≤ k,

determines n[v1], . . . , n[vk], and finally checks if
∑k

i=1 n[vi] = |V |. The number
of steps needed in the nondeterministic part is O(k2). Thus the program P is
tail-nondeterministic.

To prove that p-Perfect-Code is W[1]-hard, we reduce p-Independ-
ent-Set to p-Perfect-Code. Let (G, k), where G = (V, E), be an instance
of p-Independent-Set. Let

� :=

(
k

2

)
+ k.

We shall construct a graph H such that

(G, k) ∈ p-Independent-Set ⇐⇒ (H, �) ∈ p-Perfect-Code. (6.5)

We say that a vertex v of a graph is covered by a set C of vertices if C∩N(v) �=
∅.
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We start the construction of H by taking k disjoint |V |-cliques K1, . . . ,Kk.
The universe of Ki is V ×{i}. We want to guarantee that every perfect code of
H contains exactly one vertex of each of these cliques. To achieve this, we add
2k new vertices x1, . . . , xk, y1, . . . , yk, and for i ∈ [k] we connect both xi and
yi to every vertex (v, i) of Ki. The vertices xi and yi have no other neighbors,
and they will not get any neighbors later in the construction. Then:

Claim 1. For i ∈ [k], every perfect code C of H contains precisely one vertex
of each Ki.

Proof: Since Ki is a clique, C contains at most one vertex of Ki. Since both xi

and yi must be covered, C contains either xi or yi or a vertex of Ki. C cannot
contain xi, because then it would be impossible to cover yi. C can neither
contain yi. Thus C contains a vertex of Ki. This proves claim 1. �

Suppose now a perfect code C ofH contains the vertices (v1, 1), . . . , (vk, k).
By the next step of the construction we want to make sure that {v1, . . . , vk}
is an independent set of G. For 1 ≤ i < j ≤ k and every edge e = {u, v} ∈ E
we add a new vertex (e, i, j) to H and connect it with the four elements
(u, i), (v, i), (u, j), and (v, j). If a perfect code would contain two of these four
elements, then (e, i, j) would be covered twice, which is impossible. Thus our
construction so far guarantees:

Claim 2. If a perfect code C of H contains the vertices (v1, 1), . . . , (vk, k),
then {v1, . . . , vk} is an independent set of G. �

Claims 1 and 2 imply that if H has a perfect code then G has an inde-
pendent set of k elements. It remains to augment the construction in such a
way that if G has an independent set of cardinality k, then H has a perfect
code of cardinality �. For v, w ∈ V and 1 ≤ i < j ≤ k we add a vertex
(v, w, i, j). For 1 ≤ i < j ≤ k and v, w, v′, w′ such that (v, w) �= (v′, w′) we
add an edge between (v, w, i, j) and (v′, w′, i, j). So V × V × {i} × {j} is a
clique in G. Furthermore, we add edges from (v, w, i, j) to all vertices (e, i, j)
such that neither v nor w is an endpoint of the edge e of G. This completes
the construction of H.

Claim 3. If I := {v1, . . . , vk} is an independent set of G, then

C := {(v1, 1), . . . , (vk, k)} ∪ {(vi, vj , i, j) | 1 ≤ i < j ≤ k}

is a perfect code of H.

Proof: Clearly, C covers the vertices xi, yi, (v, i) for v ∈ V and i ∈ [k] and
the vertices (v, w, i, j) for v, w ∈ V and 1 ≤ i < j ≤ k. The vertices (e, i, j)
for e ∈ E and 1 ≤ i < j ≤ k are covered as well: If vi is an endpoint of e,
then (e, i, j) is covered by (vi, i) ∈ C. If vj is an endpoint of e, then (e, i, j) is
covered by (vj , j). Otherwise, (e, i, j) is covered by (vi, vj , i, j).

Furthermore, no vertex is covered twice. This is obvious for the vertices
of the form xi, yi, (v, i), and (v, w, i, j). The neighbors of (e, i, j), for some
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e = {v, w} ∈ E and 1 ≤ i < j ≤ k, are (v, i), (w, i), (v, j), (w, j), and all
vertices (v′, w′, i, j) with {v′, w′} ∩ {v, w} = ∅. Since I is an independent set,
at most one of these vertices is in C. This completes the proof of claim 3. �

Claims 1–3 imply (6.5). It is easy to see that H can be constructed from (G, k)
in polynomial time. Thus the map (G, k) �→ (H, �) is an fpt-reduction. 
�

Exercise 6.24. Let k ∈ N. Show that there is no Σ1-sentence ϕk such that
for all graphs G:

G |= ϕk ⇐⇒ G has a perfect code of cardinality k. �

Exercise 6.25. Prove that the following problem is A[1]-complete under fpt-
reductions:

p-Exact-Hitting-Set
Instance: A hypergraph H = (V, E) and k ∈ N.

Parameter: k.
Problem: Decide whether there is a set S ⊆ V of cardinality

k such that |S ∩ e| = 1 for all e ∈ E.
�

Exercise 6.26. Prove that the following problem is in W[P] and A[1]-hard
under fpt-reductions:

p-Subset-Sum
Instance: A set M of natural numbers and n, k ∈ N.

Parameter: k.
Problem: Decide whether there exist m1, . . . , mk ∈ M such

that m1 + . . . + mk = n.

Hint: To prove A[1]-hardness, reduce p-Exact-Hitting-Set to p-Subset-
Sum. For a hypergraph H = (V, E) with E = {e0, . . . , e�−1}, let nH be the
number whose binary representation is

1 0 . . .0 1 0 . . .0 1 0 . . . 0 1

with � ones and separated by blocks of k − 1 zeroes.
For every v ∈ V , let mv be the number whose j · kth bit is one if and only

if v ∈ ej (for all j ∈ [0, �−1]) and whose remaining bits are zeroes. Let MH :=
{mv | v ∈ V }. Then for every k ∈ N, the mapping (H, k) �→ (MH, nH, k) is an
fpt-reduction.

Remark: p-Subset-Sum is not only known to be in W[P], but even in W[3].
It is an open problem whether the problem is in W[2] or W[1] and whether it
is complete for one of the first three levels of the W-hierarchy. �
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Exercise 6.27. Prove that the following problem is A[1]-complete under fpt-
reductions:

p-Short-Post-Correspondence
Instance: Pairs (a1, b1), . . . , (an, bn) of strings over some al-

phabet Σ and k ∈ N.
Parameter: k.

Problem: Decide if there are i1, . . . , ik ∈ [n] such that
ai1

�ai2
� . . . �aik

= bi1
�bi2

� . . . �bik
.

(Here “�” denotes string concatenation.)

Hint: To prove membership of the problem in A[1], use the machine character-
ization. To prove hardness, adopt the standard proof of the undecidability of
Post’s correspondence problem (see, for example, [129]) by a reduction from
the halting problem to obtain a reduction from p-Short-NSTM-Halt to
p-Short-Post-Correspondence. �

6.3 A[1] and Propositional Logic

In Sect. 4.1 we introduced the parameterized weighted satisfiability problem
p-WSat and the classes of propositional formulas d-CNF and d-CNF−. Here
we show:

Theorem 6.28. Let d ≥ 2. Then p-WSat(d-CNF) and p-WSat(d-CNF−)
are A[1]-complete under fpt-reductions.

The rest of this section is devoted to a proof of this theorem.

Lemma 6.29. p-Independent-Set ≤fpt p-WSat(2-CNF−).

Proof: Let (G, k) with G = (V, E) be an instance of p-Independent-Set. We
may assume that no vertex of G is isolated (a vertex v ∈ V is isolated if it
is not adjacent to any vertex); otherwise, we first reduce our instance to an
instance (G′, k′), where G′ is a graph without isolated vertices and k′ < k.

For every v ∈ V , let Xv be a propositional variable. Let

α :=
∧

{v,w}∈E

(¬Xv ∨ ¬Xw).

Note that, since G has no isolated vertices, all variables Xv for v ∈ V occur
in V . For every set S ⊆ V ,

S is an independent set in G ⇐⇒ {Xv | v ∈ S} satisfies α.2

The mapping (G, k) �→ (α, k) is the desired reduction. 
�

2Recall that we often identify an assignment with the set of variables set to true.
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Exercise 6.30. Prove that p-WSat(2-CNF−) ≤fpt p-Independent-Set. �

The difficult part of the proof of Theorem 6.28 consists in verifying that
p-WSat(d-CNF) ∈ A[1]. It is proved by reducing the problem to p-MC(Σ1).
The work is done in Lemma 6.31; for later reference the lemma is stated
in a slightly more general form than needed here. Recall that we write
α(X1, . . . , Xn) if the variables of α are among X1, . . . , Xn.

Lemma 6.31. For all d, k ≥ 1 and for all formulas α(X1, . . . , Xn) ∈ d-CNF
there are
• a vocabulary τ = τd,k that only depends on d and k, but not on α,
• a τ-structure A = Aα(X1,...,Xn),d,k with universe A := [n],
• a quantifier-free formula ψ = ψd,k(x1, . . . , xk) that only depends on d and

k, but not on α
such that for m1, . . . , mk ∈ A,

{Xm1 , . . . , Xmk
} satisfies α ⇐⇒ A |= ψ(m1, . . . , mk).

Furthermore, the mapping (α(X1, . . . , Xn), d, k) �→ (A, ψ) is computable in
time kd+2 · dk · (|α| + n)O(1).

Proof: Let d, k ≥ 1 and α(X1, . . . , Xn) ∈ d-CNF, say,

α =
∧
i∈I

δi, where each δi is the disjunction of ≤ d literals.

We may assume that every δi has the form

¬Xi1 ∨ . . . ∨ ¬Xir
∨Xj1 ∨ . . . ∨Xjs

, (6.6)

where r, s ≥ 0, 0 < r + s ≤ d, and Xi1 , . . . , Xjs
are pairwise distinct.

We call t := (r, s) the type of δi. The structure A has universe A := [n].
For every r = 1, . . . , d it contains the r-ary relations

RA
r :=

{
(i1, . . . , ir)

∣∣ ¬Xi1 ∨ . . . ∨ ¬Xir
is a clause of α

}
;

SA
r :=

{
(i1, . . . , ir)

∣∣ there are s > 0 and j1, . . . , js such that
¬Xi1 ∨ . . .∨¬Xir

∨Xj1 ∨ . . .∨Xjs
is a clause of α

}
.

The structure A contains further relations, which will be defined later.
The formula ψ(x1, . . . , xk) will have the form ψs=0 ∧

∧
r∈[0,d] ψr, where for

all m1, . . . , mk ∈ [n],

A |= ψs=0(m1, . . . , mk) ⇐⇒ {Xm1 , . . . , Xmk
} satisfies every clause

of α of type (r, 0) with r ∈ [d],
(6.7)

and for r ∈ [0, d],

A |= ψr(m1, . . . , mk) ⇐⇒ {Xm1, . . . , Xmk
} satisfies every clause

of α of type (r, s) with s > 0.
(6.8)
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One easily verifies (6.7) for

ψs=0(x1, . . . , xk) :=
∧

r∈[d]

∧
1≤i1,...,ir≤k

¬Rrxi1 . . . xir
.

Let r ∈ [0, d]. Fix (i1, . . . , ir) ∈ SA
r . We let F = F (i1, . . . , ir) be the following

collection of subsets of A:

F := {{j1, . . . , js}
∣∣ s > 0, ¬Xi1 ∨ . . .∨¬Xir

∨Xj1 ∨ . . .∨Xjs
is a clause of α}.

Then, for 1 ≤ m1, . . . , mk ≤ n, the following two statements are equivalent:

(i) The assignment {Xm1 , . . . , Xmk
} satisfies all clauses in α of the form

¬Xi1 ∨ . . . ∨ ¬Xir
∨Xj1 ∨ . . . ∨Xjs

with s > 0.

(ii) Either the assignment {Xm1 , . . . , Xmk
} satisfies ¬Xi1 ∨ . . . ∨ ¬Xir

, or
{m1, . . . , mk} is a hitting set of the hypergraph (A, F ).

Every set in F has cardinality ≤ d. Therefore, by Lemma 1.17, there is an
algorithm that computes in time O(dk ·k · |α|) a list of all minimal hitting sets
of (A, F ) of cardinality at most k. This list contains at most dk sets.

Let H1, . . . , Hdk be an enumeration (with repetitions if necessary) of the
hitting sets in the list. View every Hi as a sequence of length k (with repeti-
tions if necessary). For u = 1, . . . , dk and � = 1, . . . , k add to A the (r+1)-ary
relations LA

r,u,�, where

LA
r,u,� :=

{
(i1, . . . , ir, m)

∣∣ m is the �th element of
the uth hitting set Hu of (A, F (i1, . . . , ir))

}
(if (A, F (i1, . . . , ir)) has no hitting set of size ≤ k, then LA

r,u,� contains no
tuple of the form (i1, . . . , ir, m)). For r > 0 we let

ψr(x1, . . . , xk) :=
∧

1≤i1,...,ir≤k

(Srxi1 . . . xir
→

∨
u∈[dk]

∧
�∈[k]

∨
j∈[k]

Lr,u,�xi1 . . . xir
xj)

and we set
ψ0(x1, . . . , xk) :=

∨
u∈[dk]

∧
�∈[k]

∨
j∈[k]

L0,u,�xj

(in case there is no positive clause in α, i.e., no clause of type (0, s) for some
s, then we set LA

0,u,� := A for all u, �). The equivalence between (i) and (ii)
shows that ψr satisfies (6.8).

It is easy to see that A and ψ can be computed from α and k in time
kd+2 · dk · (α + n)O(1). 
�

Proof of Theorem 6.28: Since 2-CNF− ⊆ d-CNF− ⊆ d-CNF for all d ≥ 2,
the hardness results follow from Lemma 6.29 by Corollary 6.2.

To show that p-WSat(d-CNF) ∈ A[1] for all d ≥ 2, we reduce the problem
to p-MC(Σ1). Let (α, k) be an instance of p-WSat(d-CNF) and var(α) =
{X1, . . . , Xn}. We compute (A, ψ) according to Lemma 6.31 and let
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ϕ = ∃x1 . . .∃xk

( ∧
1≤i<j≤k

xi �= xj ∧ ψ
)
.

Then
α is k-satisfiable ⇐⇒ A |= ϕ,

which gives the desired reduction. 
�
In addition, the preceding argument yields:

Corollary 6.32. The following parameterization of WSat(CNF) is A[1]-
complete under fpt-reductions:

p-clausesize-WSat(CNF)
Instance: α ∈ CNF and k ∈ N.

Parameter: k + d, where d is the maximum number of literals
in a clause of α.

Problem: Decide whether α is k-satisfiable.

A satisfying assignment V of a formula γ ∈ CNF is exact if it satisfies
exactly one literal in each clause of γ. For every class Γ ⊆ CNF we let

p-Exact-WSat(Γ)
Instance: γ ∈ Γ and k ∈ N.

Parameter: k.
Problem: Decide whether γ has an exact satisfying assign-

ment of weight k.

Exercise 6.33. Prove that p-Exact-WSat(CNF+) is A[1]-complete under
fpt-reductions. �

Theorem 6.34. p-Exact-WSat(CNF) is A[1]-complete under fpt reduc-
tions.

Recall that a cover for a hypergraph H = (V, E) is a set X ⊆ V such
that |e \X | ≤ 1 for all e ∈ E. By Exercise 1.22, there is an algorithm that,
given a hypergraph H = (V, E) and a natural number k, computes a list of
all minimal (with respect to set inclusion) covers of H of cardinality at most
k in time

O((k + 1)k · k · ‖H‖).

Proof of Theorem 6.34: Hardness follows immediately from the previous ex-
ercise. We shall prove that

p-Exact-WSat(CNF) ∈ A[1].
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Let γ =
∧

i∈I δi be a CNF-formula and k ∈ N. For all i ∈ I, let Pi be the
set of variables that occur positively in the clause δi and let Ni be the set of
variables that occur negatively in δi.

If V ⊆ var(γ) is an exact satisfying assignment for γ then V is a cover of
the hypergraph

H(γ) :=
(
var(γ), {Ni | i ∈ I}

)
.

For all X ⊆ var(γ) and Y, Z ∈ var(γ), we let

C(X , Y ) :={i ∈ I | Ni ⊆ X and Y ∈ Pi},
c(X , Y ) :=|C(X , Y )|,

d(X , Y, Z) :=|C(X , Y ) ∩ C(X , Z)|,
e(X ) :=|{i ∈ I | Ni ⊆ X}|.

Observe that if V is an exact satisfying assignment then, for every i ∈ I with
Ni ⊆ V , there is exactly one Y ∈ V such that i ∈ C(V , Y ).

We call a triple (X , Y, Z), where X ⊆ var(γ) and Y, Z ∈ var(γ) \ X ,
forbidden if there is an i ∈ I such that Ni = X ∪ {Z} and Y ∈ Pi. For all
X ⊆ var(γ) and Y ∈ var(γ) we let

Forb(X , Y ) := {Z | (X , Y, Z) forbidden},
f(X , Y ) := |Forb(X , Y )|.

Note that if V ⊆ var(γ) is an exact satisfying assignment for γ, then there is
no forbidden triple (X , Y, Z) such X ∪ {Y } ⊆ V and Z �∈ V . In other words,
for all X ⊆ V and Y ∈ V we have Forb(X , Y ) ⊆ V .

We call a subset X ⊆ var(γ) a neg-set if there is an i ∈ I such that X ⊆ Ni.
We now describe a tail-nondeterministic κ-restricted program P that de-

cides if
(γ, k) ∈ p-Exact-WSat(CNF).

P first computes the sets Ni and Pi for all i ∈ I. Then it computes a list
C1, . . . , C� of all minimal covers of the hypergraph H(γ) of cardinality at most
k. If there are no such covers, the algorithm immediately rejects. Otherwise,
it continues. Note that in this case we have |Ni| ≤ k + 1 for all i ∈ I.

Now for all neg-sets X and for all Y, Z ∈ var(γ) the program P computes
the sets C(X , Y ) and Forb(X , Y ) and the numbers c(X , Y ), d(X , Y, Z), e(X ),
and f(X , Y ).

All the sets and numbers are stored in suitable data structures so that
they can be accessed in time O(k). These data structures can be constructed
in time 2k+1 · |γ|O(1) because |Ni| ≤ k + 1 for all i ∈ I.

Next, the program nondeterministically guesses an assignment V ⊆ var(γ)
of weight k (that is, |V| = k). It first checks if V is a cover of H(γ). This is
done by testing if V contains one of the sets Ci for i ∈ [�]. If V is not a cover,
the program rejects. Otherwise, there are no clauses δi such that |Ni \V| ≥ 2.
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Next, for all X ⊆ V and Y ∈ V \ X , the program tests if Forb(X , Y ) ⊆ V .
The latter can be done in time kO(1) by first checking if f(X , Y ) ≤ |V \ X |
and, if this is the case, testing if all Z ∈ Forb(X , Y ) are contained in V . If
some pair (X , Y ) fails the test, the program rejects. Otherwise, V is an exact
satisfying assignment for all clauses δi such that |Ni \ V| = 1.

Finally, for all neg-sets X ⊆ V the program tests if d(X , Y, Z) = 0 for all
Y, Z ∈ V and ∑

Y ∈V
c(X , Y ) = e(X ).

If X passes this test, it means that V is an exact satisfying assignment for all
clauses δi such that Ni ⊆ X . Thus if all neg-sets X ⊆ V pass the test, V is an
exact assignment for all clauses δi such that such that |Ni \ V| = 0. 
�

A more “logical” proof of the previous result is contained in Exercise 7.13.

6.4 A[1] = W[1]

Recall that
W[1] := [p-WD-Π1]

fpt,

where p-WD-Π1 is the class of all problems p-WDϕ for formulas ϕ(X) ∈ Π1.
Further recall that for a first-order formula ϕ(X) with a free relation variable
of arity s, the problem p-WDϕ is defined as follows:

p-WDϕ

Instance: A structure A and k ∈ N .
Parameter: k.

Problem: Decide whether there is a subset S of As of cardi-
nality k with A |= ϕ(S).

Theorem 6.35. A[1] = W[1].

We prove this result with the following two lemmas.

Lemma 6.36. p-Independent-Set ∈W[1].

Proof: Clearly, p-Independent-Set ≤fpt p-WDis for

is(X) := ∀y∀z((Xy ∧Xz)→ ¬Eyz). 
�

Lemma 6.37. For every Π1-formula ϕ(X) there is a d ≥ 1 such that

p-WDϕ ≤fpt p-WSat(d-CNF).
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We first illustrate the idea of the proof of this lemma by an example. It
consists of a straightforward translation of the first-order formula ϕ(X) into
a formula of propositional logic, once a structure has been fixed. We will meet
this proof idea a few times in the next two chapters.

Example 6.38. Consider p-WDis, where is(X) is as in the previous proof.
We rewrite this formula equivalently as

∀y∀z(¬Xy ∨ ¬Xz ∨ ¬Eyz).

Let G be a graph, or more generally, an arbitrary {E}-structure, G = (G, EG).
When reading the formula in G, the quantifier ‘∀y’ is equivalent to the con-
junction ‘

∧
a∈G’ and similarly for ‘∀z’, so we obtain, written informally,∧

a∈G

∧
b∈G

(¬Xa ∨ ¬Xb ∨ ¬Eab).

For fixed a, b ∈ G, if (a, b) /∈ EG , then the corresponding disjunction is fulfilled,
so we can delete it, otherwise it is equivalent to ¬Xa∨¬Xb. Using for c ∈ G a
propositional variable Yc with the intended meaning “c is in (the interpretation
of the set variable) X ,” we altogether have translated is(X) in G into the
propositional formula

α′ :=
∧

a,b∈G, (a,b)∈EG

(¬Ya ∨ ¬Yb),

(a formula we already encountered in the proof of Lemma 6.29). Clearly, for
S ⊆ G we have

G |= is(S) ⇐⇒ {Yu | u ∈ S} satisfies α. (6.9)

To ensure that every variable Ya occurs in the propositional formula we set

α := α′ ∧
∧

a∈G

(Ya ∨ ¬Ya).

Clearly, α is (equivalent to) a formula in 2-CNF and, by (6.9),

(G, k) ∈ p-WDis ⇐⇒ (α, k) ∈ p-WSat(2-CNF),

and therefore p-WDis ≤fpt p-WSat(2-CNF). �

Proof of Lemma 6.37: We may assume that the quantifier-free part of ϕ(X)
is in conjunctive normal form, say,

∀x1 . . .∀xr

∧
i∈I

∨
j∈J

λij , (6.10)
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with literals λij . We let d := max{2, |J |} and show that p-WDϕ ≤fpt

p-WSat(d-CNF).
Let A be a τ -structure. For every ā ∈ As, where s is the arity of X ,

let Yā be a propositional variable with the intended meaning “ā is in (the
interpretation of the relation variable) X .” We set

α′ :=
∧

a1,...,ar∈A,
i∈I

δi,a1,...,ar

where δi,a1,...,ar
is the disjunction obtained from

∨
j∈J λij as follows:

• We replace literals (¬)Xx�1 . . . x�s
by (¬)Ya�1

...a�s
.

• If λij does not contain the relation variable X , then we omit λij if A �|=
λij(a1, . . . , ar), and we delete the whole δi,a1,...,ar

if A |= λij(a1, . . . , ar).

Now, for an arbitrary S ⊆ As, one easily verifies that

A |= ϕ(S) ⇐⇒ {Yb̄ | b̄ ∈ S} satisfies α′. (6.11)

We set
α := α′ ∧

∧
ā∈As

(Yā ∨ ¬Yā).

The subformula
∧

ā∈As(Yā ∨¬Yā) is only added to make sure that every vari-
able Yā occurs in α. By (6.11), for every k ∈ N, we have (A, k) ∈ p-WDϕ if
and only if α is k-satisfiable. Since α is (equivalent to a formula) in d-CNF,
this yields an fpt-reduction from p-WDϕ to p-WSat(d-CNF). 
�

Proof of Theorem 6.35: By the A[1]-completeness of p-Independent-Set,
Lemma 6.36 implies A[1] ⊆ W[1]. The converse inclusion is obtained from
Lemma 6.37 by Theorem 6.28. 
�

An analysis of the proof of Lemma 6.31 reveals that, for k, d ∈ N and
α(X1, . . . , Xn) ∈ d-CNF−, the relevant parts of the structure Aα(X1,...,Xn),d,k

and the vocabulary τd,k do not depend on k. We formulate and prove this
result in a different framework.

Let Y be an s-ary relation variable. A first-order formula ϕ(Y ) is bounded
(to Y ) if in ϕ(Y ) quantifiers only appear in the form ∃y1 . . .∃ys(Y y1 . . . ys∧ψ)
or in the form ∀y1 . . .∀ys(Y y1 . . . ys → ψ), which we abbreviate by (∃ȳ ∈ Y )ψ
and by (∀ȳ ∈ Y )ψ, respectively.

Proposition 6.39. Let d ≥ 1, τd := {Rr | 1 ≤ r ≤ d} with r-ary Rr. For a
set variable Y , we let ϕd(Y ) be the following bounded τd-formula:

ϕd := (∀y1 ∈ Y ) . . . (∀yd ∈ Y )
∧

r∈[d]

∧
1≤i1,...,ir≤d

¬Rryi1 . . . yir
.

Then, for all α ∈ d-CNF− with var(α) = {X1, . . . , Xn} there is a τd-structure
Aα,d with universe [n] computable in time O(|α|) such that for all k ∈ N and
all m1, . . . , mk ∈ [n], we have
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{Xm1 , . . . , Xmk
} satisfies α ⇐⇒ Aα,d |= ϕd({m1, . . . , mk}),

and hence
α is k-satisfiable ⇐⇒ (Aα,d, k) ∈ p-WDϕd

.

Proof: Let α =
∧

j∈J δj be in d-CNF−. Then, we set

R
Aα(X1,...,Xn),d
r := {(i1, . . . , ir) | δj = ¬Xi1 ∨ . . . ∨ ¬Xir

for some j ∈ J}. 
�

Exercise 6.40. (a) Show that p-WDϕ ∈ W[1] for every bounded formula
ϕ(Y ).

Hint: Reduce p-WDϕ to p-MC(Σ1).

(b) Show that p-Clique ≤fpt p-WDϕ for the bounded formula ϕ(Y ) := (∀y ∈
Y )(∀z ∈ Y )(y = z ∨ Eyz).

(c) Let R be a binary relation symbol and Y a set variable. Show that for
ϕ(Y ) = (∀y ∈ Y )(∀z ∈ Y )Ryz the problem p-WDϕ is W[1]-complete under
fpt-reductions. �

Notes

The main result of this chapter, Theorem 6.35 goes back to Downey et al. [84],
who proved a slightly weaker version of the theorem for specific vocabularies.
The strong version of the theorem stated here and the proof given here is
due to [103]. Since Downey et al. [84] use a definition of W[1] via weighted
satisfiability problems, their result also contains Theorem 6.28. The W[1]-
completeness of p-Clique (Theorem 6.1) was proved in [80], that of p-VC-
Dimension (Theorem 6.5) in [76, 81], that of p-Short-NSTM-Halt (Theo-
rem 6.17) in [38] and finally, that of p-Perfect-Code (Theorem 6.23) in [40].
The equivalence of p-Perfect-Code with p-Exact-WSat(CNF) and hence
implicitly Theorem 6.34, was shown in [80]. The W[1]-hardness of p-Subset-
Sum is due to [80], and containment of the problem in W[3] is due to [33].
The machine characterization of A[1] (Theorem 6.22) is from [51].
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The W-Hierarchy

Based on the syntactic approach to complexity theory laid out in Chap. 4, we
introduced the classes W[1], W[2], . . . , of the W-hierarchy by means of param-
eterized weighted Fagin-definable problems, more precisely, by the equality

W[t] :=
[
{p-WDϕ | ϕ(X) ∈ Πt}

]fpt
.

We extensively studied W[1] in the previous chapter; as we shall see here, many
results generalize in one or another form to the whole W-hierarchy. A notable
exception is the equality W[1] = A[1]; we can only show that W[t] ⊆ A[t].

We determine fragments of the class of all propositional formulas (in
Sect. 7.1) and fragments of first-order logic (in Sect. 7.4) such that the corre-
sponding parameterized weighted satisfiability problem and the correspond-
ing parameterized model-checking problem, respectively, are W[t]-complete.
The proofs of fpt-equivalence between parameterized weighted Fagin-definable
problems, parameterized weighted satisfiability problems, and parameterized
model-checking problems yield various normal forms and “collapse” results.
Moreover, we prove that, among other problems, the parameterized dominat-
ing set problem and the short halting problem for nondeterministic multitape
Turing machines are W[2]-complete.

7.1 The W-Hierarchy and Propositional Logic

Recall the definition of the classes Γt,d and Δt,d of propositional formulas from
Sect. 4.1. The main result of this section reads as follows:

Theorem 7.1. For every t > 1, the following problems are W[t]-complete
under fpt-reductions:
(1) p-WSat(Γ+

t,1) if t is even and p-WSat(Γ−
t,1) if t is odd.

(2) p-WSat(Δt+1,d) for every d ≥ 1.



134 7 The W-Hierarchy

The theorem implies

W[t] =
[{

p-WSat(Γt,d)
∣∣ d ≥ 1

}]fpt

, (7.1)

for all t ≥ 2. The equality also holds for t = 1 by Theorem 6.28 and the fact
that W[1] = A[1] (Theorem 6.35). Thus once we have proved Theorem 7.1,
we also have completed the proof of Theorem 5.6, which states precisely the
equality (7.1).

We obtain Theorem 7.1 by a series of lemmas. Since Γ1,d coincides with the
class d-CNF of formulas in d-conjunctive normal form, the following lemma
generalizes Lemma 6.37 from Π1-formulas to Πt-formulas. The lemma shows
that p-WSat(Γt,d) is W[t]-hard.

Lemma 7.2. Let t ≥ 1. For every Πt-formula ϕ(X) there is a d ≥ 1 such
that

p-WDϕ ≤fpt p-WSat(Γt,d).

Proof: The proof extends that of Lemma 6.37 in the obvious way. We present
the reduction for a concrete formula in Example 7.3. Let ϕ(X) be a Πt-formula
of vocabulary τ . For notational simplicity, we fix the parity of t, say, t is even.
We may assume that the quantifier-free part of ϕ(X) is in disjunctive normal
form, say,

∀ȳ1∃ȳ2 . . .∀ȳt−1∃ȳt

∨
i∈I

∧
j∈J

λij ,

with literals λij and with ȳr = yr1 . . . yrmr
.

We set d := max{2, |J |} and show that p-WDϕ(X) ≤fpt p-WSat(Γt,d). For
every τ -structure A we introduce a Γt,d-formula α such that for all k ∈ N:

(A, k) ∈ p-WDϕ(X) ⇐⇒ α is k-satisfiable. (7.2)

So, let A be a τ -structure. For every ā ∈ As, where s is the arity of X ,
let Yā be a propositional variable with the intended meaning “ā is in (the
interpretation of) the relation variable X .” Recall that mr = |ȳr| for r ∈ [t].
We define α′ = α′(G, ϕ) by

α′ :=
∧

ā1∈Am1

∨
ā2∈Am2

. . .
∨

āt∈Amt

i∈I

γi,ā1,...,āt
,

where ār = ar1 . . . armr
and where γi,ā1,...,āt

is the conjunction obtained from∧
j∈J λij as follows:

• We replace literals (¬)Xyu1v1 . . . yusvs
by (¬)Yau1v1 ...ausvs

.
• If λij does not contain the relation variable X , then we omit λij if A |=

λij(ā1, . . . , āt), and we omit the whole γi,ā1,...,āt
if A �|= λij(ā1, . . . , āt).
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Then, |α′| ∈ O(|A|m1+...+mt · |ϕ|). For arbitrary S ⊆ As one easily verifies
that

A |= ϕ(S) ⇐⇒ {Yā | ā ∈ S} satisfies α′. (7.3)

Again, to ensure that every variable Yā occurs in the propositional formula,
we set

α := α′ ∧
∧

ā∈As

(Yā ∨ ¬Yā). (7.4)

By (7.3), the equivalence (7.2) holds. Altogether, (A, k) �→ (α, k) is the desired
reduction. 
�

Example 7.3. Consider the Π2-formula ds(X) := ∀x∃y
(
Xy∧(Eyx∨y = x)

)
(cf. Example 4.41). It is equivalent to ∀x∃y

(
(Xy∧Eyx)∨ (Xy∧y = x)

)
, that

is, to

ϕ′ := ∀x∃y
∨

i∈[2]

∧
j∈[2]

λij

with λ11 := Xy, λ12 := Eyx, λ21 := Xy, and λ22 := (y = x). Let G = (V, E)
be the graph with V := {a, b, c} and E := {{a, b}, {b, c}}. Using propositional
variables Ya, Yb, Yc and applying the transformations of the preceding proof
we obtain as γi,u,v the following formulas

γ1,a,b =Yb, γ1,b,a = Ya, γ1,b,c = Yc, γ1,c,b = Yb,

γ2,a,a = Ya, γ2,b,b = Yb, γ2,c,c = Yc.

All other formulas γi,u,v are omitted. Since according to the preceding proof

α′ =
∧

u∈V

∨
u∈V

∨
i∈[2]

γi,u,v,

we get
α′ = (Ya ∨ Yb) ∧ (Ya ∨ Yb ∨ Yc) ∧ (Yb ∨ Yc),

where all conjunctions have to be read as big conjunctions and all disjunctions
as big disjunctions. Thus the formula is indeed a big conjunction of (three)
big disjunctions of literals and hence in Γ2,1. One easily verifies directly that
for every subset S ⊆ V

G |= ds(S) ⇐⇒ S is a dominating set of G
⇐⇒ {Yv | v ∈ S} satisfies (Ya ∨ Yb) ∧ (Ya ∨ Yb ∨ Yc) ∧ (Yb ∨ Yc).

�

Recall that a formula ϕ(X) is positive (negative) in X if it is in negation
normal form and every atomic subformula containing X is not preceded by a
negation symbol (is preceded by a negation symbol). A quantifier-free formula
positive (negative) in X has a conjunctive and a disjunctive normal form
positive (negative) in X .
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Corollary 7.4. For t ≥ 1 and every Πt-formula ϕ(X):
• If ϕ(X) is positive in X, then p-WDϕ ≤fpt p-WSat(Γ+

t,d) for some d ≥ 1.

• If ϕ(X) is negative in X, then p-WDϕ ≤fpt p-WSat(Γ−
t,d) for some d ≥ 1.

Proof: Consider the preceding proof, where, in addition, we now assume that
ϕ(X) is, say, positive in X . Then, we have α′ ∈ Γ+

t,d. However, we add negation
symbols in (7.4), where we ensure that all variables Yā occur in the formula.
We can work around this use of the negation symbol as follows:

Let � be the number of propositional variables in α′. If k > |A|s (recall
that s is the arity of X), then (A, k) /∈ p-WDϕ and α′ is not k-satisfiable. If
k ≤ |A|s, then by monotonicity and (7.3), we have

(A, k) ∈ p-WDϕ ⇐⇒ α′ is min{k, �}-satisfiable,

which yields the desired reduction. 
�
There is a fairly simple direct proof for membership of p-WSat(Γt,d) in

W[t]. Nevertheless, we choose a different way, which gives us further infor-
mation, and first prove the following lemma showing that we can restrict our
attention to the case d = 1.

Lemma 7.5 (Propositional Normalization). Let d ≥ 1.
(1) If t > 1 is an even number, then p-WSat(Δt+1,d) ≤fpt p-WSat(Δ+

t+1,1)

and p-WSat(Γt,d) ≤fpt p-WSat(Γ+
t,1).

(2) If t > 1 is an odd number, then p-WSat(Δt+1,d) ≤fpt p-WSat(Δ−
t+1,1)

and p-WSat(Γt,d) ≤fpt p-WSat(Γ−
t,1).

Recall that we showed that p-WSat(Γ−
1,1) is fixed-parameter tractable (cf. Ex-

ercise 4.3) and that p-WSat(Γ1,d) ≤fpt p-WSat(Γ−
1,2) (cf. Theorem 6.28). We

prove the Propositional Normalization Lemma with the following Lemmas 7.6
and 7.8:

Lemma 7.6. Let d ≥ 1.
(1) If t > 1 is an even number, then p-WSat(Δt+1,d) ≤fpt p-WSat(Δ+

t+1,d)

and p-WSat(Γt,d) ≤fpt p-WSat(Γ+
t,d).

(2) If t > 1 is an odd number, then p-WSat(Δt+1,d) ≤fpt p-WSat(Δ−
t+1,d)

and p-WSat(Γt,d) ≤fpt p-WSat(Γ−
t,d).

Proof: The idea of the proof is as follows: To express a negative literal ¬X
positively, we fix some order of the variables and say that X is strictly between
two successive variables that are set to true (or strictly before the first or
after the last variable set to true). Conceptually, the proof is similar to the
proof of Lemma 6.11, where we reduced the model-checking problem for Σ1

formulas to the model-checking problem for positive Σ1 formulas. Example 7.7
will help the reader to follow some of the steps of the reduction.
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First, note that for pairwise disjoint nonempty finite sets Z1, . . . ,Zm of
propositional variables, an assignment to these variables of weight m satisfies
the formula

βZ̄ :=
∧

i∈[m]

∨
Z∈Zi

Z

if and only if it sets exactly one variable of each Zi to true. And the same
applies to the formula

γZ̄ :=
∧

i∈[m]

∧
Z,Z′∈Zi

Z �=Z′

(¬Z ∨ ¬Z ′).

While βZ̄ ∈ Γ+
2,1, we have γZ̄ ∈ Γ−

1,2, but we can also view γZ̄ as a Γ−
2,1-formula.

Now, we present the reduction for even t and leave the analogous proof
of the claim for odd t to the reader. So, let (α, k) be an instance of
p-WSat(Δt+1,d). Let X1, . . . , Xn be the variables of α. We may assume that
n ≥ 2 (the case n = 1 can be handled directly). We introduce variables Xi,j

(for i ∈ [k] and j ∈ [n]) and Yi,j,j′ (for i ∈ [k − 1] and 1 ≤ j < j′ ≤ n) with
the intended meanings:

Xi,j : the ith variable set to true is Xj ,

Yi,j,j′ : the ith variable set to true is Xj and the (i + 1)th is Xj′ .

We group them into the nonempty sets Xi := {Xi,j | j ∈ [n]} for i ∈ [k]
and Yi := {Yi,j,j′ | 1 ≤ j < j′ ≤ n} for i ∈ [k − 1]. We introduce formulas
β1, . . . , βk−1 such that any assignment of weight (2k − 1) satisfying

β := βX̄ ,Ȳ ∧ β1 ∧ . . . ∧ βk−1

and setting X1,�1 , . . . , Xk,�k
to true must set Y1,�1,�2 , . . . , Yk−1,�k−1,�k

to
true. For i ∈ [k − 1] we set

βi :=
∧

j∈[n]

( ∨
1≤j1<j2≤n

j1 �=j

(Xi,j ∨ Yi,j1,j2) ∧
∨

1≤j1<j2≤n
j2 �=j

(Xi+1,j ∨ Yi,j1,j2)
)
.

In fact, consider a satisfying assignment of β of weight (2k − 1). Since it
satisfies βX̄ ,Ȳ , it sets exactly one variable in each Xi and one variable in each
Yi to true. Let Xi,�i

be the (unique) variable of Xi set to true. Now, fix
i ∈ [k − 1] and let Yi,�,m be the variable of Yi set to true. If � �= �i, then in
βi the conjunct ∨

1≤j1<j2≤n
j1 �=�

(Xi,� ∨ Yi,j1,j2)

would not be satisfied. Similarly, if m �= �i+1 then the conjunct
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1≤j1<j2≤n

j2 �=m

(Xi+1,m ∨ Yi,j1,j2)

would not be satisfied. Note that βi is equivalent to a Γ+
2,1-formula.

Now let α′ be obtained from α by replacing positive literals Xj of α by
the Δ+

1,1-formula ∨
i∈[k]

Xi,j ,

and negative literals ¬Xj of α by a Δ+
1,1-formula equivalent to the following

formula expressing that Xj is either smaller (with respect to the ordering
of the variables of α by their indices) than the first variable set to true or
between two successive variables set to true or after the last variable set to
true; thus Xj itself cannot be true.∨

j′∈[n]
j<j′

X1,j′ ∨
( ∨

i∈[k−1]

∨
j′,j′′∈[n]
j′<j<j′′

Yi,j′,j′′

)
∨

∨
j′∈[n]
j′<j

Xk,j′ .

If we merge all the disjunctions in this formula into a single big disjunction,
we obtain a Δ+

1,1 formula of length O(n3). By assumption, t is even and
α ∈ Δt+1,d. Thus α is of the form∨

...

∧
...

. . .
∨
...

(λ...,1 ∧ . . . ∧ λ...,r...
)

where all r... are ≤ d. We obtained α′ from α by replacing every literal λ...,j

by a Δ+
1,1-formula. Applying the distributive law, we see that α′ is equivalent

to a Δ+
t+1,d-formula α′′ of length O(|α|3+d). Furthermore, if α ∈ Γt,d then α′

and hence α′′ are equivalent to a formula in Γ+
t,d. By the previous analysis, we

have

α is k-satisfiable ⇐⇒ (α′′ ∧ β) is 2k − 1-satisfiable.

One easily verifies that (α′′ ∧ β) is equivalent to a formula in Δ+
t+1,d (or, to a

formula in Γ+
t,d if α is a Γt,d-formula). This yields the desired reduction. 
�

Example 7.7. We transform the instance (α, 2) of p-WSat(Γ2,3) with

α := (X1 ∨ ¬X2 ∨X3) ∧ (¬X1 ∨X4)

(considered as p-WSat(Γ2,3)-formula) into the equivalent instance (α′′∧β, 3)
of p-WSat(Γ+

2,3) according to the preceding proof.
To obtain α′ we replace the literal X1 in α by (X1,1 ∨ X2,1), the literal

¬X2 by (X1,3 ∨X1,4 ∨ Y1,1,3 ∨ Y1,1,4), and so on. Hence
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(X1,1 ∨X2,1) ∨ (X1,3 ∨X1,4∨Y1,1,3 ∨ Y1,1,4) ∨ (X1,3 ∨X2,3)

)
∧(

(X1,2 ∨X1,3 ∨X1,4) ∨ (X1,4 ∨X2,4)
)
.

We leave it to the reader to calculate β and α′′. �

Lemma 7.8. Let d ≥ 1.
(1) If t > 1 is an even number, then p-WSat(Δ+

t+1,d) ≤fpt p-WSat(Δt+1,1)

and p-WSat(Γ+
t,d) ≤fpt p-WSat(Γt,1).

(2) If t > 1 is an odd number, then p-WSat(Δ−
t+1,d) ≤fpt p-WSat(Δt+1,1)

and p-WSat(Γ−
t,d) ≤fpt p-WSat(Γt,1).

Proof: Fix d ≥ 1. Again, we only show the claim for even t. Since t is even we
have conjunctions of at most d variables at the “bottom” of the corresponding
formulas. The idea of this reduction consists in replacing these conjunctions
of variables by single variables for the corresponding sets of variables.

So assume that (α, k) is instance of p-WSat(Δ+
t+1,d) or of p-WSat(Γ+

t,d).
Let X be the set of variables of α. For every nonempty subset Y of X of
cardinality at most d we introduce a new variable SY (thus, the number of
these variables is bounded by |X |d ≤ |α|d). The formula

βset :=
∧

∅�=Y⊆X
|Y|≤d

(SY ↔
∧

X∈Y
X)

“sets the values of the set variables correctly.” It is equivalent to a Γ2,1-
formula, as is easily seen by rewriting βset in the equivalent form:∧

∅�=Y⊆X
|Y|≤d

∧
X∈Y

(¬SY ∨X) ∧
∧

∅�=Y⊆X
|Y|≤d

(SY ∨
∨

X∈Y
¬X).

Let α0 be the formula obtained from α by replacing every iterated small con-
junction (X1 ∧ . . .∧Xr) by S{X1,...,Xr}. Clearly, α′ := (α0 ∧βset) is equivalent

to a Δt+1,1-formula (to a Γt,1-formula in case α ∈ Γ+
t,d). Furthermore, we let

m be the number of nonempty subsets of cardinality≤ d of a set of k elements,
that is,

m :=

(
k

1

)
+

(
k

2

)
+ · · ·+

(
k

d

)
.

We obtain the desired reduction by showing that

α is k-satisfiable ⇐⇒ α′ is (k + m)-satisfiable.

First, assume that we have an assignment of weight k satisfying α and, say,
setting X1, . . . , Xk to true; its extension setting exactly the variables SY
of α′, where Y is a nonempty subset of {X1, . . . , Xk}, to true is a weight
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k + m assignment satisfying α′. Conversely, the formula βset enforces that an
assignment of weight k + m satisfying α′ must set exactly k variables in X
to true; hence, its restriction to the variables in X is a weight k assignment
satisfying α. 
�

Proof of Lemma 7.5: For example, for even t, we obtain by successively
applying Lemma 7.6, Lemma 7.8, and Lemma 7.6 again, p-WSat(Δt+1,d) ≤fpt

p-WSat(Δ+
t+1,d) ≤fpt p-WSat(Δt+1,1) ≤fpt p-WSat(Δ+

t+1,1). 
�

Lemma 7.9. For t > 1, we have p-WSat(Δt+1,d) ∈W[t].

Proof: By the Propositional Normalization Lemma 7.5 and Corollary 5.5, it
suffices to show that

• p-WSat(Δ+
t+1,1) ≤fpt p-WDϕ for even t,

• p-WSat(Δ−
t+1,1) ≤fpt p-WDϕ for odd t,

holds for some Σt+1-formula ϕ(X). Let α ∈ Δ+
t+1,1 (α ∈ Δ−

t+1,1). In the parse
tree (see p. 67) of α all variables (negated variables) have distance t+1 from the
root. Consider the directed graph G = (G, EG) obtained from the parse tree of
α by identifying all leaves corresponding to the same propositional variable in
case t is even and by identifying all nodes corresponding to the same negated
variable and removing the leaves (corresponding to the variables) in case t
is odd. We direct the edges top-down (so that the root has in-degree 0). Let
ROOT and LITERAL be unary relation symbols. Let ROOT G just contain
the root, and let LITERALG be the set of nodes corresponding to literals (that
is, the set of vertices of out-degree 0 of G). We introduce a Σt+1-sentence ϕ(X)
with a set variable X such that for any k ≥ 1 we have

α is k-satisfiable ⇐⇒ for some S ⊆ G with |S| = k:

(G,ROOT G ,LITERALG) |= ϕ(S),

thus showing that p-WSat(Δ±
t+1,1) ≤fpt p-WDϕ. In particular, we will have

for any k ≥ 1 and any variables Y1, . . . , Yk of α,

{Y1, . . . , Yk} satisfies α ⇐⇒ (G,ROOT G ,LITERALG) |= ϕ({Y1, . . . , Yk})

On the left side of the equivalence, {Y1, . . . , Yk} denotes the assignment set-
ting exactly the variables Y1, . . . , Yk to true; on the right side, {Y1, . . . , Yk}
denotes the set of vertices of out-degree 0 of G corresponding to the variables
Y1, . . . , Yk in case t is even, and to ¬Y1, . . . ,¬Yk in case t is odd. Essentially,
the formula ϕ(X) mimics the recursive definition of the satisfaction relation
for Δ±

t+1,1-formulas; in fact, as ϕ(X) we can take a Σt+1-sentence equivalent
to

∀z(Xz → LITERAL z) ∧ ∃y0(ROOT y0

∧∃y1(Ey0y1 ∧ ∀y2(Ey1y2 → . . . → ∃yt+1(Eytyt+1 ∧Xyt+1) . . .)))
(7.5)
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if t is even, and to

∀z(Xz → LITERAL z) ∧ ∃y0(ROOT y0

∧∃y1(Ey0y1 ∧ ∀y2(Ey1y2 → . . . ∧ ∀yt+1(Eytyt+1 → ¬Xyt+1) . . .)))

if t is odd. 
�

Proof of Theorem 7.1: Since Γ±
t,1 ⊆ Δt+1,d, the problems mentioned in (1)

and (2) of Theorem 7.1 are in W[t] by the previous lemma. And, say, for even
t, every parameterized problem p-WDϕ with a Πt-formula ϕ is reducible to
p-WSat(Γ+

t,1) by Lemma 7.2 and the Propositional Normalization Lemma 7.5.

This shows that p-WSat(Γ+
t,1) and hence, p-WSat(Δt+1,d), is W[t]-hard. 
�

A slight modification of the proof of Lemma 7.9 also yields the following
lemma:

Lemma 7.10. For every t > 1, d ≥ 1,

p-WSat(Δt+1,d) ≤fpt p-MC(Σt).

More precisely, there is an fpt-reduction from p-WSat(Δt+1,d) to p-MC(Σt)
that associates with every instance (α, k) of p-WSat(Δt+1,d) an instance
(G, ϕ) of p-MC(Σt) such that the vocabulary of G and ϕ is binary and the
formula ϕ is of the form

∃x1 . . .∃xk∃y0∃y1∀y2∃y3 . . . Qtyt ψ, (7.6)

where Qt = ∀ if t is even, Qt = ∃ if t is odd and ψ is quantifier-free.

Proof: For simplicity, we assume that t is even. By the Propositional Normal-
ization Lemma 7.5, we only have to reduce p-WSat(Δ+

t+1,1) to p-MC(Σt).

We use the notation of the preceding proof. For α ∈ Δ+
t+1,1, we constructed a

structure
G = (G, EG ,ROOT G ,LITERALG)

and a Σt-formula ϕ(X) equivalent to

∀z(Xz → LITERAL z) ∧ ∃y0(ROOT y0 ∧ ∃y1(Ey0y1

∧∀y2(Ey1y2 → . . . ∀yt(Eyt−1yt → ∃yt+1(Eytyt+1 ∧Xyt+1) . . .)))

such that

α is k-satisfiable ⇐⇒ G |= ϕ(S) for some S ⊆ G of cardinality k.

Now we “replace” the set variable X by individual variables x1, . . . , xk and
let
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ψ(x1, . . . , xk) :=
∧

i∈[k]

LITERALxi ∧ ∃y0(ROOT y0 ∧ ∃y1(Ey0y1

∧ ∀y2(Ey1y2 → . . . . . .∀yt(Eyt−1yt →
∨

i∈[k]

Eytxi) . . .))).

Then we have

α is k-satisfiable ⇐⇒ G |= ψ(a1, . . . , ak) for some distinct a1, . . . , ak ∈ G.

We let
ϕ′ := ∃x1 . . .∃xk(

∧
1≤i<j≤k

xi �= xj ∧ ψ(x1, . . . , xk)).

Then α is k-satisfiable if and only if G |= ϕ′. It is easy to see that ϕ′ is
equivalent to a formula of the desired form (7.6). 
�

Now, we can improve Proposition 5.18 and show that the W-hierarchy is
contained in the A-hierarchy:

Corollary 7.11. For every t ≥ 1,

W[t] ⊆ A[t].

The following exercise extends the results in Exercise 6.40 from W[1] to
the other classes of the W-hierarchy.

Exercise 7.12. (a) Let t > 1 be even. Show that there is a formula ϕ of
the form ∀x1∃x2 . . .∀xt−1(∃xt ∈ X)ψ with quantifier-free ψ not containing
the variable X such that p-WSat(Γ+

t,1) ≤ p-WDϕ. Conclude that p-WDϕ0 is
W[t]-complete, where ϕ0 := ∀x1∃x2 . . .∀xt−1(∃xt ∈ X)Rx1 . . . xt with a t-ary
relation symbol R.

Hint: In the notation of the proof of Lemma 7.9, let ϕ(X) be the formula

∀y0∀y1((ROOT y0 ∧Ey0y1)→ ∃y2(Ey1y2 ∧ . . .→ (∃yt ∈ X)Eyt−1yt . . .)).

If for an instance (α, k) of p-WSat(Γ+
t,1) the parameter k is bigger than the

number of variables of α, then associate with (α, k) any “no”-instance of
p-WDϕ.

(b) Let t > 1 be odd. Show that p-WSat(Γ−
t,1) ≤ p-WDϕ for some for-

mula ϕ of the form ∀x1∃x2 . . .∃xt−1(∀xt ∈ X)ψ with quantifier-free ψ not
containing the variable X . Conclude that p-WDϕ0 is W[t]-complete, where
ϕ0 := ∀x1∃x2 . . .∃xt−1(∀xt ∈ X)Rx1 . . . xt with a t-ary relation symbol R.

(c) For m ≥ 0, let Πb
m be the class of formulas of the form ∀x̄1∃x̄2 . . .Qx̄mψ,

where ψ is a bounded formula (cf. Exercise 6.40). Show that W[t] = [{p-WDϕ |
ϕ(X) ∈ Πb

t−1}]fpt for t ≥ 1. �
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We saw in Theorem 6.34 that p-Exact-WSat(CNF) is W[1]-complete.
In view of Exercise 6.33 the following exercise contains a further proof of this
result.

Exercise 7.13. Show: p-Exact-WSat(CNF)≤fpt p-Exact-WSat(CNF+).

Hint: Mimic the proof of Lemma 7.6. �

7.2 W[2]-Complete Problems

Theorem 7.14. p-Hitting-Set is W[2]-complete.

Proof: Example 5.2 shows that p-Hitting-Set ∈ W[2]. We present an fpt-
reduction from p-WSat(Γ+

2,1) to p-Hitting-Set, thus obtaining the W[2]-

hardness with Theorem 7.1. Consider an instance (α, k) of p-WSat(Γ+
2,1),

say, with

α =
∧
i∈I

∨
j∈Ji

Xij .

Let X be the set of variables of α, and let

E := {{Xij | j ∈ Ji} | i ∈ I}.

Clearly, for every X ′ ⊆ X , we have

(the assignment) X ′ satisfies α ⇐⇒ X ′ is hitting set of (X , E);

thus, (α, k) �→ ((X , E), k) is an fpt-reduction. 
�
Since p-Dominating-Set ≡fpt p-Hitting-Set (cf. Example 2.7), we ob-

tain:

Corollary 7.15. p-Dominating-Set is W[2]-complete.

A kernel in a directed graph G = (V, E) is a subset K of V such that

• no two vertices in K are adjacent;
• for every vertex a ∈ V \K there is a vertex b ∈ K such that (a, b) ∈ E.

The parameterized kernel problem p-Kernel is the problem:

p-Kernel
Instance: A directed graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a kernel of k elements.

Theorem 7.16. p-Kernel is W[2]-complete.
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Proof: p-Kernel ∈ p-WD-Π2 ⊆W[2], since K is a kernel in G if and only if
G |= ϕ(K), where

ϕ(Y ) := ∀x∀y∃z
(
((Y x ∧ Y y)→ ¬Exy) ∧ (¬Y x→ (Y z ∧ Exz))

)
.

To prove W[2]-hardness, we reduce p-WSat(Γ+
2,1) to p-Kernel. Consider an

instance (α, k) of p-WSat(Γ+
2,1), say, with

α =
∧
i∈I

∨
j∈Ji

Xij .

For i ∈ I, let Ci := {Xij | j ∈ Ji} be the ith clause of α. Let X be the set of
variables of α. We may assume that |X | ≥ k. For s ∈ [k] let X s be a disjoint
copy of X . For X ∈ X we denote the corresponding element in X s by Xs.

The directed graph G = (V, E) has the vertex set

V := {Ci | i ∈ I} ∪ X 1 ∪ . . . ∪ X k.

The edge set E is given by the following stipulations:

(1) (There are (directed) edges from clauses to their variables.)
For every clause C of α, every variable X ∈ C, and s ∈ [k], we let (C, Xs) ∈
E.

(2) (There are edges between the different copies of a variable.)
For X ∈ X and s, t ∈ [k] with s �= t, we let (Xs, Xt) ∈ E.

(3) (Every X s is a clique.)
For s ∈ [k] and distinct X, Y ∈ X , we let (Xs, Y s) ∈ E.

Then, α has a satisfying assignment of weight k if and only if G has a kernel
of k elements, which proves our claim. The direction from left to right is easy:
Let X1, . . . , Xk be the variables set to true in an assignment of weight k
satisfying α. One easily verifies that K := {X1

1 , . . . , Xk
k} is a kernel of G.

Conversely, let K be a kernel of G of k elements. Then, |K ∩ X s| ≤ 1 for
s ∈ [k] due to the edges of type (3). But if |K∩X s| = 0 for some s, then there
would be no edge from some element of X s to K, contradicting the definition
of kernel (recall that |X | ≥ k). So K has the form K = {X1

1 , . . . , Xk
k} for

some pairwise distinct (by the edges in (2)) variables X1, . . . , Xk. The edges
of type (1) show that {X1, . . . , Xk} satisfies α. 
�

Recall that a tournament is a directed graph T = (V, E) such that for all
u, v ∈ V either (u, v) ∈ E or (v, u) ∈ E, but not both. A dominating set of T is
a set S ⊆ T such that for all w ∈ V \S there exists a v ∈ S with (v, w) ∈ E. On
p. 90, we introduced the tournament dominating set problem in the context
of limited nondeterminism. Here we consider the following parameterization:
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p-Tournament-Dominating-Set
Instance: A tournament T and k ∈ N.

Parameter: k.
Problem: Decide whether T has a dominating set of k ele-

ments.

Theorem 7.17. p-Tournament-Dominating-Set is W[2]-complete under
fpt-reductions.

We need the following lemma:

Lemma 7.18. For all k ∈ N and n ≥ 24k there is a tournament with n
vertices without a dominating set of cardinality k.

Proof: We consider a random tournament T with set [n] of vertices; that is,
for every v, w ∈ [n] with v �= w the edge connecting v and w is chosen to be
(v, w) or (w, v) with equal probability and independently of the other edges.
Let S ⊆ [n] be of cardinality k. For w ∈ [n] \ S the probability that there is
no edge from an element of S to w is 2−k. Therefore the probability that S is
a dominating set is (1− 2−k)n−k. Hence, the expected number of dominating
sets of cardinality k is

(
n
k

)
· (1− 2−k)n−k. For n ≥ 24k one easily verifies that(

n
k

)
· (1− 2−k)n−k < 1. Therefore, for such n, there exists a tournament with

n elements without a dominating set of cardinality k. 
�

Proof of Theorem 7.17: Since p-Tournament-Dominating-Set ≤ p-WDds,
where

ds(X) = ∀x∃y
(
Xy ∧ (Eyx ∨ y = x)

)
,

we see that the problem is in W[2]. To show its W[2]-hardness, we reduce from
p-Hitting-Set.

Let (H, k) be an instance of p-Hitting-Set with hypergraph H = (V, E)
and with |V | ≥ k. We construct a tournament T = (T, F ) such that (T , k+1)
is an equivalent instance of p-Tournament-Dominating-Set.

For this purpose, let T0 = (T0, F0) be a tournament with n = 24(k+1)

elements, T0 = [n], and without a dominating set of cardinality k+1. We let c
be a new object. The tournament T = (T, F ) contains, besides the element c,
the vertices of H and copies (e, 1), . . . , (e, n) for each hyperedge e of H. There
is an edge from v ∈ V to (e, i) if v ∈ e, otherwise, there is an edge from (e, i)
to v. For each edge (i, j) of T0 we include an edge from (e, i) to (e, j) for every
e ∈ E. Finally, there are edges from c to every v ∈ V and from every (e, i) to
c. More formally, we define T = (T, F ) by

T := {c} ∪ V ∪ (E × [n]);

E := {(v, (e, i)) | v ∈ V, (e, i) ∈ E × [n], and v ∈ e}∪
{((e, i), v) | v ∈ V, (e, i) ∈ E × [n], and v /∈ e}∪
{((e, i), (e, j)) | (e, i), (e, j) ∈ E × [n], (i, j) ∈ F0}∪
{(c, v) | v ∈ V } ∪ {((e, i), c) | (e, i) ∈ E × [n]}.
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One easily verifies that for a hitting set S of H the set {c}∪S is a dominating
set of T .

Conversely, assume that S is a dominating set of the tournament T of
cardinality k+1. We set Svert := S∩V . Since the element c must be dominated
by S, we see that

|Svert| ≤ k.

The set S(T0) := {i ∈ [n] | there is an e ∈ E : (e, i) ∈ S}, being of cardinality
≤ k + 1, is not a dominating set of T0. Hence, there is a j ∈ [n] such that no
element of E × {j} is contained or dominated by S ∩ (E × [n]). Hence, Svert

must dominate every element in E × {j}. This means that Svert is a hitting
set of H (of ≤ k elements). 
�

Recall from Example 3.6 the longest common subsequence problem p-LCS.

Theorem 7.19. p-LCS is W[2]-hard under fpt-reductions.

Proof: We start with a trivial remark that we will use below.

Claim 1. Let < be an ordering of the alphabet Σ. For a subset Δ of Σ, Δ =
{a1, . . . , as} with a1 < . . . < as, let Δ(↑) and Δ(↓) be the strings

Δ(↑) := a1 . . . as and Δ(↓) := as . . . a1.

Then, for all Δ, Δ′ ⊆ Σ every common subsequence of Δ(↑) and Δ′(↓) has
length ≤ 1, and hence, for � ≥ 1, every common subsequence of

Δ(↑) and Δ′(↓)� . . .� Δ′(↓)︸ ︷︷ ︸
� times

has length at most �. �

We present the required fpt-reduction. Consider an instance (H, k) of
p-Hitting-Set, where H = (V, E) is a hypergraph with V = [n]. We let
Σ := [n] be the alphabet for the equivalent instance of p-LCS, and we con-
sider the natural ordering < on Σ. For e ∈ E we let ẽ := [n] \ e be the
complement of e, and we define ye ∈ Σ∗ by

ye := e(↓)�ẽ(↓)� . . .� e(↓)�ẽ(↓)︸ ︷︷ ︸
(k−1) times

�e(↓).

Moreover, we let
x0 := Σ(↑).

Consider the instance of p-LCS that consists of the strings x0 and ye for all
e ∈ E and the number k. We prove the equivalence of this instance with the
instance (H, k) of p-Hitting-Set.

First, let S = {s1, . . . , sk} with s1 < . . . < sk be a hitting set of H. We
show that z := S(↑) is a common subsequence of x0 and the ye. Clearly, z is
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a subsequence of x0. Let e ∈ E. If sk ∈ e, then we see that z is a subsequence
of ye by taking, for i ∈ [k − 1], the letter si from the ith copy of e(↓)�ẽ(↓)
and sk from the last copy of e(↓). Otherwise, let i ∈ [k − 1] be maximal with
si ∈ e (recall that S is a hitting set). Again, z is a subsequence of ye: We see
this by taking

• sj from the jth copy of e(↓)�ẽ(↓) for j ∈ [i− 1];
• si and si+1 from the ith copy of e(↓)�ẽ(↓);
• sj from the (j − 1)th copy of e(↓)�ẽ(↓) for j ∈ [i + 2, k].

Conversely, assume that x0 and the ye have a common subsequence z of length
k, say, z = s1 . . . sk. Since z is a subsequence of x0, we have s1 < . . . < sk.
We show that S := {s1, . . . , sk} is a hitting set. Let e ∈ E. By claim 1, every
common subsequence of z and the subsequence of ye consisting of the (k− 1)
copies of ẽ(↓) has length ≤ k − 1; hence, when considering z as subsequence
of ye, at least one si has to be in a copy of e(↓); thus si ∈ e. 
�

7.3 The W-Hierarchy and Circuits

We mentioned that the classes of the W-hierarchy were originally defined by
weighted satisfiability problems. This is true, but the weighted satisfiability
problems were considered for classes of circuits and not for fragments of propo-
sitional logic. In this remark we explain the relevant relationship between the
classes used originally and the classes Γt,d and Δt,d around which we centered
the theory.

We consider (Boolean) circuits C as defined in Sect. 3.2 (also cf. the Ap-
pendix), but here we distinguish between small and big and-nodes and small
and big or-nodes. Small nodes have in-degree 2, and big ones an arbitrary
finite in-degree > 0. Moreover here, all nodes of in-degree 0 are input-nodes,
that is, we have no Boolean constants. For every node a its weft w(a) is the
maximum number of big and-nodes and or-nodes on any path from an input
node to a; the depth d(a) of a is the maximum length of any path from an
input-node to a.

Clearly, w(a) ≤ d(a). The weft and depth of the circuit are the weft and
depth of its output node. For d ≥ t ≥ 0, we set

Ct,d := {C | C circuit of weft ≤ t and depth ≤ d}.

The equalities stated in the following theorem were the original defining equal-
ities for the classes of the W-hierarchy.

Theorem 7.20. For all t ≥ 1, W[t] = [{p-WSat(Ct,d) | d ≥ t}]fpt.

Proof: We shall prove that:
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(1) Let t ≥ 0 and d ≥ 1. Then, Γt,d ∪Δt,d ⊆ Ct, t+d. (Here we view proposi-
tional formulas in Γt,d ∪Δt,d as circuits.)

(2) Let d ≥ t ≥ 0. Then there is a polynomial time algorithm that computes
for every circuit in Ct,d an equivalent propositional formula in Ct,d.

(3) Let d ≥ t ≥ 0. Then there is a polynomial time algorithm that computes
for every propositional formula in Ct,d an equivalent formula in Δt+1,2d .

The statement of the theorem follows from (1) and (3) combined with Theo-
rems 6.28 and 7.1.

The proof of (1) is straightforward. To show (2) one uses the standard
algorithm to convert a circuit into a propositional formula: Bottom-up, for
every child of every and-node and every child of every or-node one puts a new
copy of the circuit below this child. We leave the details to the reader.

To show (3) we proceed by induction on t and show:

If α ∈ Ct,d, then α and ¬α are equivalent to formulas in Δt+1,2d .

From the proof it will be clear that we obtain the equivalent formulas in
polynomial time. If α ∈ C0,d, then α contains at most 2d variables and we
just compute, for α and ¬α, an equivalent formula in disjunctive normal form
(since d is fixed, this can be done in polynomial time). For t ≥ 1, we proceed by
induction on α: If α ∈ C0,d we already know that the result holds; otherwise,
α is a (big or small) conjunction or disjunction or a negation. The case of
negation is trivial by the induction hypothesis.

If α = (β∧γ), then by the induction hypothesis for β and γ, we can assume
that β =

∨
i∈I βi and γ =

∨
j∈J γj are in Δt+1,2d . Hence, βi, γj ∈ Γt,2d . The

formula α is equivalent to (
∨

i∈I βi ∧
∨

j∈J γj) and hence, by the distributive
law, to

∨
(i,j)∈I×J(βi ∧ γj). Since each (βi ∧ γj) is equivalent to a formula in

Γt,2d , the formula α is equivalent to a formula in Δt+1,2d . Moreover, ¬α is
equivalent to (¬β ∨ ¬γ). Since by the induction hypothesis, ¬β and ¬γ are
equivalent to Δt+1,2d-formulas, the same applies to (¬β ∨ ¬γ) and hence, to
¬α.

If α =
∧

i∈I βi, then βi ∈ Ct−1,d for all i ∈ I. By the induction hypoth-
esis, ¬βi is equivalent to a formula

∨
j∈Ji

βij with βij ∈ Γt−1,2d . Then, α is
equivalent to

∧
i∈I

∧
j∈Ji
¬βij , which is easily seen to be equivalent to a Γt,2d-

formula and hence to a Δt+1,2d-formula. Since ¬α is equivalent to
∨

i∈I ¬βi,
the induction hypothesis for the βi immediately yields that ¬α is equivalent
to a Δt+1,2d-formula, too.

The cases where α is a big or a small disjunction are implicit in the previous
analysis. 
�

7.4 The W-Hierarchy and First-Order Logic

Lemma 7.10 reduces the W[t]-complete problem p-WSat(Δt+1,d) to the prob-
lem p-MC(Σt) and thus shows that W[t] ⊆ A[t]. It seems unlikely that there is
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a converse reduction from p-MC(Σt) to p-WSat(Δt+1,d), because this would
imply A[t] = W[t] (recall that we argued at the end of Chap. 5 on p. 102
that this is unlikely). But the Σt-formulas we obtained in the reduction of
Lemma 7.10 are of the restricted syntactic form given in (7.6): The second to
the tth block of quantifiers consist of a single variable. In this section we will
see that there is a converse reduction for Σt-formulas of this specific form.

Definition 7.21. Let t, u ≥ 1. A formula is Σt,u, if it is Σt and all quantifier
blocks after the leading existential block have length ≤ u. �

Hence, a formula

∃x11 . . .∃x1m1∀x21 . . .∀x2m2 . . . Qxt1 . . . Qxtmt
ψ,

where ψ is quantifier-free and Q = ∀ if t is even and Q = ∃ otherwise, is Σt,u

if and only if m2, . . . , mt ≤ u. For example, the formula

∃x1 . . .∃xm∀y∃z1∃z2ψ,

where ψ is quantifier-free and m is arbitrary, is in Σ3,2. Clearly,

Σ1,u = Σ1

for all u ≥ 1.

Theorem 7.22. Let t ≥ 1. Then, for all u ≥ 1,

p-MC(Σt,u) is W[t]-complete under fpt-reductions.

Membership of p-MC(Σt,u) in W[t] is proved in Lemmas 7.23 and 7.24.
Recall that Σt,u[r] denotes the class of Σt,u-formulas whose vocabulary is

at most r-ary.

Lemma 7.23. For t > 1 and u, r ≥ 1,

p-MC(Σt,u[r]) ≤fpt p-WSat(Γt,r).

Proof: Let (A, ϕ) be an instance of p-MC(Σt,u[r]) and assume that t is even
(in case t is odd one argues similarly). Without loss of generality we may
assume that the quantifier-free part of ϕ is in conjunctive normal form,

ϕ = ∃x1 . . .∃x�∀ȳ1∃ȳ2 . . .∀ȳt−1

∧
i∈[m]

∨
j∈[ni]

λij , (7.7)

where |ȳ1|, . . . , |ȳt−1| ≤ u and where the λij are literals.
We shall define a propositional formula α of the desired syntactical form

such that
A |= ϕ ⇐⇒ α is �-satisfiable. (7.8)
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The formula α will have propositional variables Xi,a for all i ∈ [�] and a ∈ A.
The intended meaning of Xi,a is: “First-order variable xi takes value a.” Note
that an assignment of weight � satisfies the formula

χ :=
∧

i∈[�]

∧
a,b∈A
a�=b

(¬Xi,a ∨ ¬Xi,b)

if and only if for i ∈ [�] there is exactly one a such that Xi,a is set to true.
We translate the subformula in (7.7) beginning with the first universal

block of quantifiers into propositional logic by setting

α′ :=
∧

b̄1∈A|ȳ1|

∨
b̄2∈A|ȳ2|

. . .
∧

b̄t−1∈A|ȳt−1|

∧
i∈[m]

∨
j∈[ni]

ξij(b̄1, . . . , b̄t−1),

where ξij(b̄1, . . . , b̄t−1) is the following formula in Δ1,r: Let xi1 , . . . , xis
be the

variables from x1, . . . , x� in λij ; hence, λij = λij(xi1 , . . . , xis
, ȳ1, . . . , ȳt−1) and

s ≤ r (recall that the arity of the vocabulary of ϕ is ≤ r). Then, we set

ξij(b̄1, . . . , b̄t−1). =
∨

a1,...,as∈A
A|=λij(a1,...,as,b̄1,...,b̄t−1)

(Xi1,a1 ∧ . . . ∧Xis,as
).

Note that (χ ∧ α′) is �-satisfiable if and only if A |= ϕ, and that (χ ∧ α′) is
equivalent to a Γt,r-formula α; hence, we get (7.8). 
�

Lemma 7.24. For all t > 1 and u ≥ 1,

p-MC(Σt,u) ≤fpt p-MC(Σt,u+1[t · u]).

Proof: The crucial property we exploit in the proof is that in a Σt,u-formula
the number of variables not occurring in the first block of variables is bounded
by (t− 1) · u.

Let (A, ϕ) be an instance of p-MC(Σt,u). Suppose that

ϕ = ∃x1 . . .∃xmψ,

where ψ begins with a universal quantifier. Set q := (t − 1) · u, and let ȳ =
y1 . . . yq contain the variables in ϕ distinct from x1, . . . , xm. We shall define a
structure A′ and a Σt,u+1[t · u]-sentence ϕ′ with (A |= ϕ ⇐⇒ A′ |= ϕ′).

Let Λ be the set of all atomic subformulas of ϕ. Here the notation
λ(xi1 , . . . , xi�

, ȳ) indicates that xi1 , . . . , xi�
with i1 < . . . < i� are the vari-

ables from x1, . . . , xm in λ. The vocabulary τ ′ of A′ contains a unary relation
symbol O (the “old element relation”), binary relation symbols E1, . . . , Em

(the “component relations”), and for every λ(xi1 , . . . , xi�
, ȳ) ∈ Λ a unary re-

lation symbol Wλ and an (1 + q)-ary relation symbol Rλ. Thus, the arity of
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τ ′ is at most 1 + q ≤ t · u. For every λ(xi1 , . . . , xi�
, ȳ) ∈ Λ and a1, . . . , a� ∈ A

with
A |= ∃ȳλ(a1, . . . , a�, ȳ) (7.9)

we have in A′ a new element w(λ, a1, . . . , a�), a “witness” for (7.9). We let

A′ := A ∪
{
w(λ, a1, . . . , a�)

∣∣ λ(xi1 , . . . , xi�
, ȳ) ∈ Λ, ā ∈ A�, A |= ∃ȳλ(ā, ȳ)

}
,

OA′

:= A,

EA′

i :=
{
(ai, w(λ, a1, . . . , a�))

∣∣ i ∈ [�], w(λ, a1, . . . , a�) ∈ A′} (for i ∈ [m]).

For every λ(xi1 , . . . , xi�
, ȳ) ∈ Λ we let:

WA′

λ :=
{
w(λ, a1, . . . , a�)

∣∣ ā ∈ A�, and A |= ∃ȳλ(ā, ȳ)
}
,

RA′

λ :=
{(

w(λ, a1, . . . , a�), b1, . . . , bq

) ∣∣ ā ∈ A�, b̄ ∈ Aq, and A |= λ(ā, b̄)
}
.

This completes the definition of A′. Observe that |A′| ≤ |ϕ| · ||A||, because for
an atom λ = Rz1 . . . zr there are at most |RA| elements of the form w(λ, ā)
in A′. Thus ‖A′‖ ≤ O(‖A‖q · |ϕ|).

For every λ(xi1 , . . . , xi�
, ȳ) ∈ Λ let χλ(xi1 , . . . , xi�

, zλ) be a formula ex-
pressing:

“Either zλ ∈ Wλ is the witness for xi1 , . . . , xi�
, or zλ /∈ Wλ and there

is no witness in Wλ for xi1 , . . . , xi�
.”

That is, we let χλ(xi1 , . . . , xi�
, zλ) be the formula

(Wλzλ ∧
∧

j∈[�]

Ejxij
zλ) ∨ (¬Wλzλ ∧ ∀y¬(Wλy ∧

∧
j∈[�]

Ejxij
y)).

Then, for ā ∈ A�, b̄ ∈ Aq, and c ∈ A′, we have:

If A′ |= χλ(ā, c) then
(
A |= λ(ā, b̄) ⇐⇒ A′ |= Rλzλȳ(cb̄)

)
.

The notation A′ |= Rλzλȳ(cb̄) means that A′ satisfies the formula Rλzλȳ if
the variables zλȳ are interpreted by cb̄. Equivalently, we could write cb̄ ∈ RA′

λ .
Let χ :=

∧
λ∈Λ χλ. Let ψ′ be the formula obtained from ψ by replacing every

atomic subformula λ(xi1 , . . . , xi�
, ȳ) by Rλzλȳ and relativizing all quantifiers

to O. Finally, we let

ϕ′ := ∃x1 . . .∃xm∃(zλ)λ∈Λ(Ox1 ∧ . . . ∧Oxm ∧ ψ′ ∧ χ).

Then,
A |= ϕ ⇐⇒ A′ |= ϕ′.

Since χ is equivalent to a formula of the form ∀zχ′ with quantifier-free χ′, the
quantifier ∀z can be added to the first block of ψ′ (recall that t ≥ 2). Thus,
the formula ϕ′ is equivalent to a formula in Σt,u+1[t · u]. 
�
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Proof of Theorem 7.22: For t = 1 the result holds by the equality W[1] = A[1].
Let t > 1. Lemma 7.10 (combined with Theorem 7.1) shows that p-MC(Σt,u)
is W[t]-hard for all u ≥ 1.

Lemmas 7.24 and 7.23 yield

p-MC(Σt,u) ≤ p-MC(Σt,u+1[t · u]) ≤fpt p-WSat(Γt,t·u)

and hence p-MC(Σt,u) ∈W[t] by Theorem 7.1. 
�
Actually, Lemma 7.10 yields the slightly stronger statement that, for all

t > 1, the problem p-MC(Σt,u[2]) is W[t]-hard. Thus we have:

Corollary 7.25. For all t > 1, u ≥ 1, and r ≥ 2,

p-MC(Σt,u[r]) is W[t]-complete under fpt-reductions.

We can further improve this by strengthening Lemma 7.10. Recall that
p-MC(GRAPH, Σt,u) denote the restriction of the model-checking problem
to input structures that are (undirected) graphs.

Lemma 7.26. For t > 1, d ≥ 1, p-WSat(Δt+1,d) ≤fpt p-MC(GRAPH, Σt,1).

Proof: By the Propositional Normalization Lemma 7.5, we may assume that α
is a Δ+

t+1,1-formula in case t is even and that α is a Δ−
t+1,1-formula in case t is

odd. In the proof of Lemma 7.9 we considered the directed graph G = (G, EG)
obtained from the parse tree of α by identifying all leaves corresponding to
the same propositional variable in case t is even and by identifying all nodes
corresponding to the same negated variable and removing the leaves (corre-
sponding to the variables) in case t is odd. Now we consider the undirected
graph underlying G, and again we denote it by G. Since all (nodes correspond-
ing to) literals have distance t + 1 from the root, there are no cycles of length
3 in G. We add two cycles of length 3 to the root. This allows us to define the
root by the Σ1-formula

root(y0) := ∃z1∃z2∃z′1∃z′2(“y0, z1, z2, z
′
1, z

′
2 are pairwise distinct,

and y0, z1, z2 and y0, z
′
1, z

′
2 are cycles”).

Now, we express that x is a literal by a formula saying that x has distance
t + 1 from the root:

literal(x) := ∃y0(root(y0) ∧ ∃y1 . . .∃yt(“y0, y1, . . . , yt, x are

pairwise distinct” ∧ (Ey0y1 ∧ Ey2y3 ∧ . . . ∧Eyt−1yt ∧ Eytx))).

Clearly, literal(x) is equivalent to a Σ1-formula. We have

α is k-satisfiable ⇐⇒ G |= ϕ,

where, say, for even t, as ϕ we take a Σt,1-sentence equivalent to
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∃x1 . . .∃xk

( ∧
1≤i<j≤k

(xi �= xj ∧ literal(xi)) ∧ ∃y0(root(y0) ∧ ∃y1(Ey0y1

∧ ∀y2(Ey1y2 → . . . . . .∀yt(Eyt−1yt → (Eytx1 ∨ . . . ∨ Eytxk)) . . .)))
)
. 
�

Putting things together, we obtain the following corollary (the case t = 1
was handled in the preceding chapter).

Corollary 7.27. For all t, u ≥ 1,

p-MC(GRAPH, Σt,u) is W[t]-complete under fpt-reductions.

7.5 W[2] and Turing Machines

As an application of Theorem 7.22, we show that the short halting problem for
nondeterministic (multitape) Turing machines is W[2]-complete, a surprising
result in view of the fact that the corresponding result for single-tape machines
is W[1]-complete (cf. Theorem 6.17).

Theorem 7.28. The short halting problem p-Short-NTM-Halt for nonde-
terministic Turing machines is W[2]-complete, where

p-Short-NTM-Halt
Instance: A nondeterministic Turing machine M and k ∈ N.

Parameter: k.
Problem: Decide whether M accepts the empty string in at

most k steps.

Proof: By reducing p-Dominating-Set to p-Short-NTM-Halt, we show
the W[2]-hardness. More precisely, we present an fpt-algorithm associating
with each instance (G, k) of the dominating set problem a nondeterministic
Turing machine M such that

G has a dominating set of k elements ⇐⇒
(M, 3k + 2) ∈ p-Short-NTM-Halt.

Let the graph G have the vertex set V = {v1, . . . , vn} and k ≤ n. The
nondeterministic Turing machine M has n +1 tapes, numbered by 1 to n+ 1,
and has Σ := V ∪{yes, ∗} as alphabet. Recall that � denotes the blank symbol.

In the first 2k steps, the heads on tapes 1 to n write ∗ into their first
k + 1 cells and go back to the first cell. In the same steps the (n + 1)th head
(nondeterministically) writes k elements of V , say u1, . . . , uk (the elements of
the intended dominating set), into the first k cells of its tape, and goes back
to the first cell, so that after the 2k steps it faces the cell containing u1. In the
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next k steps the (n + 1)th head reads the guessed elements u1, . . . , uk; at the
same time, in the jth of these steps, the ith head checks whether vi = uj or
Eviuj . In the positive case the ith head prints “yes” and moves to the right,
in the negative case it neither moves nor prints (more precisely, it prints ∗,
the symbol which already was in the cell). After these k steps, the machine
moves all heads one cell to the left and finally it accepts if the heads on the
first n tapes read “yes.”

Clearly, the claimed equivalence holds. We prove that M can be obtained
by an fpt-algorithm by showing that ‖M‖ is O(k · ‖G‖). For this purpose
we present the definition of M in some more detail: The state set is S :=
{1, . . . , 7}, the initial state is s0 := 1, and the set of accepting states is F :=
{7}. The transition relation is defined in the itemized list below. Note that
the first 2k steps (as described above) can be realized by the transitions with
states 1–3, the next k ones by the transitions with state 4, and the last two
by the transitions with states 5 and 6. For every vertex u of G, the Turing
machine M has the following transitions:

• (1, (�, . . . ,�, �), 1, (∗, . . . , ∗, u), (right, . . . , right));
• (1, (�, . . . ,�, �), 2, (∗, . . . , ∗, u), (right, . . . , right, stay));
• (2, (�, . . . ,�, u), 3, (∗, . . . , ∗, u), (left, . . . , left, stay));
• (3, (∗, . . . , ∗, u), 3, (∗, . . . , ∗, u), (left, . . . , left, left));
• (3, (∗, . . . , ∗, u), 4, (∗, . . . , ∗, u), (left, . . . , left, left));
• (4, (∗, . . . , ∗, u), 4, (a1, . . . , an, u), (m1, . . . , mn, right)), where

(ai, mi) :=

{
(yes, right), if vi = u or {vi, u} ∈ E
(∗, stay), otherwise;

• (4, (∗, . . . , ∗, u), 5, (a1, . . . , an, u), (m1, . . . , mn, right)), where (ai, mi) is de-
fined as in the preceding type of instruction;

• (5, (∗, . . . , ∗, �), 6, (∗, . . . , ∗, ∗), (left, . . . , left, left));
• (6, (yes, . . . , yes, u), 7, (yes, . . . , yes, u), (stay, . . . , stay)).

This completes our description of the reduction and hence the W[2]-hardness
proof.

We reduce p-Short-NTM-Halt to p-MC(Σ2,3) to prove membership of
p-Short-NTM-Halt in W[2]. In the proof of Theorem 6.17 we reduced the
short halting problem for single-tape machines to p-MC(Σ1); here, we need
an additional universal quantifier to take care of all tapes.

Let M = (S, Σ, Δ, s0, F ) be a nondeterministic Turing machine with w0

tapes and k ∈ N. For simplicity, assume k ≥ 2. We aim at an fpt-reduction
yielding a structure A = AM,k and a Σ2,3-sentence ϕ = ϕk such that

(M, k) ∈ p-Short-NTM-Halt ⇐⇒ A |= ϕ. (7.10)

The elements of Δ, the transitions of M, have the form

(s, (a1, . . . , aw0), s
′, (a′

1, . . . , a
′
w0

), (h1, . . . , hw0)),
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with s, s′ ∈ S, a1, . . . , aw0 , a
′
1, . . . , a

′
w0
∈ (Σ ∪ {$, �}), and h1, . . . , hw0 ∈

{left, right, stay} (recall that $ marks the left end of the tapes).
The structure A has the universe

A := S ∪ (Σ ∪ {$, �}) ∪ {left, right, stay} ∪ [0, max{w0, k}] ∪ T,

where T is the set of tuples (b1, . . . , bw0) ∈ (Σ ∪ {$, �})w0 and of tuples
(h1, . . . , hw0) ∈ {left, right, stay}w0 occurring in transitions of Δ. Then, |A| =
O(k + ‖M‖). We need the 5-ary relation DA (the “transition relation”), and
the ternary relation PA (the “projection relation”) defined by

DA := Δ, that is, (DAsts′t′h ⇐⇒ (s, t, s′, t′, h) ∈ Δ);

PAwba ⇐⇒ (w ∈ [w0], b ∈ T, b = (b1, . . . , bw0), and bw = a).

Moreover, we have unary relation symbols TAPE, CELL, BLANK, END,
INIT, ACC, LEFT, RIGHT, STAY, and Pi for i ∈ [0, k]. We set

• TAPEA := [w0], CELLA := [0, k], BLANKA := {�}, ENDA := {$},
INITA := {s0}, ACCA := F , LEFTA := {left}, RIGHTA := {right},
STAYA := {stay}, and PA

i := {i} for i ∈ [0, k].

We let χ(z�, z$, zinit, zleft, zright, zstay, z0, . . . , zk) be the formula

BLANK z� ∧ END z$ ∧ INIT zinit∧
LEFT zleft ∧ RIGHT zright ∧ STAY zstay ∧ P0z0 ∧ . . . ∧ Pkzk.

It will ensure that we have variables for the elements of all singleton relations
introduced above.

The formula ϕ we aim at will express that there is an accepting run of
length ≤ k (without loss of generality of length = k). Among others, it will
contain the variables si, ti, s

′
i, t

′
i, hi for i ∈ [k]; in fact, si, ti, s

′
i, t

′
i, hi represents

the ith transition carried out in the run. In ϕ the first four conjuncts ensure
that s1 is the initial state, that the transitions are according to Δ, that the
states match, and that the last state is accepting. We obtain ϕ by existentially
quantifying all variables displayed in(

s1 = zinit ∧
∧

i∈[k]

Dsi ti s′i t′i hi ∧
∧

i∈[k−1]

si+1 = s′i ∧ ACC s′k

∧ χ(z�, z$, zinit, zleft, zright, zstay, z̄) ∧ ψ
)
,

where ψ is a universal formula expressing that the sequence of transitions can
be applied. To define ψ, for i ∈ [k], we introduce quantifier-free formulas

letteri(w, p, x, v̄i) and positioni(w, p, v̄i)

with v̄i := s1, t1, s
′
1, t

′
1, h1, . . . , si−1, ti−1, s

′
i−1, t

′
i−1, hi−1 and with the meaning
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if, starting with empty tapes, the sequence of transitions in v̄i has
been carried out, then the pth cell of the wth tape contains the letter
x,

and

if, starting with empty tapes, the sequence of transitions v̄i has been
carried out, then the head of the wth tape scans the pth cell,

respectively. Then, as ψ, we take a formula expressing that the tape inscrip-
tions are according the transition to be applied:

ψ := ∀w∀p∀x
∧

i∈[k]

(
(positioni(w, p, v̄i) ∧ letteri(w, p, x, v̄i))→ Pwtix

)
.

The simultaneous definition of letteri and positioni by induction on i is routine
(recall that zj is interpreted by j):

letter1(w, p, x) := TAPEw ∧ CELL p ∧ (p = z0 → x = z$)∧
(p �= z0 → x = z�);

position1(w, p) := TAPEw ∧ p = z1;

letteri+1(w, p, x, v̄i+1) := TAPEw ∧ CELL p ∧
(
(positioni(w, p, v̄i) ∧ Pwt′ix)

∨(¬positioni(w, p, v̄i) ∧ letteri(w, p, x, v̄i))
)
;

positioni+1(w, p, v̄i+1) := TAPEw ∧ lefti+1 ∧ righti+1 ∧ stayi+1;

where, for example,

lefti+1(w, p, v̄i+1) := Pwhizleft ∧
∨

j∈[k]

(positioni(w, zj , v̄i) ∧ p = zj−1).

One easily verifies that ϕ only depends on k (and not on M), that it is (logically
equivalent to) a Σ2,3-sentence, and that (7.10) holds. 
�

7.6 The Monotone and Antimonotone Collapse

We already know that p-WSat(Δ+
2,d) is fixed-parameter tractable (cf. Corol-

lary 4.5). The following theorem lifts this result from FPT to the W-hierarchy.

Theorem 7.29 (Monotone and Antimonotone Collapse). (1) If t ≥ 1
is even and d ≥ 1, then

p-WSat(Δ+
t+2,d), p-WSat(Γ+

t+1,d), and p-WSat(Γ+
t,d)

are W[t]-complete.
(2) If t ≥ 1 is odd and t + d ≥ 3, then

p-WSat(Δ−
t+2,d), p-WSat(Γ−

t+1,d), and p-WSat(Γ−
t,d)

are W[t]-complete.
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Besides the techniques of the preceding sections, our main technical tool in
the proof of this theorem will be Lemma 6.31; essentially it showed how to
translate Γ1,d-formulas in weighted satisfiability problems into quantifier-free
first-order formulas in model-checking problems. For the reader’s convenience,
we repeat Lemma 6.31, and we extend it to formulas in Δ1,d. Recall that we
write α(X1, . . . , Xn) if the variables of α are among X1, . . . , Xn.

Lemma 7.30. For all d, k ≥ 1 and for all formulas α(X1, . . . , Xn) ∈ Γ1,d ∪
Δ1,d there are
• a vocabulary τ = τd,k that only depends on d and k, but not on α;
• a τ-structure A = Aα(X1,...,Xn),d,k with universe A := [n];
• quantifier-free formulas ψV

,d,k(x1, . . . , xk) and ψW
,d,k(x1, . . . , xk) that only

depend on d and k, but not on α
such that for i1, . . . , ik ∈ A

if α ∈ Γ1,d, then
(
{Xi1 , . . . , Xik

} satisfies α ⇐⇒ A |= ψV
,d,k(i1, . . . , ik)

)
;

if α ∈ Δ1,d, then
(
{Xi1 , . . . , Xik

} satisfies α ⇐⇒ A |= ψW
,d,k(i1, . . . , ik)

)
.

Furthermore, the mappings (α, d, k) �→ (A, ψV
,d,k) and (α, d, k) �→ (A, ψW

,d,k)

are computable in time kd+2 · dk · (|α|+ n)O(1).

Proof: For formulas in Γ1,d, this is Lemma 6.31, which we proved in Chap. 6.
Assume that α(X1, . . . , Xn) ∈ Δ1,d. Then, ¬α is equivalent to a formula
β(X1, . . . , Xn) ∈ Γ1,d. We set

Aα(X1,...,X),d,k := Aβ(X1,...,Xn),d,k,

ψW
,d,k(x1, . . . , xk) := ¬ψV

,d,k(x1, . . . , xk).

Then, for elements i1, . . . , ik of Aα(X1,...,Xn),d,k, we have

{Xi1 , . . . , Xik
} satisfies α ⇐⇒ {Xi1 , . . . , Xik

} does not satisfy β

⇐⇒ Aβ(X1,...,Xn),d,k �|= ψV
,d,k(i1, . . . , ik)

⇐⇒ Aα(X1,...,Xn),d,k |= ψW
,d,k(i1, . . . , ik),

which proves the claim. 
�

Proof of Theorem 7.29: We already know that all problems listed in (1) and
(2) are W[t]-hard.

To prove that they are contained in W[t], for simplicity we restrict our
attention to even t. It suffices to show that

p-WSat(Δ+
t+2,d) ≤fpt p-MC(Σt,1). (7.11)

Fix k ∈ N. First, consider a formula β in Γ+
1,d, say,

β =
∧
i∈I

(Yi1 ∨ . . . ∨ Yiri
).
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We let X be the set of variables of β and set

F := {{Yi1, . . . , Yiri
} | i ∈ I}.

Clearly, an assignment satisfies β if the set of variables set to true is a hitting
set for (X , F ). By Lemma 1.17, there is an algorithm that in time O(dk ·k · |β|)
yields a list L consisting of the minimal hitting sets of cardinality at most k.
For every hitting set C in the list L, let γC be the conjunction of the variables
in C. Then, γC is the conjunction of at most k variables. Therefore,

∨
C∈L γC

is a Δ1,k-formula, which, with respect to assignments for β of weight ≤ k, is
equivalent to β.

We turn to (7.11). Let (α, k) be an instance of p-WSat(Δ+
t+2,d). Let

X1, . . . , Xm be the variables of α. We replace every subformula β ∈ Γ+
1,d

of α by the corresponding Δ1,k-formula
∨

C∈L γC , thus obtaining a formula
α′ in Δt+1,k.

The structure A will consist of two parts. The first part of A is T =
(T, ET ,ROOT T ), where the directed graph T = (T, ET ) is obtained from
the parse tree of α′, by removing all nodes corresponding to small formulas.
Hence T is a rooted tree (with edges directed from the root to the leaves),
and every leaf a corresponds to a Δ1,k-formula δa(X1, . . . , Xm). The unary
relation ROOT T just contains the root of the tree.

The universe of the second part of A is the set [m] of the indices of the
variables of α. There is a unary relation symbol VAR with VARA = [m].

Finally, there are relations whose interpretations link the two parts of A:
Consider a leaf a of the tree T and let δa be the corresponding Δ1,k-formula.
The structure Aδa(X1,...,Xm),k,k (according to Lemma 7.30) has universe [m],
too. We want to have available all relations of these structures. Since all δa

have the same vocabulary τk,k (compare Lemma 7.30), to keep all relations
apart, we “tag” the tuples belonging to Aδa(X1,...,Xv),k,k with the leaf a. More
precisely, for each r-ary relation symbol R ∈ τk,k the vocabulary of A contains
an (r + 1)-ary relation symbol R′, and we let

(R′)A :=
{
(a, a1, . . . , ar)

∣∣ a leaf of T , and (a1, . . . , ar) ∈ RAδa(X1,...,Xm),k,k
}
.

Figure 7.1 illustrates the construction.
We now define, by induction on s ≥ 0, formulas ψs(y, x1, . . . , xk) such that

for every node b of T of height s, corresponding to the subformula β of α′,
and all a1, . . . , ak ∈ [m], we have

{Xa1 , . . . , Xak
} satisfies β ⇐⇒ A |= ψs(b, a1, . . . , ak). (7.12)

We let ψ0(y, x1, . . . , xk) be the quantifier-free formula obtained from the for-
mula ψW

,k,k of Lemma 7.30 by replacing each atomic subformula Rx1 . . . xr

by R′yx1 . . . xr. Then for s = 0, (7.12) follows from our construction of A and
Lemma 7.30.

For even s ≥ 0, we let
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(a) The two parts of the structure A
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(b) The combined structure

Fig. 7.1. Construction of the structure A

ψs+1(y, x1, . . . , xk) := ∀z
(
Eyz → ψs(z, x1, . . . , xk)

)
,

and (7.12) follows from the fact that all nodes of height s + 1 correspond to
conjunctions of formulas corresponding to nodes of height s. Similarly, for odd
s ≥ 0 we let

ψs+1(y, x1, . . . , xk) := ∃z
(
Eyz ∧ ψs(z, x1, . . . , xk)

)
.

Finally, we let



160 7 The W-Hierarchy

ϕ := ∃x1 . . .∃xk∃y
( ∧

i∈[k]

VARxi∧
∧

i,j∈[k]
i�=j

xi �= xj∧ROOT y∧ψt(y, x1, . . . , xk)
)
.

It is easy to see that ϕ is equivalent to a formula in Σt,1. 
�

Corollary 7.31. Let t ≥ 0 and let ϕ(X) be a Πt+1-formula. Then:
(1) If t is even and ϕ(X) is positive in X, then p-WDϕ ∈ W[t] (here, we

identify W[0] with FPT).
(2) If t is odd and ϕ(X) is negative in X, then p-WDϕ ∈W[t].

Proof: Let ϕ(X) be a Πt+1-formula. From Corollary 7.4 we know that:

• if ϕ(X) is positive in X , then p-WDϕ ≤fpt p-WSat(Γ+
t+1,d) for some d ≥ 1;

• if ϕ(X) is negative in X , then p-WDϕ≤fptp-WSat(Γ−
t+1,d) for some d ≥ 1.

Now the claim follows from Theorem 7.29 and for t = 1, from Proposition 4.4.

�

Recall that in Exercise 7.12 we saw that there is a formula ϕ(X) positive
in the set variable X if t is even and negative in X if t is odd such that p-WDϕ

is W[t]-complete.

Example 7.32. Consider the parameterized problem:

p-Red/Blue-Nonblocker
Instance: A graph G = (V, E), a partition of V into two sets

R and B (the red and the blue vertices, respec-
tively), and k ∈ N.

Parameter: k.
Problem: Decide whether there is a set S of cardinality k

of red vertices such that every blue vertex has at
least one red neighbor that does not belong to S.

Let τ := {E,RED,BLUE} with binary E and unary relation symbols RED
and BLUE. A graph with a partition of its vertices into red and blue ones can
be viewed as a τ -structure. We have p-Red/Blue-Nonblocker ≤fpt p-WDϕ

for

ϕ(X) := ∀u∃y
(
(RED u ∨ ¬Xu) ∧ (¬BLUE u ∨ (Euy ∧ RED y ∧ ¬Xy))

)
.

The formula ϕ(X) is a Π2-formula negative in X . Hence, by the preceding
corollary, p-Red/Blue-Nonblocker ∈W[1]. �

Exercise 7.33. Prove that p-Red/Blue-Nonblocker is W[1]-complete
under fpt-reductions.

Hint: Reduce p-WSat(Γ−
1,2) to p-Red/Blue-Nonblocker. �
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Example 7.34. Recall that the formula

∀y∀z(¬Xy ∨ ¬Xz ∨ y = z ∨ Eyz)

Fagin-defines the parameterized clique problem on the class of graphs. It is
negative in X . If everywhere in this formula we replace ¬X . . . by Y . . ., we
obtain

∀y∀z(Y y ∨ Y z ∨ y = z ∨ Eyz),

a formula positive in Y . One easily verifies that, on the class of graphs, it
Fagin-defines the problem

p-dual-Clique
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether there is a clique in G of cardinality

|G| − k.

By Corollary 7.31, this problem is fixed-parameter tractable. �

Exercise 7.35. Show that the parameterized problem

p-dual-Dual-Dominating-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether there is a dominating set in G of

cardinality |G| − k.

is W[1]-complete under fpt-reductions.

Hint: For the hardness, reduce p-Independent-Set to the problem. �

Exercise 7.36. Let d ≥ 1. Show that the parameterized problem

p-Distance-d-Dominating-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether there is a set S of cardinality k of

vertices such that for each vertex v of G there is
a vertex w ∈ S such that the distance between v
and w is at most d.

is W[2]-complete under fpt-reductions.

Hint: To prove p-Distance-d-Dominating-Set ∈W[2], reduce the problem
to p-WDϕ for some ϕ(X) ∈ Π3 positive in X . �
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7.7 The Class W[SAT]

So far we have seen that for each level of the W-hierarchy the weighted satisfi-
ability problem for a suitable fragment of the class PROP of all propositional
formulas is complete. Moreover, we know that p-WSat(CIRC), the param-
eterized weighted satisfiability problem for circuits, is W[P]-complete. But
what is the complexity of p-WSat(PROP)?

Definition 7.37. W[SAT] is the class of all parameterized problems fpt-
reducible to p-WSat(PROP),

W[SAT] := [p-WSat(PROP)]fpt. �

Clearly,

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[SAT] ⊆ W[P].

If the W-hierarchy is strict (that is, W[t] ⊂ W[t + 1] for t ≥ 1), then⋃
t≥1 W[t] ⊂ W[SAT]. Otherwise, p-WSat(PROP) ∈ W[t0] for some t0, and

hence W[t0] = W[t0 + 1] = W[SAT].
We present a characterization of W[SAT] in terms of a model-checking

problem, but with a different parameterization. For a class Φ of first-order
formulas, let p-var-MC(Φ) be the following problem:

p-var-MC(Φ)
Instance: A structure A and ϕ ∈ Φ.

Parameter: The number of variables of ϕ.
Problem: Decide whether ϕ(A) �= ∅.

Theorem 7.38. p-var-MC(Σ1) is W[SAT]-complete under fpt-reductions.

Proof: First, we show that p-WSat(PROP) ≤fpt p-var-MC(Σ1). Let (α, k)
be an instance of p-WSat(PROP). If α has the propositional variables
X1, . . . , Xm, we set τ := {P1, . . . , Pm} with unary P� and let A be the τ -
structure with A := [m] and with PA

� := {�} for � ∈ [m]. Let

ϕ := ∃x1 . . .∃xk

( ∧
1≤i<j≤k

xi �= xj ∧ α∗),
where the first-order formula α∗ is obtained from α by replacing, for � ∈ [m],
every occurrence of X� by

∨
i∈[k] P�xi. Then,

(α, k) ∈ p-WSat(PROP) ⇐⇒ A |= ϕ.

Since ϕ has k variables, this equivalence shows that the mapping (α, k) �→
(A, ϕ) is an fpt-reduction from p-WSat(PROP) to p-var-MC(Σ1).
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We turn to a proof of p-var-MC(Σ1) ≤fpt p-WSat(PROP). Let A
be a structure and ϕ ∈ Σ1. We may assume that ϕ is a sentence, say,
ϕ = ∃x1 . . .∃xkψ with quantifier-free ψ. For i ∈ [k] and a ∈ A, let Xi,a

be a propositional variable. We obtain the propositional formula α from ψ by
replacing atomic subformulas Rxi1 . . . xir

by
∨

ā∈RA(Xi1,a1 ∧ . . .∧Xir ,ar
) and

atomic subformulas xi = xj by
∨

a∈A(Xi,a ∧ Xj,a). One easily verifies that
A |= ϕ if and only if the formula

α ∧
∧

i∈[k]

∧
a,b∈A,

a�=b

¬(Xi,a ∧Xi,b)

has a satisfying assignment of weight k. This gives the desired reduction from
p-var-MC(Σ1) to p-WSat(PROP). 
�

Since the vocabulary of the Σ1-formula constructed in the reduction from
p-WSat(PROP) to p-var-MC(Σ1) in the previous proof is unary, we also
obtain:

Corollary 7.39. p-var-MC(Σ1[1]) is W[SAT]-complete under fpt-reductions.

Notes

Downey and Fellows [79] proved Theorem 7.1 based on the original definition
of the W-hierarchy; the equivalence to our definition (Theorem 7.20) is due
to Downey et al. [84].

The W[2]-completeness of p-Dominating-Set (Corollary 7.15) and hence
of p-Hitting-Set (Theorem 7.14) was shown in [79]. The W[2]-completeness
of p-Kernel (Theorem 7.16), based on [54], is due to Y. Chen and the authors,
and that of p-Short-NMTM-Halt (Theorem 7.28) is due to Cesati and
Di Ianni [41]. Theorem 7.17 was shown in [81]. Lemma 7.18 is from [161].
The W[2]-hardness of p-LCS (Proposition 7.19) was shown by Bodlaender et
al. [27]. Downey and Fellows [80] proved that the restriction of p-Red/Blue-
Nonblocker to graphs of degree d ≥ 3 is W[1]-complete.

The fragments Σt,u of first-order logic were introduced in Downey et
al. [84], where Corollary 7.25 was shown. Theorem 7.22 is from [103]. The ver-
sion of the monotone and antimonotone collapse contained in Theorem 7.29
is from [103] and is slightly stronger than the original version due to Downey
and Fellows [79]. The class W[SAT] was introduced in [79]. The W[SAT]-
completeness of p-var-MC(Σ1) (Theorem 7.38) is due to Papadimitriou and
Yannakakis [170].

Open Problems

It is not known whether the W-hierarchy is strict, that is, whether W[t] ⊆
W[t + 1] for all t ≥ 1. Clearly, the strictness of the W-hierarchy would imply
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that FPT �= W[P] and hence, in particular, that PTIME �= NP (by Corol-
lary 2.13 and Proposition 3.2). So reasonable open questions are:

• Is the W-hierarchy strict under the assumption FPT �= W[P]?
• For t ≥ 1, does the equality W[t] = W[t + 1] imply W[t] = W[t + 2]?
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The A-Hierarchy

The classes of A-hierarchy are defined by

A[�] =
[
p-MC(Σ�)

]fpt
.

Since the unparameterized model-checking problem MC(Σ�) is complete for
the �th level of the polynomial hierarchy, the A-hierarchy can be viewed as a
parameterized analogue of the polynomial hierarchy. In fact, in Sect. 8.1 we
shall see that, as the polynomial hierarchy, the A-hierarchy can be character-
ized by alternating machines.

Section 8.2 is technical; in it we prove certain normal form results. In
Sect. 8.3, we introduce alternating weighted satisfiability problems and char-
acterize the classes of the A-hierarchy by them. Few natural complete prob-
lems are known for classes of the A-hierarchy beyond A[1]. In Sect. 8.4, we
give an example of an A[2]-complete problem. We also introduce the class co-
A[1] of all parameterized problems whose complement is in A[1] and prove a
(maybe surprising) completeness result for this class. In Sect. 8.5, we charac-
terize the A-hierarchy in terms of Fagin definability. In the last three sections
of this chapter we discuss a variety of parameterized complexity classes and
hierarchies of classes that are related to the A-hierarchy, and, in particular in
the last section, to the W-hierarchy.

8.1 The A-Hierarchy and Machines

In this section we generalize the results obtained for A[1] and machines in
Sect. 6.2 to arbitrary classes of the A-hierarchy. Essentially, the proofs dupli-
cate the proofs of that section if one replaces the nondeterministic machines
by alternating ones.

For � ≥ 1 we consider the parameterized problem p-Short-ASTM-Halt�,
the short halting problem for alternating single-tape Turing machines with less
than � alternations :
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p-Short-ASTM-Halt�

Instance: An alternating single-tape Turing machine M,
whose initial state is existential, and k ∈ N.

Parameter: k.
Problem: Decide whether M accepts the empty string in at

most k steps with less than � alternations.

Theorem 8.1. For � ≥ 1,

p-Short-ASTM-Halt� is A[�]-complete.

Proof: Fix � ≥ 1. By reducing p-MC(Σ�) to p-Short-ASTM-Halt�, we prove
hardness.

We first show that, for every structure A and every quantifier-free for-
mula ψ with variables x1, . . . , xm, ψ = ψ(x1, . . . , xm), in time polynomial
in |ψ| + ‖A‖ we can construct a deterministic Turing machine M(A, ψ)
with input alphabet A that accepts an input word a1 . . . am if and only if
A |= ψ(a1, . . . , am) and that performs at most f(|ψ|) steps for some com-
putable function f : N → N. Without loss of generality we may assume that
ψ is in negation normal form (that is, negations only occur directly before
atomic subformulas). The proof is a straightforward induction on ψ. The only
nonobvious step is that of negated atoms. So suppose that ψ = ¬Rx1 . . . xr ,
where R is r-ary. We face one difficulty. Since the arity of the vocabulary
is not fixed in advance, we would not get an fpt-reduction if for every tuple
ā ∈ Ar we introduced a state s(ā). We circumvent this difficulty by a similar
trick as in the proof of Lemma 6.11, now on the level of the machines.

For s ∈ [0, r], a tuple ā ∈ As is R-extendible if RAāb̄ for some b̄ ∈ Ar−s.
Note that the empty tuple ε is R-extendible if and only if RA �= ∅. Our
machine M(A,¬Rx1 . . . xr) has a state s(ā) for every R-extendible tuple ā; in
addition, it has states s0, . . . , sr, s−, sA. The initial state is s0, and the only
accepting state is sA. Observe that there are at most r·|RA| ≤ ||A|| extendible
tuples. Thus the machine has O(||A||) states.

Recall that the alphabet of the machine is A. The input is supposed to
be a word a1 . . . ar. The machine first checks if the input is of this form by
using the states s0, . . . , sr. Then it moves the head back to the first input
symbol (using state s−) and switches to state sA if ε is not R-extendible, and
otherwise to s(ε). From now on, the machine will either be in the accepting
state sA or in a state s(a1, . . . , ai) with the head facing the (i+1)st tape cell,
for some i ∈ [0, r]. If i < r and the tuple (a1, . . . , ai, ai+1) is not R-extendible,
then the machine goes to state sA and accepts. Otherwise, if i < r it goes
to state s(a1, . . . , ai+1) and moves its head to the right. This completes our
description of the construction of the machines M(A, ψ).

Now suppose we are given a Σ�-sentence

ϕ = ∃x11 . . .∃x1k1∀x21 . . .∀x2k2 . . . Qx�1 . . . Qx�k�
ψ,
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where ψ is quantifier-free. Then, there is a computable function g such that
we have

A |= ϕ ⇐⇒ (M(A, ϕ), g(|ϕ|)) ∈ p-Short-ASTM-Halt�,

where the alternating Turing machine M(A, ϕ) first writes a sequence of ele-
ments of A, the interpretations of x11, . . . , x�k�

on the tape using existential
states for the existential quantifiers and universal states for the universal quan-
tifiers, and then simulates M(A, ψ) on this input. Clearly, M(A, ϕ) makes less
than � alternations, and its number of steps can be bounded in terms of |ϕ|.

To prove membership of p-Short-ASTM-Halt� in A[�], we show that
p-Short-ASTM-Halt� ≤fpt p-MC(Σ�). The proof is an extension of the
proof of the corresponding part of Theorem 6.17, and we only sketch the
necessary changes. There, for a nondeterministic single-tape Turing machine
M, we introduced a structure AM. Now, let M be an alternating single-tape
machine whose initial state is existential. We define AM in exactly the same
way, but we use two further unary relation symbols E and U , which are in-
terpreted in AM by the existential and universal states, respectively. There
we described configurations of the machine M that only involve the cells
1, . . . , k + 1 as (k + 3)-tuples (s, p, a1, . . . , ak+1), where s ∈ S is the current
state, p ∈ {0, . . . , k + 1} is the head position, and a1, . . . , ak+1 ∈ Σ are the
symbols written on cells 1, . . . , k + 1. We introduced

• a quantifier-free formula init(x, y, z1, . . . , zk+1) expressing that the initial
configuration is (x, y, z1, . . . , zk+1);

• a quantifier-free formula trans(x, y, z1, . . . , zk+1, x
′, y′, z′1, . . . , z

′
k+1) stating

that a transition from configuration (x, y, z1, . . . , zk+1) to configuration
(x′, y′, z′1, . . . , z

′
k+1) is possible.

Now, for example, for � = 2, we get

(M, k) ∈ p-Short-ASTM-Halt2 ⇐⇒ AM |= ϕ,

where as ϕ we take the formula (we abbreviate zi,1 . . . zi,k+1 by z̄i)∨
r∈[k+1]

∃x1∃y1∃z̄1 . . .∃xr∃yr∃z̄r

(
Ex1 ∧ . . . ∧ Exr−1

∧ init(x1, y1, z̄1) ∧
∧

i∈[r−1]

trans(xi, yi, z̄i, xi+1, yi+1, z̄i+1)

∧ ∀xr+1∀yr+1∀z̄r+1 . . .∀xk+1∀yk+1∀z̄k+1

∨
s∈[0,k+1−r]

(
ACC xr+s

∧
∧

i∈[r,r+s−1]

(
Uxi ∧ trans(xi, yi, z̄i, xi+1, yi+1, z̄i+1)

)))
.

Since ϕ is equivalent to a Σ2-formula, this yields the desired reduction. 
�
Observing that a run of k steps of an alternating machine has less than k

alternations, the preceding proof yields:
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Corollary 8.2. p-MC(FO) ≡fpt p-Short-ASTM-Halt, where

p-Short-ASTM-Halt
Instance: An alternating single-tape Turing machine M and

k ∈ N.
Parameter: k.

Problem: Decide whether M accepts the empty string in at
most k steps.

Since the arity of the vocabulary used to describe the behavior of Turing
machines is 4, we obtain a further corollary out of the preceding proof (we
improve this result in Sect. 8.2):

Corollary 8.3. There is a vocabulary τ of arity 4 such that:
• for every � ≥ 1, p-MC(Σ�) ≡fpt p-MC(Σ�[τ ]);
• p-MC(FO) ≡fpt p-MC(FO[τ ]).

Exercise 8.4. Let � ≥ 1. Consider the following halting problem for alter-
nating Turing machines:

p-Short-ATM-Halt�

Instance: An alternating Turing machine M, whose initial
state is existential, and k ∈ N.

Parameter: k.
Problem: Decide whether M accepts the empty string in at

most k steps with less than � alternations.

Show that, for even � ≥ 1, the problem p-Short-ATM-Halt� is A[�]-
complete. The case of odd � ≥ 1 is treated in Exercise 8.48. �

A Machine Characterization of A[�]

A generalization of the nondeterministic random access machines to alternat-
ing random access machines yields a generalization of the machine charac-
terization of A[1] that we obtained in Sect. 6.2 to the higher levels of the
A-hierarchy.

Recall that we introduced nondeterminism to random access machines in
form of a GUESS instruction, which permits the program to nondetermisti-
cally guess a natural number less than or equal to the number stored in the
accumulator and store it in the accumulator. In addition to this “existen-
tial” GUESS instruction, an alternating random access machine, or ARAM,
also has a universal instruction FORALL. To emphasize the duality, we call
the GUESS instruction EXISTS from now on. Steps of a computation of an
ARAM in which EXISTS or FORALL instructions are executed are called ex-
istential steps or universal steps , respectively. They are the nondeterministic
steps ; all other steps are called deterministic steps.
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Even though we adapt the notions of configuration, run, alternation,
et cetera, introduced in the Appendix for alternating Turing machines, to
ARAMs in an obvious way, let us repeat some key concepts. Let P be an
ARAM program, that is, a sequence (π1, . . . , πs) of instructions. A config-
uration C is a pair (c, contents), where c ∈ [s] signals that instruction πc

is the next instruction to be executed and contents is a finite set showing,
besides the contents of the relevant input registers, the current values of all
registers that have been changed so far in the computation. The configuration
(c, contents) is existential (universal) if πc = EXISTS (πc = FORALL). It is
a halting configuration if πc is the halting instruction; all other configurations
are deterministic. A halting configuration is accepting if the content of the
accumulator is 1.

A computation step or, in short, a step of P, is a pair (C, C′) of configu-
rations, where C = (c, contents) and C′ can be obtained from C by executing
πc. Then we call C′ a successor configuration of C.

A run of P on input x ∈ Σ∗ is a directed tree where each node is labeled
with a configuration of P such that:

• The root is labeled with the initial configuration on input x.
• If a vertex is labeled with a deterministic configuration C, then the vertex

has precisely one child; it is labeled with the successor configuration of C.
• If a vertex is labeled with an existential configuration C, then the vertex

has precisely one child; it is labeled with a successor configuration of C.
• If a vertex is labeled with a universal configuration C, then for every

successor configuration C′ of C the vertex has a child labeled with C′.

The run is finite if the tree is finite, and infinite otherwise. The length of the
run is the height of the tree. The run is accepting if it is finite and every leaf
is labeled with an accepting configuration.

The language (or problem) accepted by P is the set QP of all x ∈ Σ∗ such
that there is an accepting run of P on input x. If all runs of P are finite, then
we say that P decides QP, and we call QP the problem decided by P.

A computation path of P on input x ∈ Σ∗ is a maximal path of some run
of P on x. The subsequence of existential and universals steps, that is, the
subsequence of nondeterministic steps, in a computation path p of P can be
described by a string w(p) ∈ {∃, ∀}∗. Let e be a regular expression over the
alphabet {∃, ∀}. The ARAM program P is e-alternating if, for all computation
paths p of P on any input, the word w(p) belongs to the language of e. For
example, a program for an NRAM corresponds to an ∃∗-alternating ARAM
program.

Definition 8.5. Let � ≥ 1 and Q = ∃ if � is odd and Q = ∀ if � is even. An
ARAM program that is

∃∗∀∗∃∗ . . . Q∗︸ ︷︷ ︸
� blocks

-alternating
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is also called �-alternating. �

We generalize the notion of κ-restricted NRAM programs (cf. Defini-
tion 6.19) to ARAM programs in the obvious way:

Definition 8.6. Let κ : Σ∗ → N be a parameterization. An ARAM program
P is κ-restricted , if there are computable functions f and g and a polynomial
p(X) such that all computation paths of P on input x ∈ Σ∗:
• consist of at most f(k) · p(n) steps, at most g(k) of them being nondeter-

ministic;
• use at most the first f(k) · p(n) registers;
• contain numbers ≤ f(k) · p(n) in any register at any time.
Here n := |x|, and k := κ(x). �

Again, we say that a κ-restricted program P is tail-nondeterministic if
there is a computable function h such that all nondeterministic steps in all
computation paths of P on any input x are among the last h(κ(x)) steps.

Proposition 8.7. Let (Q, κ) be a parameterized problem.
(1) Let � ≥ 1. Then (Q, κ) ≤fpt p-Short-ASTM-Halt� if and only if there

is an �-alternating and tail-nondeterministic κ-restricted ARAM program
deciding (Q, κ).

(2) (Q, κ) ≤fpt p-Short-ASTM-Halt if and only if there is a tail-nondeter-
ministic κ-restricted ARAM program deciding (Q, κ).

The proof is a straightforward extension of the proof of Theorem 6.22
where (implicitly) it is shown that (Q, κ) ≤fpt p-Short-NSTM-Halt if and
only if there is a tail-nondeterministic κ-restricted program for an NRAM de-
ciding (Q, κ). Essentially one has to replace in that proof the halting problem
p-Short-NSTM-Halt by the halting problem p-Short-ASTM-Halt� for
(1), and by p-Short-ASTM-Halt for (2). We leave the details to the reader.

In view of Theorem 8.1 we get:

Theorem 8.8. Let � ≥ 1 and (Q, κ) be a parameterized problem. Then
(Q, κ) ∈ A[�] if and only if there is an �-alternating and tail-nondeterministic
κ-restricted ARAM program deciding (Q, κ).

The machine characterizations yield the following implication, which can
be viewed as a parameterized analogue of the classical result that if PTIME =
NP, then the whole polynomial hierarchy collapses.

Corollary 8.9. If FPT = W[P], then FPT = A[1] = A[2] = . . . .

Proof: Assume FPT = W[P]. By induction on � ≥ 1, we show that FPT =
A[�]. This is clear for � = 1, since FPT ⊆ A[1] = W[1] ⊆W[P] = FPT. Now,
let (Q, κ) be a parameterized problem over the alphabet Σ in A[�+1]. Using the
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preceding theorem, we choose an � + 1-alternating and tail-nondeterministic
κ-restricted ARAM program P deciding (Q, κ). We show that (Q, κ) is in W[P]
and hence, in FPT.

Fix an instance x of (Q, κ). We stop the program P, on input x, after the
existential steps of the first existential block have been performed. We may
assume that P has stored the numbers guessed in these existential steps. We
can code the sequence of these numbers by a string y ∈ Σ∗.

Let Σ′ := Σ ∪ {$}, where $ is not contained in Σ, and let κ′ : (Σ′)∗ → N

be given by

κ′(u) :=

{
κ(u1), if u = u1$u2 with u1, u2 ∈ Σ∗,

1, otherwise.

Consider a program P′ that on input x$y, first decodes y, simulates the com-
putation of P on input x replacing the existential steps of the first existential
block by taking as guessed numbers the numbers of y one after the other (if
y has not the appropriate length, then P′ rejects). Then, P′ is a

∀∗∃∗∀∗ . . . Q∗︸ ︷︷ ︸
� blocks

-alternating

κ′-restricted tail-nondeterministic ARAM program. Therefore, P′ decides a
parameterized problem whose complement is in A[�]. By induction hypoth-
esis, the complement and hence, the problem itself, are in FPT. Thus, P′

is equivalent to an fpt-algorithm A. Now consider the following program P′′

deciding Q: On input x it first simulates the deterministic steps and the exis-
tential steps of the first existential block of P (on input x), it codes the guessed
numbers as a string y ∈ Σ∗ as above, and then simulates A on input x$y. We
also simulate the deterministic steps in order that the value of the accumu-
lator allows guessing of the “correct” numbers. Clearly, P′′ is a κ-restricted
NRAM program. Therefore, (Q, κ) ∈W[P] by Exercise 6.20. 
�

8.2 Σ�-Normalization

To obtain further results for the A-hierarchy, in particular, characterizations
in terms of weighted satisfiability problems, we need a normalization for Σ�-
formulas. A Σ�-formula is simple (weakly simple) if its quantifier-free part is a
conjunction of atoms (literals) if � is odd, and a disjunction of atoms (literals)
if � is even.1 We denote the class of all simple Σ�-formulas (weakly simple
Σ�-formulas) by simple-Σ� (wsimple-Σ�).

Lemma 8.10 (Σ�-Normalization Lemma). For � ≥ 1,

p-MC(Σ�) ≤fpt p-MC(simple-Σ�[2]).

1Simple Σ1-formulas are also called conjunctive queries, cf. Exercise 6.10.



172 8 The A-Hierarchy

We prove this normalization lemma with the following four lemmas.

Lemma 8.11. For � ≥ 1,

p-MC(Σ�[2]) ≤fpt p-MC(simple-Σ�[3]).

Proof: To simplify the notation we fix the parity of �, say, � is even. Let (A, ϕ)
be an instance of p-MC(Σ�[2]). Thus, the vocabulary τ of A has arity ≤ 2, and
we can assume that the quantifier-free part of the sentence ϕ is in conjunctive
normal form,

ϕ = ∃ȳ1∀ȳ2∃ȳ3 . . .∀ȳt

∧
i∈I

∨
j∈J

λij ,

with literals λij . First, we replace the conjunction
∧

i∈I in ϕ by a universal
quantifier. For this purpose, we add to the vocabulary τ unary relation sym-
bols Ri for i ∈ I and consider an expansion B := (A, (RB

i )i∈I) of A, where
(RB

i )i∈I is a partition of A into nonempty disjoint sets (we may assume that
|A| ≥ |I|). Let y be a variable not occurring in ϕ. Then,

A |= ϕ ⇐⇒ B |= ∃ȳ1∀ȳ2∃ȳ3 . . .∀ȳt∀y
∨
i∈I

∨
j∈J

(Riy ∧ λij).

Since the arity of τ is ≤ 2, every λij contains at most two variables, say,
λij = λij(xij , yij). We expand B to a structure C by adding, for all i ∈ I and
j ∈ J , a relation T C

ij of arity 3 containing all triples (a, b, c) such that RB
i a

and B |= λij(b, c). Then,

A |= ϕ ⇐⇒ C |= ∃ȳ1∀ȳ2∃ȳ3 . . .∀ȳt∀y
∨
i∈I

∨
j∈J

Tijyxijyij .

The formula on the right-hand side is simple, so this equivalence yields the
desired reduction. 
�

We turn to vocabularies of arbitrary arity. We need the following result,
which for � = 1 was shown as Lemma 6.11 and whose proof is a straightforward
generalization of that proof, so we omit it. For a class Φ of first-order formulas,
we denote by Φ+ the class of all formulas in Φ without negation symbols and
by Φ− the class of all formulas in Φ in which there is a negation symbol in
front of every atom and there are no other negation symbols.

Lemma 8.12. (1) If � ≥ 1 is odd, then p-MC(Σ�) ≤fpt p-MC(Σ+
� ).

(2) If � ≥ 1 is even, then p-MC(Σ�) ≤fpt p-MC(Σ−
� ).

The main idea involved in a reduction of the model-checking for formulas
of unbounded arities to vocabularies of arity 2 is the transition to the incidence
structure, an idea we already used in the proof of Lemma 6.13. Recall that
for a structure A of vocabulary τ , the incidence structure AI of A, which we
introduced in Definition 6.12, has a vocabulary τI of arity 2 containing a unary
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relation symbol PR for every R ∈ τ and binary relation symbols E1, . . . , Es,
where s is the arity of τ . The universe AI of AI consists of A together with
new elements bR,ā for R ∈ τ and ā ∈ RA. Moreover, PAI

R := {bR,ā | ā ∈ RA},
and EAI

i consists of all pairs (ai, bR,ā), where R ∈ τ has arity r ≥ i. Note that
‖AI‖ = O(‖A‖).

If ϕ is any first-order sentence and ϕI is the τI -sentence obtained from ϕ
by replacing every atomic formula Rx1 . . . xr by

∃y(PRy ∧ E1x1y ∧ . . . ∧ Erxry), (8.1)

then
(A |= ϕ ⇐⇒ AI |= ϕI).

Thus, a negated atomic formula ¬Rx1 . . . xr is replaced by a formula equiva-
lent to

∀y(¬PRy ∨ ¬E1x1y ∨ . . . ∨ ¬Erxry). (8.2)

Using the transition (A, ϕ) �→ (AI , ϕI) we derive the following result:

Lemma 8.13. (1) If � ≥ 1 is odd, then

• p-MC(Σ+
� ) ≤fpt p-MC(Σ+

� [2]);

• p-MC(simple-Σ�) ≤fpt p-MC(simple-Σ�[2]).
(2) If � ≥ 1 is even, then

• p-MC(Σ−
� ) ≤fpt p-MC(Σ−

� [2]);

• p-MC
(
(wsimple-Σ�)

−)
≤fpt p-MC

(
(wsimple-Σ�)

−[2]
)
.

Proof: If � is odd and ϕ ∈ Σ+
� (is simple), then the last quantifier block

in ϕ is existential (and the quantifier-free part is a conjunction of atoms).
Since ϕ only has positive literals, in ϕI this last existential block can absorb
the quantifiers introduced by (8.1) (and thereby, only conjunctions are added
to the quantifier-free part). Similarly, if � is even and ϕ ∈ Σ−

� (is weakly
simple), then the last quantifier block in ϕ is universal (and the quantifier-
free part is a disjunction of negative literals) and in ϕI this block can absorb
the quantifiers introduced by (8.2) (and thereby, only disjunctions of negative
literals are added to the quantifier-free part). 
�

For finite arity, the model-checking problems for weakly simple formulas
and for simple formulas have the same complexity:

Lemma 8.14. For even � ≥ 1 and r ≥ 2,

p-MC((wsimple-Σ�)
−[r]) ≡fpt p-MC(simple-Σ�[r]).

Proof: Given any structure A in a vocabulary τ of arity r, we define the
structure A′ by adding the complement of each relation of A. More precisely:
We set τ ′ := τ ∪ {Rc | R ∈ τ} ∪ {�=}, and we obtain A′ from A setting
(Rc)A

′

:= Aarity(R) \ RA and �=A′

:= {(a, b) | a, b ∈ A, a �= b}. Thus, ‖A′‖ =
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O(‖A‖r). The transition from A to A′ allows us to replace in any formula
negative literals by positive ones and vice versa, thus showing our claim. 
�

Proof of Lemma 8.10: Applying Lemmas 8.12, 8.13, 8.11, 8.14, 8.13, and 8.14
one by one, we obtain the following chain of reductions, say, for even �,

p-MC(Σ�) ≤fptp-MC(Σ−
� ) ≤fpt p-MC(Σ�[2])

≤fpt p-MC(simple-Σ�[3]) ≤fpt p-MC((wsimple-Σ�)
−[3])

≤fpt p-MC((wsimple-Σ�)
−[2]) ≤fpt p-MC(simple-Σ�[2]). 
�

Since every first-order formula can be transformed into a Σ�-formula for
sufficiently large �, we see from the preceding proofs:

Corollary 8.15. p-MC(FO) ≡fpt p-MC(
⋃

�≥1 simple-Σ�[2]).

Exercise 8.16. Show that
• p-MC(Σ�) ≡fpt p-MC(GRAPH, Σ�) for � ≥ 1.
• p-MC(FO) ≡fpt p-MC(GRAPH, FO). �

8.3 The A-Hierarchy and Propositional Logic

In this section we derive a characterization of the A-hierarchy in terms of
weighted satisfiability problems for classes of propositional formulas. When
translating the model-checking problem for Σt,u into a weighted satisfiability
problem for a class of propositional formulas, we saw (for example, in the
proof of Lemma 7.23) that the unbounded block ∃x1 . . .∃xk of quantifiers of
a Σt,u-formula leads, on the side of propositional logic, to the weight k of an
assignment and to the variables Xi,a of the propositional formula. (Here i ∈ [k]
and a ranges over the universe of the given structure.) Since in A[�] we have �
alternating unbounded blocks of quantifiers, we have to consider alternating
weighted satisfiability problems for classes of propositional formulas.

Let Θ be a set of propositional formulas and � ≥ 1. The �-alternating
weighted satisfiability problem p-AWSat�(Θ) for formulas in Θ is the follow-
ing problem:

p-AWSat�(Θ)
Instance: α ∈ Θ, a partition of the propositional variables of

α into sets X1, . . . ,X�, and k1, . . . , k� ∈ N.
Parameter: k1 + . . . + k�.

Problem: Decide whether there is a subset S1 of X1 with
|S1| = k1 such that for every subset S2 of X2 with
|S2| = k2 there exists . . . such that the truth value
assignment S1 ∪ . . . ∪ S� satisfies α.
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Thus, p-AWSat1(Θ) = p-WSat(Θ). The main result of this section reads as
follows:

Theorem 8.17. For � ≥ 1 and d ≥ 2,

p-AWSat�(Γ1,d ∪Δ1,d) is A[�]-complete.

Moreover, we have:
• If � is odd, then p-AWSat�(Γ

−
1,2) is A[�]-complete.

• If � is even, then p-AWSat�(Δ
+
1,2) is A[�]-complete.

By the definition of A[�], this theorem is an immediate consequence of:

Lemma 8.18. Let d ≥ 1.
(1) If � ≥ 1 is odd, then

p-AWSat�(Γ1,d ∪Δ1,d) ≤fpt p-MC(Σ�) ≤fpt p-AWSat�(Γ
−
1,2).

(2) If � ≥ 1 is even, then

p-AWSat�(Γ1,d ∪Δ1,d) ≤fpt p-MC(Σ�) ≤fpt p-AWSat�(Δ
+
1,2).

Proof: We first prove that p-AWSat�(Γ1,d ∪Δ1,d) ≤ p-MC(Σ�). Let

(α,X1, . . . ,X�, k1, . . . , k�)

be an instance of p-AWSat�(Γ1,d ∪ Δ1,d). Let k := k1 + . . . + k�, and let
X1, . . . , Xm be the variables of α.

We construct the structure Aα(X1,...,Xm),d,k with universe [m] and the
quantifier-free formulas ψV

,d,k(x1, . . . , xk) and ψW
,d,k(x1, . . . , xk) according

to Lemma 7.30. We expand Aα(X1,...,Xm),d,k by unary relations PA
i := {j |

Xj ∈ Xi} for i ∈ �. We denote the resulting structure by A. Then, it is
straightforward to verify

(α,X1, . . . ,X�, k1, . . . , k�) ∈ p-AWSat�(Γ1,d ∪Δ1,d) ⇐⇒ A |= ϕ,

where, say, for odd � and α ∈ Δ1,d (the other cases are handled similarly), we
take as ϕ a Σ�-sentence equivalent to

∃x1 . . .∃xk1

( ∧
i∈[k1]

P1xi ∧
∧

1≤i<j≤k1

xi �= xj ∧

∀xk1+1 . . .∀xk1+k2

(( ∧
i∈[k1+1,k1+k2]

P2xi ∧
∧

k1+1≤i<j≤k1+k2

xi �= xj

)
→

. . .

∃xk1+...+k�−1+1 . . .∃xk

( ∧
i∈[k1+...+k�−1+1,k]

P�xi ∧
∧

k1+...+k�−1+1≤i<j≤k

xi �= xj

∧ ψW
,d,k(x1, . . . , xk)

)
· · ·

))
.
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Next, we show p-MC(Σ�) ≤fpt p-AWSat�(Γ
−
1,2) for odd �. The correspond-

ing statement for even � is proved similarly. For further notational simplicity,
we assume � = 3.

Let (A, ϕ) be an instance of p-MC(Σ3). By the Σ�-Normalization Lem-
ma 8.10, we may assume that the vocabulary of A and ϕ is binary and that
ϕ is a simple Σ3-sentence, say,

ϕ := ∃x1 . . .∃xh∀y1 . . .∀yk∃z1 . . .∃zm(λ1 ∧ . . . ∧ λs)

with literals λi. Furthermore, we may assume that h, k, m ≤ |A|.
We first construct a propositional formula α′ with variables partitioned

into the three sets

X := {Xi,a | i ∈ [h], a ∈ A}, Y := {Yi,a | i ∈ [k], a ∈ A},

and
Z := {Zi,a | i ∈ [m], a ∈ A},

such that

A |= ϕ ⇐⇒ (α′,X ,Y,Z, h, k, m) ∈ p-AWSat�(PROP). (8.3)

Remember that PROP denotes the class of all propositional formulas. After-
wards, we give a reduction to a Γ−

1,2-formula. Clearly, the intended meaning
of Xi,a is “xi gets the value a” and similarly for the other variables.

Let us call an assignment to the propositional variables in X proper if
for all i ∈ [h] there is exactly one a ∈ A such that Xi,a is set to true. We
similarly define proper assignments to the variables in Y and Z. Note that
there is a one-to-one correspondence between proper assignments to X ,Y,Z
and assignments to the variables x̄, ȳ, z̄, respectively, in A.

We first define a formula β ∈ Γ−
1,2 with variables in X ∪Y∪Z such that for

every proper assignment to the variables in X ,Y,Z the formula β is satisfied
if and only if the corresponding assignment to the variables x̄, ȳ, z̄ satisfies the
conjunction (λ1 ∧ . . .∧ λs), the quantifier-free part of ϕ. For every i ∈ [s] and
a, b ∈ A we define a clause δi,a,b, which is a disjunction of two negative literals,
as follows: For example, if λi(x3, y2) (recall that the arity of the vocabulary
is ≤ 2), then we let δi,a,b := (¬X3,a ∨ ¬Y2,b). We let

β :=
∧

i∈[s]

∧
a,b∈A

A�|=λi(a,b)

δi,a,b.

We leave it to the reader to verify that β has the desired properties. Now we
have
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A |= ϕ ⇐⇒ ∃ proper S ⊆ X
∀ proper T ⊆ Y

∃ proper U ⊆ Z :

S ∪ T ∪ U satisfies β

⇐⇒ ∃S ⊆ X with |S| = h

∀ T ⊆ Y with |T | = k

∃U ⊆ Z with |U| = m :(
T is not proper or(

S and U are proper and

S ∪ T ∪ U satisfies β
))

.

The cardinality restrictions |S| = h, |T | = k, |U| = m in the last formula are
inessential at this point, because proper assignments obey these restrictions.

Now we observe that an assignment S ⊆ X with |S| = h is proper if and
only if it satisfies the formula

γX :=
∧

i∈[h]

∧
a,b∈A
a�=b

(¬Xi,a ∨ ¬Xi,b).

Similarly, we define formulas γY and γZ for assignments to Y and Z. Then
we have

A |= ϕ ⇐⇒ ∃S ⊆ X with |S| = h

∀ T ⊆ Y with |T | = k

∃U ⊆ Z with |U| = m :

S ∪ T ∪ U satisfies
(
¬γY ∨

(
γX ∧ γZ ∧ β

))
.

We let
α′ := ¬γY ∨

(
γX ∧ γZ ∧ β

)
.

Then by the definition of the alternating weighted satisfiability problem, the
previous equivalence means that A |= ϕ if and only if

(
α′,X ,Y,Z, h, k, m

)
is

a “yes”-instance of p-AWSat�(PROP). This proves (8.3).

In a second step, we construct an equivalent instance(
α,X ,Y, Z̃, h, k, m + 1

)
,

where α ∈ Γ1,2.
Note that γX ∧ γZ ∧ β is equivalent to a formula in Γ−

1,2. The obstacle

for turning α′ into an equivalent Γ−
1,2-formula is the disjunct ¬γY , which is

equivalent to the Δ+
1,2-formula
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i∈[k],a,b∈A

a�=b

(Yi,a ∧ Yi,b).

We introduce new propositional variables

W, Y1, . . . , Yk, Z1, . . . , Zm,

and let

Z̃ := {Zi,a | i ∈ [m], a ∈ A} ∪ {W, Y1, . . . , Yk, Z1, . . . , Zm}.

Let us briefly explain the role of the new propositional variables: W essentially
signals that γX ∧ γY ∧ β is satisfied. Yi indicates that no variable Yi,a with
a ∈ A is set to true, and finally, if ¬γY is satisfied, then Z1, . . . , Zm, but no
Zi,a, are true.

Let γ be the conjunction of the following clauses:

(1) ¬W ∨ ¬Yi for all i ∈ [k],
(2) ¬W ∨ ¬Zi for all i ∈ [m],
(3) ¬Zi ∨ ¬Zj,a for all i, j ∈ [m], a ∈ A,
(4) ¬Yi ∨ ¬Yi,a for all i ∈ [k], a ∈ A,
(5) ¬Yi ∨ ¬Yj for all i, j ∈ [k] with i �= j.

Note that γ ∈ Γ−
1,2.

We let α be a Γ−
1,2-formula equivalent to

γ ∧ γX ∧ γZ ∧ β.

It remains to verify that

(α′,X ,Y,Z, h, k, m) ∈ AWSat3(PROP)

⇐⇒ (α,X ,Y, Z̃ , h, k, m + 1) ∈ AWSat3(Γ
−
1,2).

(8.4)

For the forward direction, suppose that (α′,X ,Y,Z, h, k, m) is a “yes”-
instance of AWSat3(PROP). Let S ⊆ X with |S| = h such that

for all T ⊆ Y with |T | = k there exists a U ⊆ Z with |U| = m such
that S ∪ T ∪ U satisfies α′.

We claim that for all T ⊆ Y with |T | = k there exists a Ũ ⊆ Z̃ with |Ũ | = m+1

such that S ∪ T ∪ Ũ satisfies α.
So, let T ⊆ Y with |T | = k. Using the property quoted above, we choose

U ⊆ Z with |U| = m such that S ∪ T ∪ U satisfies α′.
Suppose first that T does not satisfy ¬γY . Then S ∪ T ∪ U satisfies γX ∧

γZ ∧ β. Let Ũ := U ∪ {W}. It is easy to see that T ∪ Ũ satisfies γ. Hence

S ∪ T ∪ Ũ satisfies α.
The more difficult case is that T does satisfy ¬γY . Then, for some i ∈

[k] and a, b ∈ A with a �= b, we have Yi,a, Yi,b ∈ T . Since |T | = k, this
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means that for some i0 ∈ [k] we have Yi0,a �∈ T for all a ∈ A. We let Ũ :=

{Yi0 , Z1, . . . , Zm}. It is easy to verify that T ∪ Ũ satisfies γ. Moreover, Ũ
satisfies γZ , because Ũ sets all variables Zi,a to false. Furthermore, S satisfies

γX by the choice of S. Thus it remains to prove that S ∪T ∪ Ũ satisfies β. All
clauses in β that contain a literal ¬Zi,a are satisfied, because the assignment

S∪T ∪Ũ sets all variables Zi,a to false. All clauses of the form (¬Xi,a∨¬Xj,b)
are satisfied by the choice of S. It remains to prove that the clauses of β that
contain at least one variable from Y are satisfied. Consider such a clause, say,
(¬Xi,a∨¬Yj,b) (clauses with two variables from Y can be treated analogously).
If Yj,b �∈ T , the clause is satisfied by S ∪T . Otherwise, let T ′ ⊆ Y be a proper
assignment with Yj,b ∈ T ′. By the choice of S, there exists a U ′ such that
S∪T ′∪U ′ satisfies α′. Since T ′ is proper, this means that T ′ satisfies γY . Thus
S ∪T ′ ∪U ′ satisfies γX ∪γZ ∪β and, in particular, the clause (¬Xi,a ∨¬Yj,b).

The assignments S ∪ T ∪ Ũ and S ∪ T ′ ∪ U ′ coincide on the variables of this
clause. Hence S∪T ∪Ũ also satisfies the clause. This completes our proof that
S ∪ T ∪ Ũ satisfies α and hence the proof of the forward direction of (8.4).

For the backward direction, suppose that (α,X ,Y, Z̃ , h, k, m+1) is a “yes”-
instance of AWSat3(Γ

−
1,2). Let S ⊆ X with |S| = h such that for all T ⊆ Y

with |T | = k there exists a Ũ ⊆ Z̃ with |Ũ | = m + 1 such that S ∪ T ∪ Ũ
satisfies α.

Let T ⊆ Y with |T | = k. We shall construct a U ⊆ Z of cardinality k such
that S ∪ T ∪ U satisfies α′.

If T satisfies ¬γY , then S ∪T ∪U satisfies α′ for arbitrary U . Thus we may
assume that T satisfies γY . Thus for every i ∈ [k] there is an a ∈ A such that

Yi,a ∈ T . Since S∪T ∪Ũ satisfies γ, by the clauses in (4), Yi �∈ Ũ for all i ∈ [k].

By the clauses in (2), Ũ contains at most m of the variables W, Z1, . . . , Zm

and thus at least one variable Zj,a. Thus by the clauses in (3), Zi �∈ Ũ for all

i ∈ [m]. Thus W ∈ Ũ , and Ũ \ {W} is a set of m variables of the form Zj,a.

We let U := Ũ \ {W}. Then on all variables of γX ∪ γZ ∪ β, the assignments

S ∪ T ∪ Ũ and S ∪ T ∪ U coincide. Hence S ∪ T ∪ U satisfies γX ∪ γZ ∪ β and
thus α′. This completes the proof. 
�

In Sect. 8.6, for a class Θ of propositional formulas or circuits, we will
consider the alternating weighted satisfiability problem, p-AWSat(Θ), which
in contrast to p-AWSat�(Θ) has no a priori restriction on the number of
alternations:
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p-AWSat(Θ)
Instance: α ∈ Θ, � ≥ 1, a partition of the propositional vari-

ables of α into sets X1, . . . ,X�, and k1, . . . , k� ∈ N.
Parameter: k1 + . . . + k�.

Problem: Decide whether there is an S1 ⊆ X1 with |S1| = k1

such that for every S2 ⊆ X2 with |S2| = k2 there
exists . . . such that S1 ∪ . . . ∪ S� satisfies α.

An analysis of the previous proof shows that we get:

Corollary 8.19. (1) For d ≥ 1, p-AWSat(Γ1,d ∪Δ1,d) ≤fpt p-MC(FO).
(2) p-MC(FO) ≤fpt p-AWSat(Γ−

1,2) and p-MC(FO) ≤fpt p-AWSat(Δ+
1,2).

8.4 Complete Problems for A[2] and co-A[1]

We introduced the parameterized problem

p-Clique-Dominating-Set
Instance: A graph G and k, � ∈ N.

Parameter: k + �.
Problem: Decide whether G contains a set of k vertices that

dominates every clique of cardinality �.

in Example 5.14 and showed that it is in A[2]. Recall that for sets of vertices
X and Y in a graph G = (V, E), we say that X dominates Y if there are
v ∈ X and w ∈ Y such that v = w or {v, w} ∈ E.

Theorem 8.20. p-Clique-Dominating-Set is A[2]-complete under fpt-re-
ductions.

We will reduce p-AWSat2(Δ
+
1,2) to p-Clique-Dominating-Set in order

to prove hardness. Recall that p-AWSat2(Δ
+
1,2) is A[2]-complete by Theo-

rem 8.17. It will be convenient to work with a slight restriction of the problem.
Let us call a Δ+

1,2-formula
∨

i∈I(Xi ∧ Yi) regular if Xi �= Yi for every i ∈ I.

Let reg-Δ+
1,2 denote the class of all regular Δ+

1,2-formulas.

Lemma 8.21. p-AWSat(reg-Δ+
1,2) is A[2]-complete under fpt-reductions.

Proof: Containment of the problem in A[2] is immediate. To prove hardness,
let (α,X1,X2, k, �) be an instance of p-AWSat2(Δ

+
1,2), say, with

α =
∨
i∈I

(Xi ∧ Yi).

Without loss of generality we may assume that |X1| ≥ k and |X2| ≥ �.
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Suppose that Xi = Yi for some i ∈ I. If Xi ∈ X1 then (α,X1,X2, k, �) is a
“yes”-instance. So we assume that Xi ∈ X2. Let α′ be the formula obtained
from α by deleting all terms that contain the variable Xi. For i = 1, 2, let
X ′

i := Xi ∩ var(α′). If |X ′
1| < k let k′ := |X ′

1|; otherwise let k′ := k. Let

�′ := �−
∣∣X2 \

(
X ′

2 ∪ {Xi}
)∣∣.

If k′ = 0, then (α,X1,X2, k, �) is a “yes”-instance if and only if |X2| = �. If
�′ ≤ 0 then (α,X1,X2, k, �) is a “no”-instance. We assume k′, �′ ≥ 1 and claim
that the instances (α,X1,X2, k, �) and (α′,X ′

1,X ′
2, k

′, �′) are equivalent. To see
this, suppose first that (α,X1,X2, k, �) is a “yes”-instance. Let S1 ⊆ X1 with
|S1| = k such that for every S2 ⊆ X2 with |S2| = � the assignment S1 ∪ S2

satisfies α. Let S′1 be a superset of S1 ∩ X ′
1 of cardinality k′. We shall prove

that for every S′2 ⊆ X ′
2 of cardinality �′ the assignment S′1 ∪S′2 satisfies α′. So

let S′2 ⊆ X ′
2 with |S′2| = �′. Let

S2 := S′2 ∪
(
X2 \

(
X ′

2 ∪ {Xi}
))

.

As S1∪S2 satisfies α, there is some term (X∧Y ) of α such that X, Y ∈ S1∪S2.
Since Xi �∈ S1∪S2, this term is also a term of α′ and thus is satisfied by S ′1∪S′2.

Conversely, suppose that (α′,X ′
1,X ′

2, k
′, �′) is a “yes”-instance. Let S ′1 ⊆ X ′

1

with |S′1| = k′ such that for every S′2 ⊆ X ′
2 with |S′2| = �′ the assignment S′1∪S′2

satisfies α′. Let S1 ⊆ X1 with S1 ⊇ S′1 and |S1| = k be arbitrary. We shall
prove that for every S2 ⊆ X2 of cardinality � the assignment S1 ∪ S2 satisfies
α. So let S2 ⊆ X2 of cardinality �. If Xi ∈ S2, then S1 ∪ S2 satisfies the term
(Xi ∧ Yi), because Xi = Yi by our choice of Xi. Otherwise, let S′2 := S2 ∩X ′

2.
Then |S′2| ≥ �′. Choose a subset S′′2 of S′2 with �′ elements. Then S′1 ∪ S′′2
satisfies α′. Thus S1 ∪S2 ⊇ S′1 ∪S′′2 satisfies α. This completes the proof that
the two instances are equivalent.

We have thus reduced our original instance to an instance with fewer terms
that only contain one variable. Repeating this reduction as long as necessary,
we eventually obtain an instance with a regular formula. 
�

Proof of of Theorem 8.20: Recall that p-Clique-Dominating-Set ∈ A[2]
by Example 5.14. We prove A[2]-hardness by showing that

p-AWSat2(reg-Δ+
1,2) ≤fpt p-Clique-Dominating-Set.

To better understand the reduction, we first consider a reduction from
p-Clique-Dominating-Set to p-AWSat2(reg-Δ+

1,2), which essentially is the
converse of the reduction we look for. Let (G, k, �) with G = (V, E) be an in-
stance of p-Clique-Dominating-Set. For every v ∈ V , we introduce two
propositional variables, Xv and Yv. We let

α :=
∨

v,w∈V,v �=w
{v,w}�∈E

(Yv ∧ Yw) ∨
∨

v,w∈V
v = w or {v, w} ∈ E

(Xv ∧ Yw),
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and X1 := {Xv | v ∈ V } and X2 := {Yv | v ∈ V }. Then, for S1 ⊆ X1 and
S2 ⊆ X2, we have

S1 ∪ S2 satisfies α ⇐⇒ (S2 is no clique or S1 dominates S2).

From this equivalence we get:

(G, k, �) ∈ p-Clique-Dominating-Set

⇐⇒ (α,X1,X2, k, �) ∈ p-AWSat2(reg-Δ+
1,2),

which yields the desired reduction.

We turn to p-AWSat2(reg-Δ+
1,2) ≤fpt p-Clique-Dominating-Set. Let

(α,X1,X2, k, �) be an instance of p-AWSat2(reg-Δ+
1,2), say, with

α =
∨
i∈I

(Xi ∧ Yi).

We may assume that |X1| ≥ k and that for no i ∈ I, both Xi and Yi are
contained in X1. If Xi, Yi ∈ X1 and k ≥ 2, our instance is a “yes”-instance,
and if Xi, Yi ∈ X1 and k = 1, we can omit the term (Xi ∧ Yi) from the
disjunction.

Let G0 = (V0, E0) be the graph with vertex set V0 := X1 ∪ X2 and with
edge set E0 defined by: For X, Y ∈ V0 with X �= Y ,

• if {X, Y } ⊆ X2, then

{X, Y } ∈ E0 ⇐⇒ neither (X ∧ Y ) nor (Y ∧X) is a term of α;

• if {X, Y } �⊆ X2, then

{X, Y } ∈ E0 ⇐⇒ (X ∧ Y ) or (Y ∧X) is a term of α.

One easily verifies that

(α,X1,X2, k, �) ∈ p-AWSat2(Δ
+
1,2) ⇐⇒ there is a set of k vertices

of X1 that dominates every
clique of � elements of X2.

There remain two problems: First, the graph G0 may have a set of k vertices
(not all in X1) that dominate every clique of � elements, and second, G0 may
have cliques of � elements containing elements from X1.

We address the first problem. For this purpose we replace X1 by k copies
of X1, all behaving with respect to edges with X2 as X1; moreover, for every
copy we add a clique of size � that enforces that every set dominating all
cliques contains at least one element of this copy. More precisely: Let C be a
set of � elements. Define the graph G1 = (V1, E1) by

V1 := (X1 × [k]) ∪ X2 ∪ (C × [k]),

and let E1 contain the following edges:
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• {(X, i), Y } for {X, Y } ∈ E0, X ∈ X1, and i ∈ [k];
• {X, Y } for {X, Y } ∈ E0 and X, Y ∈ X2;
• {(c, i), (d, i)} for c, d ∈ C with c �= d and i ∈ [k];
• {(X, i), (c, i)} for X ∈ X1, c ∈ C, and i ∈ [k].

For the graph G1 one easily verifies that

(α,X1,X2, k, �) ∈ p-AWSat2(Δ
+
1,2) ⇐⇒ there is a set of k vertices that

dominates every clique of � el-
ements of X2 ∪ (C × [k]).

We turn to the second problem: The graph G1 may have cliques of size � that
contain at least one and hence, exactly one, vertex from X1 × [k]. To be sure
that all these cliques are dominated, we add to the graph G1 a clique D of
new vertices d1, . . . , d� and a further vertex d together with edges between d
and d1 and between d and every element from X1 × [k]; thereby we obtain a
graph G. Now one verifies that

(α,X1,X2, k, �) ∈ p-AWSat2(Δ
+
1,2)

⇐⇒ (G, k + 1, �) ∈ p-Clique-Dominating-Set,

which gives the corresponding reduction. 
�
Example 5.13 contains a further problem in A[2]:

p-Vertex-Deletion
Instance: Graphs G and H, and k ∈ N.

Parameter: k + �, where � is the number of vertices of H.
Problem: Decide whether it is possible to delete at most k

vertices from G such that the resulting graph has
no subgraph isomorphic to H.

Similarly to p-Clique-Dominating-Set, the problem p-Vertex-Deletion
looks like a very “generic” A[2]-problem. In particular, its natural logical def-
inition requires genuine Σ2-formulas that do not belong to any of the classes
Σ2,u for a fixed u (see Example 5.13). So we may be tempted to conjec-
ture that p-Vertex-Deletion is also A[2]-complete. However, the relation
between p-Clique-Dominating-Set and p-Vertex-Deletion is similar to
the relation between p-Dominating-Set and p-Vertex-Cover, and the lat-
ter is of much lower complexity than the former. A similar drop in complexity
happens here. To make it precise, we have to introduce a family of new com-
plexity classes. For a parameterized problem (Q, κ) over the alphabet Σ we
let (Q, κ)� denote the parameterized problem (Σ∗ \Q, κ).

Definition 8.22. Let C be a parameterized complexity class. Then co-C is
the class of all parameterized problems (Q, κ) such that (Q, κ)� ∈ C. �
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The following lemma is an immediate consequence of the definition of
many-one reductions:

Lemma 8.23. Let C be a parameterized complexity class and (Q, κ) a pa-
rameterized problem that is C-complete under fpt-reductions. Then (Q, κ)� is
co-C-complete under fpt-reductions.

Theorem 8.24. Let p-Vertex-Deletion is co-A[1]-complete under fpt-re-
ductions.

To prove this theorem, we use the following combinatorial lemma. A sub-
hypergraph of a hypergraph H = (V, E) is a hypergraph H′ = (V ′, E′) with
V ′ ⊆ V and E′ ⊆ E.

For every hypergraph H, let hs(H) be the cardinality of a minimum (car-
dinality) hitting set of H.

Lemma 8.25. Let H = (V, E) be a hypergraph with d := max{|e| | e ∈ E},
and let k ∈ N be such that k ≤ hs(H).

Then there is a subhypergraph H′ of H with less than max{k + 1, 2dk}
vertices such that hs(H′) = k.

Proof: Throughout, we may assume that k = hs(H); otherwise we delete
some edges. We prove the lemma by induction on k. For k = 1 it is trivial.
So suppose that the statement holds true for k; we shall prove it for k + 1.
Let H = (V, E) be a hypergraph with d := max{|e| | e ∈ E}, and let S ⊆ V
with |S| = k + 1 be a minimum hitting set of H. If d = 1, we can set H′ =
(S, {{v} | v ∈ S}). Assume that d ≥ 2 and hence, k + 1 ≤ 2dk.

Let v0 ∈ S be arbitrary and

E0 := {e ∈ E | v0 �∈ e}.

Then S \ {v0} is a hitting set of H0 := (V, E0). Moreover, for every hitting set
S0 of H0, the set S0 ∪ {v0} is a hitting set of H. Hence, hs(H0) = k and thus,
by the induction hypothesis, there exists a subhypergraph H′

0 = (V ′
0 , E′

0) of
H0 such that |V ′

0 | < 2dk and hs(H′
0) = k. By Lemma 1.17, H′

0 has at most
dk hitting sets of cardinality k, say, S1, . . . , Sp, where p ≤ dk. For each i ∈ [p]
there exists an edge ei ∈ E \ E0 such that ei ∩ Si = ∅, because otherwise Si

would be a hitting set of H. Now let H′ := (V ′, E′) with

V ′ := V ′
0 ∪

p⋃
i=1

ei, and E′ := E′
0 ∪ {e1, . . . , ep}.

Then hs(H′) ≤ hs(H) ≤ k + 1. We prove that hs(H′) = k + 1. Suppose
for contradiction that hs(H′) < k + 1, and let S′ be a hitting set of H′ with
|S′| ≤ k. Then S′∩V ′

0 is a hitting set ofH′
0 of cardinality≤ k and hence among

S1, . . . , Sp. Say, S′ ∩ V ′
0 = Si. Since |Si| = k, we get S′ = Si, a contradiction,
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because Si does not intersect the edge ei ∈ E′. Thus hs(H′) = k + 1. In
addition, we have

|V ′| < 2dk + d · p ≤ 2dk + dk+1 ≤ 2dk+1. 
�

Proof of Theorem 8.24: To prove that p-Vertex-Deletion ∈ co-A[1], we

shall reduce p-Vertex-Deletion� to p-MC(Σ1). For every k ∈ N and every
graph H, we define a Σ1-formula ϕH,k such that for all graphs G,

(G,H, k) �∈ p-Vertex-Deletion ⇐⇒ G |= ϕH,k. (8.5)

Furthermore, the mapping (H, k) �→ ϕH,k will be computable in time bounded
in terms of k and the cardinality of the vertex set of H. Clearly, this yields
the desired reduction.

So let H = (V H, EH) be a graph and k ∈ N. Furthermore, let � := |V H|
and r := max{k + 2, 2�k+1}.

Claim 1. If G is a graph such that (G,H, k) �∈ p-Vertex-Deletion, then
there exists a subgraph G′ ⊆ G with less than r vertices such that (G′,H, k) �∈
p-Vertex-Deletion.

Proof: A copy of H in G = (V G , EG) is a subgraph of G that is isomorphic to
H. Let

F :=
{
U ⊆ V G ∣∣ U is the vertex set of a copy of H in G

}
.

Observe that (G,H, k) �∈ p-Vertex-Deletion if and only if the hypergraph
(V G , F ) has no hitting set of at most k elements, that is, if and only if
hs((V G , F )) ≥ k + 1.

Suppose now that (G,H, k) �∈ p-Vertex-Deletion. Then hs((V G , F )) ≥
k +1. By Lemma 8.25, (V G , F ) has a subhypergraph with less than r vertices
that has no hitting set of at most k elements. Let V ′ be the vertex set of such
a subhypergraph and G′ the induced subgraph of G with vertex set V ′. �

Let G1, . . . ,Gp be a list of all graphs with vertex set contained in [r − 1]
such that (Gi,H, k) �∈ p-Vertex-Deletion for all i ∈ [p]. Then for every
graph G,

(G,H, k) �∈ p-Vertex-Deletion ⇐⇒ ∃i ∈ [p] : G has a subgraph
isomorphic to Gi.

It is easy to define a Σ1-sentence ϕ = ϕH,k such that for every graph G,

G |= ϕH,k ⇐⇒ ∃i ∈ [p] : G has a subgraph
isomorphic to Gi.

This proves (8.5) and yields the desired reduction from p-Vertex-Deletion�

to p-MC(Σ1).
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To prove hardness, we reduce p-Clique to p-Vertex-Deletion�. Let G
be a graph and k ≥ 1. Observe that G has a clique of k elements if and only if

(G +Kk,Kk, 1) �∈ p-Vertex-Deletion,

where Kk denotes the complete graph with k vertices and G+Kk the disjoint
union of G and Kk. This yields the desired reduction. 
�

8.5 The A-Hierarchy and Fagin Definability

We extend the notion of parameterized Fagin-definable problem introduced in
Sect. 5.1 by considering an alternating version. We use it to obtain a further
characterization of the A-hierarchy.

Let ϕ(Z1, . . . , Z�) be a first-order formula with relation variables Z1, . . . ,Z�,
where Zi is of arity si. We set:

p-AWD�,ϕ

Instance: A structure A and k1, . . . , k� ∈ N.
Parameter: k1 + · · ·+ k�.

Problem: Decide whether there is a relation S1 ⊆ As1 with
|S1| = k1 such that for all relations S2 ⊆ As2 with
|S2| = k2 there is . . . such that A |= ϕ(S1, . . . ,S�).

For a class Φ of formulas, we let p-AWD�-Φ be the class of all problems
p-AWD�,ϕ with ϕ(Z1, . . . , Z�) ∈ Φ.

Extending the terminology introduced before Proposition 6.39 we say that
ϕ is bounded if for some relation variables Z1, . . . , Z� every quantifier in ϕ has
the form ∃y1 . . .∃ysi

(Ziy1 . . . ysi
∧ψ) or the form ∀y1 . . .∀ysi

(Ziy1 . . . ysi
→ ψ)

with i ∈ [�] (again si is the arity of Zi). We abbreviate such quantifiers by
(∃ȳ ∈ Zi)ψ and by (∀ȳ ∈ Zi)ψ, respectively, and we denote by BOUND the
class of bounded first-order formulas.

Example 8.26. For any graph G and r, s ∈ N, we have

(G, r, s) ∈ p-Clique-Dominating-Set ⇐⇒ (G, r, s) ∈ p-AWD2,ϕ,

where ϕ(X, Y ) is the following bounded formula with set variables X and Y

(∀y ∈ Y )(∀z ∈ Y )(y = z ∨ Eyz)→ (∀y ∈ Y )(∃x ∈ X)(x = y ∨ Exy).

Hence, p-Clique-Dominating-Set ≤fpt p-AWD2,ϕ. �

Theorem 8.27. For every � ≥ 1,

A[�] = [p-AWD�-BOUND]fpt.
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Proof: First we prove A[�] ⊆ [p-AWD�-BOUND]fpt. By Theorem 8.17 it suf-
fices to show that p-AWSat�(Γ

−
1,2) ∈ [p-AWD�-BOUND]fpt for odd � and

that p-AWSat�(Δ
+
1,2) ∈ [p-AWD�-BOUND]fpt for even �.

We consider the case of odd �. By Proposition 6.39 there is a vocabulary
τ2 and a formula ϕ2(Y ) of the form (∀y1 ∈ Y )(∀y2 ∈ Y )ψ0, where ψ0 is
quantifier-free and does not contain Y , that has the following property: For
all α ∈ Γ−

1,2 with var(α) = {X1, . . . , Xn} there is a τ2-structure Aα,2 with
universe [n] such that for all k ∈ N and all m1, . . . , mk ∈ [n]:

{Xm1, . . . , Xmk
} satisfies α ⇐⇒ Aα,2 |= ϕ2({m1, . . . , mk}).

Furthermore, A is computable from α in time O(|α|).
We set τ := τ2 ∪{P1, . . . , P�} with new unary relation symbols P1, . . . , P�.

We consider the bounded τ -formula ϕ(Z1, . . . , Z�) with set variables Z1, . . . ,Z�:

(∀y ∈ Z1)P1y ∧
(
(∀y ∈ Z2)P2y → . . .

→
(
(∀y ∈ Z�)P�y ∧ ϕ2(Z1 ∪ . . . ∪ Z�)

)
. . .

)
.

Here, ϕ2(Z1 ∪ . . . ∪ Z�) is obtained from ϕ2(Y ) by inductively replacing sub-
formulas (∀y ∈ Y )ψ by

∧
i∈[�](∀y ∈ Zi)ψ. Note that for odd i, for which

Zi is existentially quantified in the alternating weighted satisfiability prob-
lem, we include (∀y ∈ Zi)Piy ∧ . . . into ϕ, whereas for even i we include
(∀y ∈ Zi)Piy → . . ..

For α ∈ Γ−
1,2 and a partition X1, . . . ,X� of the set {X1, . . . , Xn} of variables

of α, we set A := (Aα,2, (P
A
i )i∈[�]) with PA

i := {j | Xj ∈ Xi}. Then, for arbi-
trary k1, . . . , k� ∈ N, one easily verifies that any two consecutive statements
of the following ones are equivalent:

(i) (α,X1, . . . ,X�, k1, . . . , k�) ∈ p-AWSat�(Γ
−
1,2).

(ii) There is a subset S1 of X1 with |S1| = k1 such that for every subset S2 of
X2 with |S2| = k2 . . . there is a subset S� of X� with |S�| = k� such that
Aα,2 |= ϕ2(S1 ∪ . . . ∪ S�).

(iii) (Aα,2, k1, . . . , k�) ∈ p-AWD�,ϕ.

The equivalence between (i) and (iii) shows that p-AWSat�(Γ
−
1,2) is reducible

to a problem in p-AWD�-BOUND.

For the converse inclusion, we let ϕ(Z1, . . . , Z�) ∈ BOUND. We show that
p-AWD�,ϕ ≤fpt p-MC(Σ�). For notational simplicity, we assume � = 3. Let
ϕ = ϕ(X, Y, Z), where X, Y, Z have arities sX , sY , sZ , respectively. For m, s ≥
1, let χms(v̄1, . . . , v̄m) be a quantifier-free first-order formula expressing that
the s-tuples v̄1, . . . , v̄m are pairwise distinct. Then, our claim follows from the
fact that for all structures A and all k1, k2, k3 ∈ N, we have

(A, k1, k2, k3) ∈ p-AWD3,ϕ ⇐⇒ A |= ψk1k2k3 ,
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where for ψk1k2k3 we take a Σ3-formula equivalent to

∃x̄1 . . .∃x̄k1

(
χk1sX

(x̄1, . . . , x̄k1 )∧

∀ȳ1 . . .∀ȳk2

(
χk2sY

(ȳ1, . . . , ȳk2)→
∃z̄1 . . .∃z̄k3(χk3sZ

(z̄1, . . . , z̄k3)∧

ϕ({x̄1, . . . , x̄k1}, {ȳ1, . . . , ȳk2}, {z̄1, . . . , z̄k3}))
))

.

Here, ϕ({x̄1, . . . , x̄k1}, {ȳ1, . . . , ȳk2}, {z̄1, . . . , z̄k3}) is obtained from ϕ by

• replacing atomic subformulas Xu1 . . . us1 by
∨

i∈[k1]

∧
j∈[sX ] uj = xij (as-

suming that x̄i = xi1, . . . , xisX
);

• inductively replacing quantifiers (∃ū ∈ X)χ(ū,− ) and (∀ū ∈ X)χ(ū,− ) by∨
i∈[k1]

χ(x̄i,− ) and
∧

i∈[k1] χ(x̄i,− ), respectively;
• treating the variables Y and Z accordingly. 
�

Exercise 8.28. Show:
• If � ≥ 1 is odd, then A[�] = [p-AWD�-Π1]

fpt.
• If � ≥ 1 is even, then A[�] = [p-AWD�-Σ1]

fpt.
Hint: For odd �, as in the first part of the preceding proof, use the formula
ϕ2(Y ) of Proposition 6.39. To avoid existential quantifiers in the final formula,
change the quantifier-free part of ϕ2 such that it takes care of elements in all
Z2i that are not in the corresponding P2i. �

8.6 The Classes AW[∗] and AW[P]

Observe that while we have⋃
t≥1

W[t] =
⋃
t≥1

[p-WD-Πt]
fpt = [p-WD-FO]fpt,

we only know that⋃
t≥1

A[t] =
⋃
t≥1

[p-MC(Σt)]
fpt ⊆ [p-MC(FO)]fpt,

and there is no reason to believe that the last inclusion is not strict. As a
matter of fact, it is easy to see that if

⋃
t≥1[p-MC(Σt)]

fpt = [p-MC(FO)]fpt

then the A-hierarchy collapses, that is,
⋃

t≥1 A[t] = A[t0] for some t0 ∈ N.

Thus [p-MC(FO)]fpt is a natural parameterized complexity class that
seems to be different from all classes studied so far in this book.

Definition 8.29.
AW[∗] := [p-MC(FO)]fpt. �
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We obtain a number of interesting results on the class AW[∗] simply by
rephrasing results proved earlier in this section. First of all, note that by
Exercise 8.16, p-MC(GRAPH,FO) is AW[∗]-complete under fpt-reductions.
The following theorem is an immediate consequence of Corollary 8.2:

Theorem 8.30. p-Short-ASTM-Halt is AW[∗]-complete under fpt-reduc-
tions.

Combined with Proposition 8.7(2), this yields a machine characterization
of AW[∗]:

Theorem 8.31. Let (Q, κ) be a parameterized problem. Then (Q, κ) ∈ AW[∗]
if and only if there is a tail-nondeterministic κ-restricted ARAM program
deciding (Q, κ).

To obtain a characterization of AW[∗] in terms of propositional logic we
consider the alternating weighted satisfiability problem introduced on p. 179:

Theorem 8.32. The following problems are AW[∗]-complete under fpt-reduc-
tions:
(1) p-AWSat(Γt,d ∪Δt,d) for t ≥ 2, d ≥ 1.
(2) p-AWSat(Γ−

1,2) and p-AWSat(Δ+
1,2).

Proof: The AW[∗]-hardness of the problems follows immediately from Corol-
lary 8.19(2).

To prove containment in AW[∗], it suffices to show that

p-AWSat(Γt,1) ∈ AW[∗] (8.6)

for all t ≥ 1. To see this, note that, up to trivial syntactical modifications,
Γt,d ∪Δt,d ⊆ Γt+2,1 and Δ1,2 ⊆ Δ2,1. By Corollary 8.19(1), the claim in (8.6)
follows from

p-AWSat(Γt,1) ≤fpt p-AWSat(Γ1,2). (8.7)

The proof of (8.7) relies on the following observation: Let

(α, �,X1 . . . ,X�, k1, . . . , k�)

be an instance of AWSat(PROP), where

α =
∧
i∈I

∨
j∈J

αij

with no restriction on the subformulas αij and, say, with odd � (thus the
quantification over the variables in X� is existential). We let X�+1 := {Xi | i ∈
I} be a set of new variables and set

α′ :=
∨
i∈I

∨
j∈J

(Xi ∧ αij),
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and k�+1 := 1. Then (α′, � + 1,X1 . . . ,X�+1, k1, . . . , k�+1) is an instance of
AWSat(PROP) equivalent to the original one (note that the quantification
over the variables in X�+1 is universal). This shows that AWSat(Γ2,1) ≤fpt

AWSat(Δ1,2), and

AWSat(Γt+1,1) ≤fpt AWSat(Δt,1)

for t ≥ 2. Dually, one gets AWSat(Δ2,1) ≤fpt AWSat(Γ1,2), and, for t ≥ 2,

AWSat(Δt+1,1) ≤fpt AWSat(Γt,1).

A composition of such reductions yields (8.7) (recall that Δ1,2 ⊆ Δ2,1). 
�

Geography is a game played by two players, called here White and Black :
Let G = (V, E) be a directed graph and a1 ∈ V , the start vertex. White starts
and, in his first move, picks a vertex a2 ∈ V distinct from a1 such that
(a1, a2) ∈ E. In her first move, Black picks a vertex a3 ∈ V \ {a1, a2}. Next,
White picks a vertex a4 ∈ V \ {a1, a2, a3} such that (a3, a4) ∈ E, and so
on. The first player who cannot move, because either the current vertex has
out-degree 0 or all outgoing edges lead to vertices already used, loses the play.
We say that White has a winning strategy for (G, a1) if it is possible for him
to win each play on (G, a1) whatever choices are made by Black.

The classical problem

Geography
Instance: A directed graph G and a start vertex a1.
Problem: Decide whether White has a winning strategy for

(G, a1).

is known to be PSPACE-complete. For the parameterized variant

p-Short-Geography
Instance: A directed graph G, a start vertex a1, and k ∈ N.

Parameter: k.
Problem: Decide whether White has a winning strategy for

(G, a1) such that in each game play in which he fol-
lows this strategy, White makes at most k moves.

we show:

Theorem 8.33. p-Short-Geography is AW[∗]-complete.

Proof: To prove p-Short-Geography ∈ AW[∗] we reduce p-Short-Geog-
raphy to p-MC(FO). Let G be a graph, a1 the start vertex, and k ∈ N. For
a unary relation symbol P set PG := {a1}. Then,

(G, k) ∈ p-Short-Geography ⇐⇒ (G, PG) |= ϕk,
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where

ϕk :=∃x1

(
Px1∧∨

�∈[k]

∃x2

(
x2 �= x1 ∧ Ex1x2 ∧

∀x3((x3 �= x1 ∧ x3 �= x2 ∧ Ex2x3)→
. . .

∃x2�(
∧

i∈[2�−1]

x2� �= xi ∧ Ex2�−1x2� ∧

∀x2�+1(
∨

i∈[2�]

x2�+1 = xi ∨ ¬Ex2�x2�+1)) . . .)
))

.

To prove AW[∗]-hardness of p-Short-Geography, we reduce

p-MC(
⋃
�≥1

� odd

simple-Σ�[2])

to p-Short-Geography. Recall that p-MC(
⋃

�≥1
� odd

simple-Σ�[2]) is AW[∗]-
complete by Corollary 8.15.

So, let ϕ be a simple Σ�-sentence for some odd � in a vocabulary τ of arity
2. For every τ -structure A we define a directed G and a vertex a1 such that

A |= ϕ ⇐⇒ (G, a1) ∈ p-Short-Geography.

The construction is best explained by an example: Let � = 3,

ϕ = ∃x∀y1∀y2∃z
∧
i∈I

λi (8.8)

with atoms λi = λi(ui, vi), suppose that I = [6], and let A be a structure with
A = [5]. The construction of the graph G is illustrated in Fig. 8.1. It consists
of five diamond-like “choice gadgets.” They are arranged in such a way that in
the first and fourth gadget, player White has to select an interpretation of the
existentially quantified variables x and z, respectively, and in the second, third
and fifth gadget, Black is forced to choose interpretations of the universally
quantified variables y1, y2, and an i0 ∈ I, respectively. The remaining edges in
the graph ensure that player White wins the play just in case λi0 holds for the
chosen interpretation of its variables. For this purpose, there are edges from
the neighbor vertex of the bottom of the last gadget to all triples (i, a, b),
where i ∈ I and a, b ∈ A, such that A |= λi(a, b). Note that the choice of
such a triple corresponds to player White. If λi = λi(ui, vi), say with ui = x
and vi = y2, then there is an edge leading from vertex (i, a, b) to the vertex
corresponding to the choice of i in the last gadget , to the vertex corresponding
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a1

1 2 3 4 5 choice of x

choice of y1

choice of y2

choice of z

1 2 3 4 5 6 choice of i

. . .

(i, a, b)

. . . if A |= λi(a, b)

if i = 2, ui = x, vi = y2,
a = 3, b = 5

Fig. 8.1. A geography game

to the choice of a in the first gadget, and to the vertex corresponding to the
choice of b in the third gadget. 
�

We can also define “alternating versions” of the classes W[P] and W[SAT]:

Definition 8.34. (1) AW[P] is the class of all parameterized problems (Q, κ)
that can be decided by an alternating κ-restricted ARAM program.

(2) AW[SAT] := [p-AWSat(PROP)]fpt. �
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It is easy to see that we have:

Proposition 8.35. AW[∗] ⊆ AW[SAT] ⊆ AW[P].

Figure 8.2 gives an overview of all parameterized complexity classes we
have introduced so far.

FPT

W[1]=A[1]

W[2]

W[3]

W[SAT]

W[P]

para-NP

A[2]

A[3]

AW[∗]

AW[SAT]

AW[P]

XP

Fig. 8.2. The relations among the classes

The following two results are straightforward extensions of Theorems 3.9
and 7.38. We omit the proofs.

Theorem 8.36. p-AWSat(CIRC) is AW[P]-complete.

Theorem 8.37. p-var-MC(PNF) is AW[SAT]-complete, where PNF is the
class of first-order formulas in prenex normal form.

Exercise 8.38. Show that p-var-MC(FO) is AW[P]-hard. �
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If we view W[P] (and its subclasses) as a parameterized analogue of NP,
then we may view the class AW[P] as a parameterized analogue of alternat-
ing polynomial time, that is, of the class of all (classical) problems that can
be solved in polynomial time by an alternating Turing machine. By a well-
known theorem due to Chandra et al. [43], alternating polynomial time coin-
cides with PSPACE (cf. Theorem A.7). Therefore, it is tempting to think of
AW[P] as a parameterized analogue of PSPACE, a view that is supported by
the fact that AW[P] contains natural parameterizations of PSPACE-complete
problems such as MC(FO) and Short-Geography. Nevertheless, we do not
believe that this point of view is fully justified. The correspondence between
alternation and space does not carry over to our situation, because the al-
ternation underlying AW[P] is bounded in terms of the parameter (recall the
definition of κ-restricted ARAM programs).

The following exercises introduce “genuine” parameterized space classes.

Exercise 8.39 (XL). Let (Q, κ) be a parameterized problem over the alpha-
bet Σ. Then (Q, κ) belongs to the class XL if there is a computable function
f : N→ N and an algorithm that, given x ∈ Σ∗, decides if x ∈ Q in space

f(κ(x)) · log |x|+ f(κ(x)).

(a) Prove that AW[SAT] ⊆ [XL]fpt ⊆ XP.

(b) Prove that the following problem is complete for [XL]fpt under fpt-
reductions:

p-Compact-TM-Halt
Instance: A deterministic Turing machine M with an input

tape, an input string x, and k ∈ N in unary.
Parameter: k.

Problem: Decide whether there is an accepting run of M on
input x that only uses space k.

�

Exercise 8.40 (para-PSPACE). Let (Q, κ) be a parameterized problem
over the alphabet Σ. Then (Q, κ) belongs to the class para-PSPACE if there
is a computable function f : N → N and an algorithm that, given x ∈ Σ∗,
decides if x ∈ Q in space

f(κ(x)) · p(|x|).
(a) Prove that

[XL]fpt ⊆ para-PSPACE∩XP,

AW[P] ⊆ para-PSPACE∩XP.

(b) Prove that

PTIME = PSPACE ⇐⇒ FPT = para-PSPACE. �
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While the classes [XL]fpt and para-PSPACE∩XP introduced in the previ-
ous two exercises are attempts to find parameterized analogues of PSPACE,
the following exercise provides such an analogue of L.

Exercise 8.41 (para-L). Let (Q, κ) be a parameterized problem over the
alphabet Σ. Then (Q, κ) belongs to the class para-L if there is a computable
function f : N→ N and an algorithm that, given x ∈ Σ∗, decides if x ∈ Q in
space

f(κ(x)) + O(log |x|).
(a) Prove that

PTIME = L ⇐⇒ FPT = para-L.

(b) Prove that p-Vertex-Cover ∈ para-L. �

8.7 The A-Matrix

The reader may have wondered why we left a gap between the W-hierarchy
and the A-hierarchy in Fig. 8.2 (on p. 193). In this section, we will fill that gap.
We have characterized the classes of the W-hierarchy and the classes of the A-
hierarchy by weighted satisfiability problems. The overall picture that evolves
is that in parameterized complexity theory we have two different sources of
increasing complexity: the alternation of propositional connectives (leading
to the W-hierarchy) and quantifier alternation (leading to the A-hierarchy).
Thus, we actually obtain a two-dimensional family of parameterized classes:

Definition 8.42. For �, t ≥ 1,

A[�, t] := [{p-AWSat�(Γt,d ∪Δt,d) | d ≥ 1}]fpt. �

We call the family of classes A[�, t] the A-matrix.
We know that

W[t] = A[1, t]fpt, and A[�] = A[�, 1]fpt.

Hence, the A-matrix contains the A-hierarchy and the W-hierarchy.
Let us remark that in classical complexity theory, only quantifier alter-

nation is relevant, because most classical complexity classes are closed under
Boolean connectives (in the sense that the satisfiability problem for the class
PROP of all propositional formulas is reducible to the satisfiability problem
for Γ1,3 in polynomial time). Thus, there is only the (one-dimensional) poly-
nomial hierarchy. In parameterized complexity, once we allow unrestricted
quantifier alternation the hierarchy obtained by alternation of propositional
connectives collapses to its first level:

p-AWSat(Γt,d ∪Δt,d) ≡fpt p-AWSat(Γ1,2 ∪Δ1,2)

for all t ≥ 2 and d ≥ 1 (cf. Theorem 8.32). In particular, this equality shows:
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Theorem 8.43. For all �, t ≥ 1, A[�, t] ⊆ AW[∗].
We turn to a characterization of A[�, t] in terms of model-checking. Re-

call the translations of alternating weighted satisfiability problems for propo-
sitional problems to first-order model-checking problems considered so far.
From the characterization of the A-hierarchy (cf. Sect. 8.3) we know that �
weighted alternations translate into � alternating unbounded blocks of quan-
tifiers. From the characterization of the W-hierarchy (cf. Sect. 7.1) we know
that t alternating big conjunctions and disjunctions yield t−1 bounded alter-
nating blocks of quantifiers (which can be substituted by single quantifiers).
Hence, we expect that

A[�, t] = [p-MC(Σ�,t−1)]fpt,

where for � ≥ 1 and m ≥ 0 we denote by Σ�,m the class of first-order formulas
of the form

∃x̄1∀x̄2 . . . Q�x̄�Q�+1x�+1 . . .Q�+mx�+mψ

where ψ is quantifier-free, all Qi ∈ {∃, ∀}, and Qi �= Qi+1. Note that x̄... de-
notes a finite sequence of variables, thus the formula starts with � unbounded
blocks of quantifiers. We have:

• Σ�,0 = Σ�.
• For t ≥ 1, Σ1,t−1 = Σt,1.

Now, we are able to state the main result of this section.

Theorem 8.44. For all �, t ≥ 1

A[�, t] = [p-MC(Σ�,t−1)]fpt.

Moreover, for t ≥ 2 we have:
• if � is odd, then A[�, t] = [p-AWSat�(Γt,1)]

fpt;
• if � is even, then A[�, t] = [p-AWSat�(Δt,1)]

fpt.

We omit the proof which generalizes the proofs for the classes of the W-
hierarchy (� = 1) and for the classes of the A-hierarchy (t = 1).

Corollary 8.45. For � ≥ 1 and t ≥ 2, A[�, t] ⊆ A[� + 1, t− 1].

Proof: Since Σ�,t−1 ⊆ Σ�+1,t−2, the claim follows from the preceding theorem.

�

Figure 8.3 shows the matrix and the containment relations known to hold
between the classes.

We close this section with some exercises. The first one yields “mono-
tone or antimonotone” complete problems for the classes of the A-matrix, the
second one a characterization of these classes in terms of Fagin definability,
and, finally, we locate the parameterized complexity of the halting problem
p-Short-ATM-Halt� for odd � in the last exercise.
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FPT

W[1]=A[1]=A[1, 1]

W[2]=A[1, 2]

W[3]=A[1, 3]
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Fig. 8.3. The A-matrix

Exercise 8.46. Let t ≥ 2. Show:
• in case � + t− 1 is even:

– if � is odd, then p-AWSat�(Γ
+
t,1) is A[�, t]-complete;

– if � is even, then p-AWSat�(Δ
+
t,1) is A[�, t]-complete;

• in case � + t− 1 is odd:
– if � is odd, then p-AWSat�(Γ

−
t,1) is A[�, t]-complete;

– if � is even, p-AWSat�(Δ
−
t,1) is A[�, t]-complete. �

Exercise 8.47. Show for �, t ≥ 1:
• If � is odd, then A[�, t] = [p-AWD�-Πt−1]

fpt.
• If � is even, then A[�, t] = [p-AWD�-Σt−1]

fpt. �
Exercise 8.48. Show that for odd � ≥ 1 the problem p-Short-ATM-Halt�

(cf. Exercise 8.4) is A[�, 2]-complete. �

8.8 Back to the W-Hierarchy

We know that p-MC(Σt,1) is W[t]-complete and that p-MC(Σt) is A[t]-
complete. The class of Σt-formulas has some closure properties not shared
by the class Σt,1. In this section we analyze the complexity of the model-
checking problem for the closure of Σt,1 under the corresponding operations.
We close this section by sketching a machine characterization for the classes
of the W-hierarchy.

The W∗-Hierarchy

It is well-known that conjunctions and disjunctions in formulas of first-order
logic can be pushed inside of quantifiers if variables are renamed properly.
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This operation does not increase the number of quantifier alternations—for
instance, conjunctions of Σt formulas are equivalent to Σt-formulas—but it
does affect the “quantifier structure” of a formula. Furthermore, consider the
formula

∃x̄(¬∃y1∃y2∀z1∀z2ψ ∧ ∃v1∃v2∀w1∀w2χ), (8.9)

where ψ, χ are quantifier-free. It is logically equivalent to the Σ3-formula

∃x̄ ∃v1∃v2 ∀y1∀y2 ∀w1∀w2 ∃z1∃z2(¬ψ ∧ χ).

More generally, every existentially quantified Boolean combination of Σ2-
formulas is equivalent to a Σ3-formula.

The class Σ3,2 does not have this closure property: The formula in (8.9)
is an existentially quantified Boolean combination of Σ2-formulas in which all
blocks of quantifiers have length at most 2, but, in general, the formula is
not logically equivalent to a formula in Σ3,2. We define a new class Σ∗

3,2 (and
classes Σ∗

t,u) that have this closure property.
First, for all t ≥ 0, u ≥ 1 we define a set Θt,u of first-order formulas by

induction on t:

Θ0,u := the set of quantifier-free formulas;
Θt+1,u := the set of Boolean combinations of formulas of the form

∃y1 . . .∃yvψ with v ≤ u and ψ ∈ Θt,u.

Let Σ∗
t,u be the set of formulas of the form

∃x1 . . .∃xkψ,

where ψ ∈ Θt−1,u.

Exercise 8.49. Show that the formula in (8.9) is equivalent to a formula in
Σ∗

3,2. �

Definition 8.50. For all t ≥ 1, we let

W∗[t] := [{p-MC(Σ∗
t,u) | u ≥ 1}]fpt.

The classes W∗[t], for t ≥ 1, form the W∗-hierarchy. �

Example 8.51. A set S of vertices of a hypergraph H = (V, E) is a maximal
shattered set if E shatters S and there is no S′ with S ⊂ S′ ⊆ V shattered by
E. The problem

p-Maximal-Shattered-Set
Instance: A hypergraph H and k ∈ N.

Parameter: k.
Problem: Decide whether H has a maximal shattered set of

cardinality k.
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is in W∗[3]. To see this we proceed similarly to the first part of the proof of
Theorem 6.5. In particular, we represent a hypergraph as a {VERT,EDGE, I}-
structure. Let k ∈ N, and let M1, . . . , M2k and N1, . . . , N2k+1 be lists of all
subsets of [k] and [k+1], respectively. Then, for every hypergraphH, we have

(H, k) ∈ p-Maximal-Shattered-Set ⇐⇒ H |= ψk,

where ψk is the following Σ∗
3,1-sentence:

∃x1 . . .∃xk∃y1 . . .∃y2k

( ∧
i∈[k]

VERTxi ∧
∧

j∈[2k]

EDGE yj ∧

∧
j∈[2k]

( ∧
i∈[k]

i∈Mj

Ixiyj ∧
∧

i∈[k]

i/∈Mj

¬Ixiyj

)
∧ ∀xk+1

(
(VERTxk+1 ∧

∧
i∈[k]

xi �= xk+1)→

∨
j∈[2k+1]

∀y
(
EDGE y → ¬

( ∧
i∈[k+1]

i∈Nj

Ixiy ∧
∧

i∈[k+1]

i/∈Nj

¬Ixiy
))))

. �

Exercise 8.52. Let I be a set of vertices of the graph G = (V, E) and u ∈ I.
A vertex v ∈ V is a private neighbor of u (with respect to I) if v ∈ N(u) and
v /∈ N(u′) for all u′ ∈ I with u′ �= u. (Here N(w) := {w′ | w′ = w or {w, w′} ∈
E}.) The set I is irredundant if each vertex in I has a private neighbor, and I
is a maximal irredundant set if it is irredundant and there is no irredundant
set I ′ with I ⊂ I ′ ⊆ V . Show that the problem

p-Maximal-Irredundant-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a maximal irredundant set

of cardinality k.

is in W∗[3]. �

Theorem 8.53. (1) For all t ≥ 1, W[t] ⊆W∗[t] ⊆ A[t].
(2) W[1] = W∗[1], and W[2] = W∗[2].

Proof: Clearly Σt,u ⊆ Σ∗
t,u and hence, W[t] ⊆W∗[t]. A simple induction on t

shows that Θt,u ⊆ Σt+1 and hence, Σ∗
t,u ⊆ Σt. (The inclusions Σt,u ⊆ Σ∗

t,u,
Θt,u ⊆ Σt+1, and Σ∗

t,u ⊆ Σt are all true up to logical equivalence.) Thus,
W∗[t] ⊆ A[t].

Moreover, W[1] = W∗[1] since Σ1,u = Σ∗
1,u = Σ1. To obtain W[2] = W∗[2],

it suffices to show that

p-MC(Σ∗
2,u) ≤fpt p-MC(Σ2,u).

So let A be a structure and ϕ a Σ∗
2,u-sentence. We can assume that ϕ has the

form
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∃x1 . . .∃xv

∨
i∈I

∧
j∈Ji

ψij ,

where I and the Ji are finite sets and the ψij are formulas in Σ1 ∪ Π1 with
quantifier blocks of length ≤ u. First, we replace the disjunction

∨
i∈I in ϕ by

an existential quantifier. For this purpose, we add to the vocabulary τ of A
unary relation symbols Ri for i ∈ I and consider an expansion (A, (RA

i )i∈I)
of A, where (RA

i )i∈I is a partition of A into nonempty disjoint sets (clearly,
we may assume that |A| ≥ |I|). Then

A |= ϕ ⇐⇒ (A, (RA
i )i∈I) |= ∃x1 . . .∃xv∃y

∧
i∈I,
j∈Ji

(¬Riy ∨ ψij).

By pushing the disjunction behind the quantifiers, we can turn the formulas
(¬Riy ∨ ψij) into equivalent formulas in Σ1 ∪ Π1 with quantifier blocks of
length ≤ u. Altogether, we see that we can assume that ϕ has the form

∃x1 . . .∃xv

m∧
j=1

ψj ,

where for some s ≥ 0 and some quantifier-free χj

ψj = ∃ȳjχj for j ∈ [s], and ψj = ∀z̄χj for j ∈ [s + 1, m].

Here, ȳ1, . . . , ȳs, z̄ are sequences of length ≤ u, any two of them having no
variable in common. But then ϕ is equivalent to the Σ2,u-formula:

∃x1 . . .∃xv∃ȳ1 . . .∃ȳs∀z̄
m∧

j=1

χj . 
�

Originally, the classes of the W∗-hierarchy were introduced by means of
weighted satisfiability problems for classes of propositional formulas. Using
this propositional characterization of the hierarchy and combining it with the
usual normalization techniques (cf. Sect. 7.3) and the techniques underlying
Corollary 6.32, it is not hard to prove the following result:

Theorem 8.54. For every t ≥ 2,

W∗[t] ⊆W[2t− 2].

Together with Theorem 8.53, this is all that is known about the relationship
between that W-hierarchy and the W∗-hierarchy.

The Wfunc-Hierarchy

So far in this book, vocabularies of structures and formulas of first-order and
second-order logic only consisted of relation symbols. In general, vocabularies
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may also contain function symbols and constant symbols. We refer to such
vocabularies as arbitrary vocabularies, as opposed to the relational vocabular-
ies considered elsewhere in this book.2 As relation symbols, function symbols
have arities. Function symbols, constant symbols, and variables can be used
to form terms, and these terms can be used instead of variables in atomic
formulas of first-order and second-order logic.

Let Σfunc
t and Σfunc

t,u be defined as Σt and Σt,u, but with respect to ar-
bitrary vocabularies. It is well known that functions symbols and constant
symbols can be “replaced” by relation symbols. This is best illustrated with
an example.

Example 8.55. Let τ = {E, f, c}, where E is a binary relation symbol, f a
ternary function symbol, and c a constant symbol. Consider the Σfunc

2 -formula

ϕ := ∃x∃y∀z
(
Exz ∧Ezf(x, f(y, x, c), c)

)
of vocabulary τ . Let A = (A, EA, fA, cA) be a τ -structure. (That is, A is a
set, EA ⊆ A2, fA : A3 → A, and cA ∈ A.)

Let τ ′ := {E, F, C}, where E is as above, F is a 4-ary relation symbol, and
C is a unary relation symbol. We shall define a Σ2-formula ϕ′ of vocabulary
τ ′ and a τ ′-structure A′ such that

A |= ϕ ⇐⇒ A′ |= ϕ′. (8.10)

We define A′ by letting A′ := A, EA′

:= EA,

FA′

:= {(a1, a2, a3, b) ∈ A4 | fA(a1, a2, a3) = b}

(the graph of fA), and CA′

:= {cA}. We let

ϕ′ := ∃x∃y∀z∀v1∀v2∀v3

(
(Cv1 ∧ Fyxv1v2 ∧ Fxv2v1v3)→ (Exz ∧ Ezv3)

)
.

It is straightforward to verify (8.10). �

Along the lines of the previous example, it is easy to prove that

p-MC(Σfunc
t ) ≤fpt p-MC(Σt)

for all t ≥ 1. However, since we cannot bound the length of the last block
of quantifiers in advance, the elimination of function and constant symbols
laid out in Example 8.55 does not yield a reduction from p-MC(Σfunc

t,u ) to
p-MC(Σt,u′) for any u′.

Definition 8.56. For all t ≥ 1, we let

Wfunc[t] := [{p-MC(Σfunc
t,u ) | u ≥ 1}]fpt.

The classes Wfunc[t], for t ≥ 1, form the Wfunc-hierarchy. �
2Arbitrary vocabularies are only considered in this section; everywhere else in

this book, vocabularies are relational.
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The following proposition follows immediately from the preceding remarks.

Proposition 8.57. For all t ≥ 1, W[t] ⊆Wfunc[t] ⊆ A[t].

Nothing else is known about the relationship between the three hierarchies.

Exercise 8.58. Prove that for all t ≥ 1,

Wfunc[t] ⊆W[P]. �

Example 8.59. Recall the parameterized longest common substring problem
p-LCS. In Example 3.6, we showed that p-LCS is in W[P], and in Proposi-
tion 7.19, we saw that it is W[2]-hard. Here we show that

p-LCS ∈Wfunc[2].

We will reduce p-LCS to p-MC(Σfunc
2,1 ).

Let (x1, . . . , xm, k), where x1, . . . , xm ∈ Σ∗ and k ∈ N, be an instance of
p-LCS. Let

� := max{|x1|, . . . , |xm|}.

We shall define a structure A (= A(x1,...,xm,k)) and a Σfunc
2 -sentence ϕ (= ϕk)

such that (x1, . . . , xm, k) is a “yes”-instance of p-LCS if and only if A |= ϕ.
The universe of A is

A := Σ ∪ [0, max{m, �}] ∪ {∞}.

The vocabulary consists of two unary relation symbols LETTER and STRING,
of a ternary function symbol f , and of constant symbols 0 and ∞. Their in-
terpretations are

LETTERA := Σ, STRINGA := [m], 0A := 0, ∞A :=∞.

For a ∈ Σ, i ∈ [m], and j ∈ [0, �− 1] we let

fA(a, i, j) := j′,

where j′ is the smallest number greater than j such that the j′th letter of
xi is a if such a j′ exists. In all other cases, that is, if there is no such j′, or
a /∈ Σ, or i /∈ [m], or j �∈ [0, �− 1], we let fA(a, i, j) =∞. Clearly, for i ∈ [m],
a string b̄ = b1 . . . bk is a subsequence of xi if and only if

fA(bk, i, fA(bk−1, . . . fA(b2, i, f
A(b1, i, 0)) · · · )) �=∞.

Hence (x1, . . . , xm, k) is a “yes”-instance of p-LCS if and only if

A |= ∃z1 . . .∃zk∀y
(
LETTER z1 ∧ . . . ∧ LETTER zk ∧

(STRING y → f(zk, y, . . . f(z2, y, f(z1, y, 0)) . . .) �=∞)
)
. �
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Next, we shall give a machine characterization of the Wfunc-hierarchy. We
refine the notion of t-alternating ARAM program introduced in Definition 8.5:

Definition 8.60. Let t, u ≥ 1 and Q = ∃ if t is odd and Q = ∀ if t is even.
An ARAM program that is

∃∗∀u∃u . . . Qu︸ ︷︷ ︸
t blocks

-alternating

is (t, u)-alternating. �

We know that p-MC(Σt) is A[t]-complete, that p-MC(Σt,u) (for u ≥ 1)
is W[t]-complete, and that the quantifier blocks in the formulas correspond
to the alternation blocks of ARAM programs. Hence, as t-alternating ARAM
programs characterize the class A[t] (cf. Theorem 8.8), one would expect that
(t, u)-alternating ARAM programs characterize the class W[t]. Surprisingly,
they characterize the class Wfunc[t] (and hence not W[t] if W[t] �= Wfunc[t]):

Theorem 8.61. For t ≥ 1 and every parameterized problem (Q, κ), the fol-
lowing are equivalent:
• (Q, κ) ∈Wfunc[t].
• There is a (t, 1)-alternating and tail-nondeterministic κ-restricted ARAM

program P deciding (Q, κ).
• There is a u ≥ 1 and an (t, u)-alternating and tail-nondeterministic κ-

restricted ARAM program P deciding (Q, κ).

For a proof we refer the reader to the literature.

Exercise 8.62. Present a (2,1)-alternating and tail-nondeterministic κ-re-
stricted ARAM program P that decides p-LCS.

Hint: Let P compute, in its deterministic part, the table of values of the
function fA of Example 8.59. �

Our nondeterministic random access machines may guess arbitrary num-
bers (less than or equal to the content of the accumulator) in their nonde-
terministic steps. For example, a program for such a machine can guess a
number representing a vertex of a graph in one step, rather than guessing
the number bit by bit. To obtain machine characterizations of the classes of
the W-hierarchy, we have to restrict the access to the guessed numbers. As
just remarked, these numbers often represent certain objects (such as vertices
of graphs or other structures). The type of machine we are going to intro-
duce only has access to the properties of these objects and not directly to the
numbers.

We turn to the precise definition of these random access machines that we
call WRAMs. A WRAM has:

• Standard registers 0, 1, . . .; their content is denoted by r(0), r(1), . . ., re-
spectively.
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• Guess registers 0, 1, . . .; their content is denoted by g(0), g(1), . . ., respec-
tively.

For the standard registers, a WRAM has all the instructions of a standard
deterministic random access machine. Moreover, it has four additional instruc-
tions:

Instruction Semantics

EXISTS ↑ j existentially guess a natural number ≤ r(0); store it
in the r(j)th guess register

FORALL ↑ j universally guess a natural number ≤ r(0); store it
in the r(j)th guess register

JGEQUAL i j c if g(ri) = g(rj), jump to the instruction with label c

JGZERO i j c if r(〈g(ri), g(rj)〉) = 0, jump to the instruction with label c

Here, 〈 , 〉 : N0×N0 → N0 is a coding of ordered pairs of natural numbers by
natural numbers, say,

〈i, j〉 := 1

2
(i + j + 1) · (i + j) + i.

The JGEQUAL and JGZERO instructions are the jump instructions involving
guessed numbers.

A machine characterization of the classes of the W-hierarchy reads as
follows (again we refer to the literature for a proof):

Theorem 8.63. For every t ≥ 1 and every parameterized problem (Q, κ), the
following are equivalent:
• (Q, κ) ∈W[t].
• There is a (t, 1)-alternating and tail-nondeterministic κ-restricted program

P for an WRAM deciding (Q, κ).
• There is a u ≥ 1 and an (t, u)-alternating and tail-nondeterministic κ-

restricted program P for an WRAM deciding (Q, κ).

Exercise 8.64. (a) Let τ be a vocabulary all of whose function symbols are
unary. Show that p-MC(Σfunc

t,u [τ ]) ∈W[t] for all t, u ≥ 1.

(b) Let τ := {f} with binary f . Show that p-MC(Σfunc
t,u [τ ]) is Wfunc[t]-

complete under fpt-reductions.

(c) Show that p-MC(Σfunc
1 [τ ]) is W[1]-complete under fpt-reductions for some

vocabulary τ consisting of unary functions only. �

Notes

Originally, the A-hierarchy was defined in terms of the short halting problem
for alternating single-tape Turing machines. The equivalence of the halting
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problem for �-alternating machines with the model-checking problem for Σ�-
formulas of a vocabulary of bounded arity was shown in [99]. The equivalence
between the model-checking problems of bounded and unbounded arity was
proved in [103] with the help of the Σ�-Normalization Lemma. The machine
characterization of the classes of the A-hierarchy is due to [51].

Alternating weighted satisfiability problems were introduced in Abraham-
son et al. [1] and were used to define the classes AW[∗], AW[SAT] and AW[P].
Problems of the same type of were used in [103] to characterize the classes of
the A-hierarchy (Theorem 8.17) and to introduce the A-matrix (see Sect. 8.7).
The A[2]-completeness of p-Clique-Dominating-Set (Theorem 8.20) was
shown in [100], and the AW[∗]-completeness of p-Short-Geography was
shown in [1]. The relation between alternation and space in parameterized
complexity theory was discussed [50], and Exercise 8.39 was proved there.
Exercise 8.40 is due to [100], and Exercise 8.41 is due to [37].

The W∗-hierarchy was introduced by Downey et al. [85] by means of
weighted satisfiability problems. The equivalence to our definition was shown
in [103]. The equalities W[1] = W∗[1] and W[2] = W∗[2] of Theorem 8.53 were
shown in Downey et al. [85] and Downey and Fellows [82], respectively. Theo-
rem 8.54 follows easily from the results in [103] (also see [49]). Exercise 8.52 is
due to [33]. The classes of the Wfunc-hierarchy were introduced in [47], where
the machine characterizations of the W-hierarchy and the Wfunc-hierarchy
were derived.

Open Problems

Beyond the straightforward containment relations, not much is known about
the relation between the W-hierarchy, the W∗-hierarchy, the Wfunc-hierarchy,
and the A-hierarchy. Almost the only nontrivial result is Theorem 8.53(2),
stating that the first two levels of the W-hierarchy and the W∗-hierarchy
coincide. It is an interesting open question whether hierarchies coincide beyond
the second level.
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Kernelization and Linear Programming
Techniques

One of the characterizations of fixed-parameter tractability we obtained in
Sect. 1.6 is that a parameterized problem is fixed-parameter tractable if and
only if it has a kernelization, that is, a polynomial time many-one reduction
that maps a given instance to an instance of size effectively bounded in terms
of the parameter. Kernelization may be viewed as preprocessing with an ex-
plicit performance guarantee. In this chapter, we will see that kernelization
offers a very useful paradigm for designing fpt-algorithms.

We will illustrate the approach by studying different kernelization strate-
gies for the parameterized vertex cover problem and for the parameterized
hitting set problem for instances of bounded edge cardinality. Both problems
were shown to be fixed-parameter tractable in Chap. 1. In Sect. 9.1, we will
consider an elementary kernelization algorithm for the vertex cover problem
and generalize it to the hitting set problem using a well-known combinatorial
lemma, the so-called Sunflower Lemma. Section 9.2 is devoted to a very ef-
ficient kernelization of vertex cover that leads to a kernel with only a linear
number of vertices. It is based on a connection between vertex covers and
matchings and the fact that maximum matchings in bipartite graphs can be
computed efficiently. In Sect. 9.3, we obtain an even smaller kernel for vertex
cover using linear programming techniques.

Section 9.4 is only loosely connected with the rest of this chapter in that it
also employs linear programming techniques. Without proof, we state a deep
theorem from the theory of integer linear programming, which says that the
integer programming feasibility problem parameterized by the number of vari-
ables is fixed-parameter tractable. We give two applications of this theorem:
The first shows that a simple scheduling problem has an efficient polynomial
time approximation scheme, and the second that the parameterized closest
string problem is fixed-parameter tractable.
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9.1 Polynomial Kernelizations

Recall that a kernelization of a parameterized problem (Q, κ) over the alpha-
bet Σ is a polynomial time computable function K : Σ∗ → Σ∗ such that for
all x ∈ Σ∗ we have

x ∈ Q ⇐⇒ K(x) ∈ Q,

and
|K(x)| ≤ h(κ(x)),

for some computable function h. For every instance x of Q the image K(x) is
called the kernel of x (under K). By Theorem 1.39, a parameterized problem
is fixed-parameter tractable if and only if it has a kernelization. This suggests
a new method for designing fpt-algorithms, which is called the kernelization
method : Suppose we have a “good” kernelization K of a parameterized prob-
lem (Q, κ). Then to decide a given instance x, we compute the kernel K(x) and
then decide if K(x) ∈ Q by brute-force (or rather, as efficiently as possible).
Thus kernelization is used as preprocessing for other, potentially exponential,
algorithms. The two most important qualities of a good kernelization are ef-
ficient computability and small kernel size. In addition, we usually want our
kernelizations to not increase the parameter, that is,

κ(K(x)) ≤ κ(x).

The following definition introduces an abstract notion of “good” kernelization.

Definition 9.1. A kernelization K of a parameterized problem (Q, κ) over
the alphabet Σ is polynomial if there is a polynomial p(X) ∈ N0[X ] such that
|K(x)| ≤ p(κ(x)) for all x ∈ Σ∗. �

Example 9.2. By Exercise 1.41, p-deg-Independent-Set has a polynomial
kernelization. �

The following example shows that not every problem in FPT has a poly-
nomial kernelization:

Example 9.3. Let Q ∈ Σ∗ be a problem that is EXPTIME-complete (and
hence not in PTIME), and let κ : Σ∗ → Σ∗ be defined by κ(x) := �log log |x|�.

Then (Q, κ) is fixed-parameter tractable, but if (Q, κ) had a polynomial
kernelization, then Q would be decidable in polynomial time. �

Buss’ Kernelization of Vertex Cover

We start with a simple kernelization of p-Vertex-Cover that is known as
Buss’ Kernelization.1 The trivial “yes”-instance of vertex cover is the instance
(G+, 1), where G+ is the graph consisting of one vertex and no edges. The
trivial “no”-instance is the instance (G−, 1), where G− is the graph consisting
of two disjoint edges.

1Named after S. Buss, who discovered it.
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Proposition 9.4. p-Vertex-Cover has a polynomial kernelization.
More precisely, there is a kernelization of p-Vertex-Cover that, given

an instance (G, k) of p-Vertex-Cover with G = (V, E), computes in time
O(k + ||G||) an instance (G′, k′) such that

k′ ≤ k,

and either (G′, k′) = (G−, 1) is the trivial “no”-instance, or G′ = (V ′, E′) such
that

|V ′| ≤ 2(k′)2 and |E′| ≤ (k′)2.

Proof: The kernelization is based on the following two observations: Let G =
(V, E) be a graph and k ∈ N.

(i) If v ∈ V with deg(v) > k, then v is contained in every vertex cover of G
of at most k elements.

(ii) If deg(G) ≤ k and G has a vertex cover of k elements, then G has at most
k2 edges.

For v ∈ V , let G − v denote the graph obtained from G by deleting v and all
edges incident to v. Note that if deg(v) > k, then by (1), G has a vertex cover
of k elements if and only if G − v has a vertex cover of k − 1 elements.

Consider the recursive algorithm Reduce (Algorithm 9.1).

Reduce(G, k)
// G graph, k ≥ 0 nonnegative integer
1. if k = 0 then

2. if G has no edges then

3. return (G+, 1)
4. else

5. return (G−, 1)
6. else

7. if G has a vertex v with deg(v) > k then

8. return Reduce(G − v, k − 1)
9. else

10. if G has at most k2 edges then

11. return (G, k)
12. else

13. return (G−, 1).

Algorithm 9.1. Buss’ kernelization

By (i) and (ii), it is easy to see that, given an instance (G, k) of p-Vertex-
Cover, Reduce returns an equivalent instance (G′, k′). It is the trivial “no”-
instance or G′ has at most (k′)2 edges and hence at most 2(k′)2 nonisolated
vertices. Then, essentially, we can delete all isolated vertices, but we have
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to be a bit careful because we look for a vertex cover of cardinality exactly
k′; therefore, in order to obtain an equivalent instance with at most 2(k′)2

vertices we delete at most n′ − k′ isolated vertices from G′, where n′ is the
number of vertices of G′.

A linear time implementation of Reduce may proceed as follows: It first
computes the degree of all vertices and creates a list Li for every i ∈ [0, |V |−1],
which contains all vertices of degree i. Clearly, this is possible in linear time.
Whenever a vertex v of degree > k is deleted, the algorithm has to update its
lists, but this is possible in time O(deg(v)). Since every vertex is deleted at
most once, the overall time required for these update operations is O(|E|). 
�

Remark 9.5. For later reference, we observe that the graph produced by
Buss’ kernelization is either a trivial instance or a subgraph of the input
graph. �

The following corollary illustrates how a kernelization can be used as a
preprocessing algorithm for a bounded search tree algorithm in order to reduce
the overall running time.

Corollary 9.6. p-Vertex-Cover can be solved in time O(n + m + 2k · k2),
where k denotes the parameter, n the number of vertices of the input graph,
and m the number of edges of the input graph.

Proof: Compute a kernel using Buss’ kernelization and then apply the bounded
search tree algorithm of Corollary 1.19 to the kernel. 
�

The kernelizations we will consider in the following section can be applied
similarly. We will no longer state the corresponding corollaries explicitly.

A Kernelization of Hitting Set

We generalize Buss’ kernelization of p-Vertex-Cover to

p-d-Hitting-Set

for every fixed d ∈ N. We use the following combinatorial lemma, which is
known as the Sunflower Lemma or Erdös–Rado Lemma. Let H = (V, E) be
a hypergraph. A sunflower in H is a set S = {s1, . . . , sk} ⊆ E such that all
pairs of hyperedges in S have the same intersection. That is, there exists a set
C ⊆ V , called the core of S, such that for 1 ≤ i < j ≤ k we have

si ∩ sj = C.

A hypergraph is d-uniform, for some d ≥ 1, if all hyperedges have cardinality d.
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Lemma 9.7 (Sunflower Lemma). Let k, d ∈ N, and let H be a d-uniform
hypergraph with more than (k − 1)d · d! hyperedges. Then there is a sunflower
of cardinality k in H.

Furthermore, for every fixed d there is an algorithm that computes such a
sunflower in time polynomial in (k + ||H||).

Proof: The proof is by induction on d. For d = 1 the statement is trivial.
For the induction step, let d ≥ 1, and let H = (V, E) be a (d + 1)-uniform
hypergraph with

|E| > (k − 1)d+1 · (d + 1)!.

Let F := {f1, . . . , f�} ⊆ E be a maximal (with respect to set inclusion) family
of pairwise disjoint hyperedges. If � ≥ k, then F is a sunflower of cardinality
at least k in H. So let us assume that � < k. Let

W := f1 ∪ . . . ∪ f�.

Then |W | ≤ (k − 1) · (d + 1). By the maximality of F , each hyperedge e ∈ E
has a nonempty intersection with W . Thus there is some element w ∈ W such
that w is contained in at least

|E|
|W | >

(k − 1)d+1 · (d + 1)!

(k − 1) · (d + 1)
= (k − 1)d · d!

hyperedges. Pick such an element w and let

E′ := {e \ {w} | e ∈ E and w ∈ e}.

Then |E′| > (k − 1)d · d!, and by the induction hypothesis, the d-uniform
hypergraph (V, E′) contains a sunflower {s′1, . . . , s′k} of cardinality k. Then
{s′1 ∪ {w}, . . . , s′k ∪ {w}} is a sunflower of cardinality k in H.

The proof can easily be turned into a polynomial time algorithm for com-
puting a sunflower. Given a d-uniform hypergraph H = (V, E), we first com-
pute a maximal family F of pairwise disjoint hyperedges by a simple greedy
algorithm. We check if |F | ≥ k. If this is the case, F already is a sunflower.
Otherwise, we let W :=

⋃
F and compute an element w ∈W that is contained

in the maximum number of hyperedges. We compute the set E′ as above, re-
cursively find a sunflower S′ in (V, E′), and then return {s∪{w} | s ∈ S′}. 
�

Theorem 9.8. Let d ∈ N. Then there is a polynomial kernelization of
p-d-Hitting-Set that, given an instance (H, k), computes an instance (H′, k)
with ||H′|| ≤ O(kd · d! · d2).

Proof: Let H = (V, E) be a hypergraph. The crucial observation is that if
H contains a sunflower S = {s1, . . . , sk+1} of cardinality (k + 1) then every
hitting set of H must have a nonempty intersection either with the core C
of S or with all petals si \ C. Thus a hitting set of H of at most k elements
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must have a nonempty intersection with C. Therefore, if we let E′ := (E \
{s1, . . . , sk+1}) ∪ {C} and H′ := (V, E′), the instances (H, k) and (H′, k) are
equivalent.

It follows from the Sunflower Lemma by considering for all d′ ∈ [d] the
hyperedges of d′ elements that a hypergraph with maximum hyperedge car-
dinality d and more than kd · d! · d hyperedges has a sunflower of cardinality
(k + 1) and that such a sunflower can be found in polynomial time.

Given an instance (H, k), our kernelization algorithm repeatedly replaces
sunflowers of cardinality at least (k + 1) by their cores until the resulting
hypergraph has at most O(kd · d! · d) hyperedges and then deletes isolated
vertices if necessary. 
�

9.2 Crown Rule Reductions

In this section, we shall give a kernelization of vertex cover that leads to a ker-
nel with only a linear number of vertices. It is based on a connection between
matchings and vertex covers—the maximum cardinality of a matching is a
lower bound for the minimum cardinality of a vertex cover—and the fact that
maximum matchings in bipartite graphs can be computed very efficiently.

We start with a few preliminaries from matching theory. Let G = (V, E)
be a graph. A matching of G is a set M ⊆ E of pairwise disjoint edges. Let M
be a matching of G. The matching M is maximal if there is no matching M ′

of G such that M ⊂M ′. The matching M is maximum if there is no matching
M ′ of G such that |M | < |M ′|. An M -alternating path is a path in G whose
edges alternately belong to M and E \M . A vertex v ∈ V is free with respect
to M if it is not incident with an edge in M . An M -augmenting path is an
M -alternating path whose endpoints are both free. Observe that if P is an
M -augmenting path, say, with edges e1, . . . , en in this order, then

M ′ := (M \ {e2, e4, . . . , en−1}) ∪ {e1, e3, . . . , en}

is a matching with |M ′| = |M | + 1. We call M ′ the matching obtained by
flipping the edges of P .

Lemma 9.9. Let G be a graph and M a matching of G. Then M is maximum
if and only if there is no M -augmenting path.

Proof: If M is maximum, there is no M -augmenting path, because otherwise
we could obtain a matching of greater cardinality by flipping the edges of such
a path.

For the backward direction, suppose that M is not maximum. We shall
prove that there is an M -augmenting path. Let M ′ be a maximum matching
and D := M$M ′ the symmetric difference of M and M ′. Let D be the
subgraph of G with edge set D and vertex set consisting of all endpoints of
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the edges in D. Since every vertex is adjacent to at most one edge in M and
at most one edge in M ′, all connected components of D are paths or cycles
that are alternating with respect to both M and M ′. Since |M ′| > |M |, there
is at least one component that is a path whose first and last edges are in M ′.
This path is an M -augmenting path. 
�

Lemma 9.10. (1) There is an algorithm that computes a maximal matching
of a given graph in linear time.

(2) There is an algorithm that, given a bipartite graph B and a natural number
k, decides if B has a matching of cardinality k and, if it has one, computes
such a matching in time O(k · ||B||).

Proof: A maximal matching can be found in linear time by a simple greedy
algorithm.

To compute a matching of cardinality k in a bipartite graph, we start with a
maximal matching and then repeatedly increase its cardinality by flipping the
edges of an augmenting path. If a matching is not maximum, an augmenting
path can be found in linear time as follows: Let B = (V1, V2, E) be the bipartite
input graph, and let M be the current matching. Let G be the directed graph
obtained from B by adding a source s, a sink t, directed edges from s to all
free vertices in V1, and directed edges from all free vertices in V2 to t, and by
directing all edges in M from V2 to V1 and all edges in E \M from V1 to V2

(see Fig. 9.2). Then for every M -augmenting path P of B, sP t is a path from
s to t in G, and conversely, for every path P from s to t in G, P \ {s, t} is an
M -augmenting path in B. Thus to find an M -augmenting path in B, we only
have to find an s–t-path in the directed graph G, which can easily be done in
linear time. 
�

t

s

Fig. 9.2. A bipartite graph with a matching and the corresponding directed graph

For every set W of vertices of a graph G = (V, E), we let

S(W ) := {v ∈ V | ∃w ∈ W : {v, w} ∈ E}
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be the set of neighbors of W in G.2
After these preliminaries, let us now give the central definition of this

section. Figure 9.3 illustrates the definition.

Definition 9.11. Let G = (V, E) be a graph. A crown in G is a bipartite
graph C = (I, S, E′) such that:
(1) I is an independent set of G and S = S(I).
(2) E′ is the set of all edges of G between I and S (thus (I ∪ S, E′) is a

subgraph of G).
(3) C has a matching of cardinality |S|.
The value of the crown is the number val(C) := |S|. �

Fig. 9.3. A crown of value 3

For every graph G, we denote the minimum cardinality of a vertex cover of
G by vc(G). A minimum vertex cover of G is a vertex cover of G of cardinality
vc(G). For all graphs G = (V, E) and H = (W, F ), we let G \ H denote the
induced subgraph of G with vertex set V \W .

Lemma 9.12. Let G be a graph and C a crown of G. Then

vc(G) = vc(G \ C) + val(C).

Proof: Suppose that C = (I, S(I), E′). Then val(C) = |S(I)|. Let V be the
vertex set of G and C := I ∪ S(I) the vertex set of C.

Observe that S(I) is a minimum vertex cover of the crown C, because
clearly S(I) covers all edges of C, and to cover all edges of a matching of C of
cardinality |S(I)|, at least |S(I)| vertices are needed.

Let X be a minimum vertex cover of G. Then X ∩ C is a vertex cover of
C and X \ C is a vertex cover of G \ C. Thus

vc(G) = |X | = |X \ C|+ |X ∩ C| ≥ vc(G \ C) + |S(I)|.
2The notation S(W ) indicates that the set is the “1-sphere around W .” We write

N(W ) = W ∪ S(W ) for the “1-neighbourhood” of W .
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Conversely, let X ′ be a minimum vertex cover of G \ C. Then X := X ′ ∪ S(I)
is a vertex cover of G, and we have

vc(G) ≤ |X | ≤ |X ′|+ |S(I)| = vc(G \ C) + |S(I)|. 
�

It follows from the previous lemma that we can transform an instance
(G, k) of p-Vertex-Cover into an equivalent smaller instance (G′, k′) by
deleting a crown C from G and reducing the parameter k by the value of the
crown. This is the reduction underlying the following kernelization theorem.

Theorem 9.13. There is a kernelization of p-Vertex-Cover, that, given
an instance (G, k) with G = (V, E), computes in time O

(
k · ||G||

)
an instance

(G′, k′) such that k′ ≤ k and either (G′, k′) = (G−, 1) is the trivial “no”-
instance or G′ has at most 3k vertices.

Proof: Let G = (V, E) be a graph and k ∈ N. Without loss of generality we
may assume that G has no isolated vertices. Given (G, k), our kernelization
algorithm first computes a maximal matching L of G. If |L| > k, then vc(G) ≥
|L| > k, and the algorithm returns the trivial “no”-instance (G−, 1).

Fig. 9.4. A graph G with a maximal matching L

Figures 9.4–9.7 illustrate the proof. Figure 9.4 shows a graph G with a
maximal matching L of cardinality 4.

In the following, we assume that |L| ≤ k. Let I be the set of all vertices
that are free with respect to L (in Fig. 9.4, this is the top row of vertices).
Note that by the maximality of L, I is an independent set of G. If |I| ≤ k,
then |V | = 2|L|+ |I| ≤ 3k, and the kernelization algorithm simply returns the
input instance (G, k).

In the following, we assume that |I| > k. The core of the kernelization
algorithm, to be described next, is the construction of a crown C of G with at
least |V | − 3k vertices.

Let B be the bipartite graph whose vertex set is B := I ∪ S(I) and whose
edge set consists of all edges between I and S(I). In a first step toward the
construction of the crown C, the kernelization algorithm computes B and a
maximum matching M of B (cf. Fig. 9.5). If |M | > k, then vc(G) ≥ |M | >
k, and the algorithm returns the trivial “no”-instance (G−, 1). Otherwise, if
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|M | ≤ k and |M | = |S(I)|, then B is a crown, and we let C := B. Note that
in this case, C has at least |V | − 2|L| ≥ |V | − 2k vertices.

Fig. 9.5. The bipartite graph B with a maximum matching M

In the following, we assume that |M | ≤ k and |M | < |S(I)|. Since |I| > k,
there is at least one vertex in I that is free with respect to M . Let J be the
set of all free vertices with respect to M in I (in Fig. 9.5, J consists of the
1st, the 2nd, the 5th, and the 8th vertex in the top row). Let C be the set of
all vertices of B that can be reached by an M -alternating path from a vertex
in J . Let C be the induced subgraph of B with vertex set C (cf. Fig. 9.6). Let
I ′ := C ∩ I.

Fig. 9.6. The crown C

Claim 1. S(I ′) = C ∩ S(I).

Proof: Clearly, S(J) ⊆ C∩S(I). Let v ∈ I ′\J = (C∩I)\J . We shall prove that
S({v}) ⊆ C. By the definition of C, the vertex v is reachable from a vertex
in J by an alternating path P . The last edge e of P is in M , because the first
edge is not and the length of P is even. Let w ∈ S({v}). If {v, w} = e, then w
is reachable by the alternating path P \ {v}. Otherwise, {v, w} �∈ M , and w
is reachable by the alternating path Pw. This proves that S(I ′) ⊆ C ∩ S(I).

To prove that C∩S(I) ⊆ S(I ′), let v ∈ C∩S(I). Let P be an M -alternating
path from a vertex in J to v, and let w ∈ I be the predecessor of v on this
path. Then w ∈ C ∩ I = I ′, and thus v ∈ S(I ′). �

Claim 2. C is a crown.



9.2 Crown Rule Reductions 217

Proof: By claim 1, conditions (1) and (2) of Definition 9.11 are satisfied with
I := I ′. For condition (3), we let M ′ be the intersection of M with the edge
set of C.

Suppose for contradiction that |M ′| < |S(I ′)|. Then there exists a vertex
v ∈ S(I ′) that is free with respect to M ′. Since v ∈ S(I ′) ⊆ C, there exists an
M -alternating path P from a vertex in J to v whose last edge is not in M . We
observe that v is free with respect to M , too, because if {v, w} ∈M for some
w, then Pw would be an M -alternating path. Hence w ∈ C, and therefore
{v, w} ∈M ′. Furthermore, all vertices in J are free with respect to M . Thus
the path P is actually M -augmenting. By Lemma 9.9, this contradicts M
being a maximum matching of B. �

To compute the crown C, our algorithm employs a similar technique as we
used in the proof of Lemma 9.10 to compute augmenting paths.

Let
c := val(C) = |M ′|.

Claim 3. |C| ≥ |V | − 3k + 2c.

Proof: C consists of the vertices in J and the 2c endpoints of the vertices in
M ′. We have

|V | = |I|+ 2|L| = |J |+ |M |+ 2|L|,
and thus |J | = |V | − 2|L| − |M | ≥ |V | − 3k. �

Fig. 9.7. The kernel G \ C

Let G′ := G \ C and k′ := k − c (cf. Fig. 9.7). Then by Lemma 9.12, G has
vertex cover of size k if and only if G′ has a vertex cover of size k′. Note that
the number of vertices of G′ is |V \ C| ≤ 3k − 2.

If k′ = 0, then the kernelization algorithm either returns the trivial “yes”-
instance (G+, 1) if G′ has no edges or the trivial “no”-instance (G−, 1) if G′
has at least one edge. Otherwise, the algorithm returns (G′, k′).

The running time of the algorithm is

O(||G||) + O(k · ||B||) + O(||B||) ≤ O(k · ||G||).

Here the first term O(||G||) accounts for the time it takes to compute the
maximal matching L, the independent set I, and the bipartite graph B. The
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second term O(k·||B||) accounts for the time it takes to compute the maximum
matching M (cf. Lemma 9.10(2)). The third term O(||B||) accounts for the
time it takes to compute C. 
�

Note that the theorem only says that a given instance (G, k) of p-Vertex-
Cover can be reduced to a kernel (G′, k′) where the number of vertices of G′
is linear in k. This does not mean that the size ||G′|| is linear k. In this sense,
claims that p-Vertex-Cover has a “linear kernel,” which can occasionally
be found in the literature, are misleading.

9.3 Kernelization Through Linear Programming

An even smaller kernel for p-Vertex-Cover can be found by linear program-
ming techniques.

Theorem 9.14. There is a kernelization of p-Vertex-Cover that, given
an instance (G, k), computes in polynomial time an instance (G′, k′) such that
k′ ≤ k and either (G′, k′) = (G−, 1) is the trivial “no”-instance or G′ has at
most 2k′ vertices.

Recall that a linear program consists of a system of linear inequalities and
a linear objective function. We use the following well-known fact:

Fact 9.15. The linear programming problem can be solved in polynomial time;
that is, there is a polynomial time algorithm that computes an optimal solution
for a given linear program with rational coefficients.

A proof can, for example, be found in [124].
To prove Theorem 9.14, we formulate the minimum vertex cover problem

as a linear program. Let G = (V, E) be a graph. Consider the following linear
program L(G):

minimize
∑
v∈V

xv subject to

xv + xw ≥ 1, for all {v, w} ∈ E,

xv ≥ 0, for all v ∈ V,

xv ≤ 1, for all v ∈ V.

(Observe that the constraints xv ≤ 1 are not needed, because an optimal
solution of the program without these constraints will satisfy them anyway.)
Integral solutions of L(G) correspond to vertex covers of G in an obvious way.

By R we denote the set of real numbers. A solution (xv)v∈V ∈ RV of L(G)
is half-integral if xv ∈ {0, 1

2 , 1} for all v ∈ V .

Lemma 9.16. Let G = (V, E) be a graph. Then L(G) has an optimal solution
that is half-integral.

Furthermore, a half-integral optimal solution of L(G) can be computed in
polynomial time.
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Proof: Let (xv)v∈V be an optimal solution for L(G) that is not half-integral.
We show how to transform (xv)v∈V into a solution (x′

v)v∈V such that

(i)
∑

v∈V x′
v =

∑
v∈V xv,

(ii) (x′
v)v∈V has fewer entries not in {0, 1

2 , 1} than (xv)v∈V .

The existence of a half-integral optimal solution follows.
Let

ε := min
{
|xv|, |xv − 1

2 |, |xv − 1|
∣∣ xv �∈ {0, 1

2 , 1}
}
.

For every v ∈ V , we define x′
v and x′′

v by

x′
v :=

⎧⎪⎨⎪⎩
xv + ε, if 0 < xv < 1

2 ,

xv − ε, if 1
2 < xv < 1,

xv, otherwise.

and x′′
v :=

⎧⎪⎨⎪⎩
xv − ε, if 0 < xv < 1

2 ,

xv + ε, if 1
2 < xv < 1,

xv, otherwise.

Then both (x′
v)v∈V and (x′′

v )v∈V are solutions of L(G). To see this, let {v, w} ∈
E, say, with xv ≤ xw. If xv = 0 then xw = x′

w = 1, and the constraint
x′

v + x′
w ≥ 1 is satisfied. If 0 < xv < 1

2 , then xw > 1
2 , and

x′
v + x′

w ≥ xv + ε + xw − ε = xv + xw ≥ 1.

If xv = 1
2 , then xw ≥ 1

2 , and hence x′
v, x′

w ≥ 1
2 , and again the constraint

x′
v + x′

w ≥ 1 is satisfied. For (x′′
v )v∈V , we argue completely analogously.

Since ∑
v∈V

xv =
1

2

(∑
v∈V

x′
v +

∑
v∈V

x′′
v

)
,

and (xv)v∈V is optimal, we have
∑

v∈V xv =
∑

v∈V x′
v =

∑
v∈V x′′

v . Thus both
(x′

v)v∈V and (x′′
v )v∈V satisfy (i). By the choice of ε, at least one of the two

solutions satisfies (ii).
Note that the construction actually gives a polynomial time algorithm

for transforming an arbitrary optimal solution into a half-integral optimal
solution. Combined with Fact 9.15, this gives us a polynomial time algorithm
for computing a half-integral optimal solution of L(G). 
�

The following lemma, which in combination with the previous lemma is
known as the Nemhauser–Trotter theorem, contains the essence of how a
kernel can be constructed from a half-integral solution.

Lemma 9.17. Let G = (V, E) be a graph and (xv)v∈V an optimal half-integral
solution of L(G). For r ∈ {0, 1

2 , 1}, let Vr := {v ∈ V | xv = r}, and let Gr be
the induced subgraph of G with vertex set Vr. Then
(1) vc(G 1

2
) ≥ |V 1

2
|/2.

(2) vc(G 1
2
) = vc(G)− |V1|.

Proof: For every subset W ⊆ V and every r ∈ {0, 1
2 , 1}, let Wr := Vr ∩W .

Observe first that:
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(i) If S is a vertex cover of G, then Sr is a vertex cover of Gr, for every
r ∈ {0, 1

2 , 1}.
(ii) If S′ is a vertex-cover of G 1

2
, then S′ ∪ V1 is a vertex cover of G.

Statement (i) is obvious, and (ii) follows from the fact that every edge {v, w}
that does not have both endpoints in V 1

2
must have at least one endpoint in

V1, because (xv)v∈V satisfies the constraint xv + xw ≥ 1.
Now (1) follows immediately: Let S′ be a vertex cover of G 1

2
with |S′| =

vc(G 1
2
). Then

|S′|+ |V1| ≥ vc(G) ≥
∑
v∈V

xv =
1

2
|V 1

2
|+ |V1|.

The first inequality follows from (ii), the second from the optimality of the
solution (xv)v∈V .

To prove (2), note that (ii) also implies that

vc(G 1
2
) + |V1| ≥ vc(G).

For the converse inequality, let S be a minimum vertex cover of G. Let (x′
v)v∈V

be defined as follows:

x′
v :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1; if v ∈ S1,
1
2 , if v ∈ V1 \ S1,

or v ∈ V 1
2
,

or v ∈ S0,

0, if v ∈ V0 \ S0.

We claim that (x′
v)v∈V is a solution of L(G). To see this, let {v, w} be an edge

of G. If both v, w ∈ V1 ∪ V 1
2
∪ S0, then x′

v, x′
w ≥ 1

2 , and thus the constraint

xv + xw ≥ 1 is satisfied. So suppose that v ∈ V0 \ S0. Then w ∈ V1, because
(xv)v∈V is a solution for L(G), and w ∈ S, because S is a vertex cover of G.
Hence w ∈ S1, and thus x′

w = 1.
Therefore,

1

2
|V 1

2
|+ |V1| =

∑
v∈V

xv

≤
∑
v∈V

x′
v (by the optimality of (xv)v∈V )

=
1

2
|S0|+

1

2
|V 1

2
|+ 1

2
|V1 \ S1|+ |S1|

=
1

2
|S0|+

1

2
|V 1

2
|+ 1

2
|V1|+

1

2
|S1|.

It follows that |V1| ≤ |S0|+ |S1| and hence, by (i),
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vc(G 1
2
) + |V1| ≤ |S 1

2
|+ |V1| ≤ |S| = vc(G). 
�

Proof of Theorem 9.14: Let (G, k) be an instance of p-Vertex-Cover. For
r ∈ {0, 1

2 , 1}, let Vr and Gr as in Lemma 9.17. Let k′ := k − |V1|.
• If k′ < 0, then by Lemma 9.17(2), G does not have a vertex cover of k

elements. In this case, the kernelization returns the trivial “no”-instance
(G−, 1).

• If k′ = 0, the kernelization returns the trivial “no”-instance (G−, 1) if G 1
2

has at least one edge and the trivial “yes”-instance (G+, 1) otherwise.
• If k′ > 0 and |V 1

2
| > 2k′, then by Lemma 9.17(1), G 1

2
does not have a

vertex cover of k′ elements, and again the kernelization returns (G−, 1).
• Otherwise, the kernelization returns (G 1

2
, k′). 
�

15

9 10 11 12 13 14

16

1 2 3 4 5 6 7 8

Fig. 9.8. The graph G of Example 9.18

Fig. 9.9. A half-integral optimal solution of L(G). Black vertices get value 1, gray
vertices get value 1/2, and white vertices get value 0

Example 9.18. As an example, let us consider the graph G of Fig. 9.4 that we
used in the previous section to illustrate the proof of Theorem 9.13. Figure 9.8
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shows the graph with its vertices numbered. An optimal half-integral solution
of cost 6 for the linear program L(G) is:

x1 = x2 = x3 = x5 = x6 = x7 = x8 = x16 = 0,

x4 = x10 = x11 = x12 = 1
2 ,

x9 = x13 = x14 = x15 = 1

(cf. Fig. 9.9). For k ≥ 5, this solution yields the kernel (G′, k− 4), where G′ is
the induced subgraph of G with vertex set {4, 10, 11, 12} (the gray vertices in
Fig. 9.9).

Let us remark that the linear program L(G) also has an optimal integral
solution that directly delivers a minimum vertex cover of size 6:

x1 = x2 = x3 = x5 = x6 = x7 = x8 = x10 = x12 = x16 = 0,

x4 = x9 = x11 = x13 = x14 = x15 = 1. �

9.4 Integer Linear Programming

Let us consider the following parameterization of the integer (linear) program-
ming feasibility problem:

p-Integer-Programming
Instance: A matrix A ∈ Zm×n and a vector �b ∈ Zm.

Parameter: n.
Problem: Decide whether there exists a nonnegative integral

vector �x ∈ Nn
0 such that A · �x ≤ �b.

Theorem 9.19. p-Integer-Programming is fixed-parameter tractable.

A proof of this theorem requires sophisticated techniques from algorithmic
number theory and is beyond the scope of this book. In the following two
subsections, we will illustrate the strength of Theorem 9.19 with two applica-
tions.

Scheduling on Identical Machines

Recall the definitions of NP-optimization problems and (efficient, fully) poly-
nomial time approximation schemes from Sect. 1.4. We study the following
simple scheduling problem: We have to schedule n jobs with (integral) process-
ing times p1, . . . , pn on m identical machines, minimizing the total processing
time, which is called the makespan. Formally, we define:
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Min-Makespan-Scheduling
Instance: m, p1, . . . , pn ∈ N.

Solutions: Partitions (S1, . . . , Sm) of [n], where some of the Si

(the jobs scheduled on machine i) may be empty.
Cost: max1≤i≤m

∑
j∈Si

pj .
Goal: min.

Let us point out that if m is (much) larger than n, formally this problem does
not adhere to our definition of an NP-optimization problem, because the size
of a solution, which is at least m, is not polynomially bounded in the size
of the input. However, we can always assume that m ≤ n, because even the
trivial solution that assigns every job to a separate machine requires at most
n machines. In the following, we only consider instances (m, p1, . . . , pn) with
m ≤ n.

It is known that the decision problem associated with Min-Makespan-
Scheduling is strongly NP-complete, that is, it is NP-complete even if the
input numbers are given in unary. By standard techniques from approximation
theory, it follows that the problem has no fptas. We shall prove that it has an
eptas.

As a first step towards this eptas, we shall prove that the standard parame-
terization of Min-Makespan-Scheduling is fixed-parameter tractable. This
is where we apply Theorem 9.19. Recall that the standard parameterization
of Min-Makespan-Scheduling is the following parameterized problem:

p-Min-Makespan-Scheduling
Instance: m, p1, . . . , pn ∈ N and k ∈ N.

Parameter: k.
Problem: Decide whether there is a solution of cost at most k.

Theorem 9.20. p-Min-Makespan-Scheduling is fixed-parameter tracta-
ble.

Moreover, there is an fpt-algorithm that, given an instance I of Min-
Makespan-Scheduling and a k ∈ N, computes a solution for I of cost at
most k if there is one.

Proof: Consider an instance I = (m, p1, . . . , pn), and let k ∈ N. Observe that
if there is an i ∈ N such that pi > k, then instance I has no solution of cost
at most k. Thus we may assume that pi ≤ k for all i ∈ [n]. An assignment for
a single machine is a k-tuple

ā = (a1, . . . , ak) ∈ Nk
0 .

Intuitively, the assignment ā indicates that, for i ∈ [k], precisely ai jobs of
cost i are scheduled on the machine. The cost of an assignment ā is
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cost(ā) :=

k∑
i=1

ai · i.

Of course, we only need to consider assignments of cost at most k. Let A be
the set of all assignments of cost at most k. Note that A ⊆ [0, k]k, and thus
|A| ≤ (k + 1)k. Observe that we can describe a solution by saying, for each
assignment ā ∈ A, how many machines are assigned their jobs according to
assignment ā.

For all ā ∈ A, we introduce an integer variable xā. For all j ∈ [k], we let
bj be the number of jobs i ∈ [n] with processing time pi = j. Consider the
following set of equalities, which guarantee that if xā machines are assigned
their jobs according to assignment ā, then we obtain a correct solution:∑

ā∈A

xā = m, (9.1)

∑
ā=(a1,...,ak)∈A

aj · xā = bj , for all j ∈ [k], (9.2)

xā ∈ N0, for all ā ∈ A. (9.3)

Equality (9.1) makes sure that there is exactly one assignment for every ma-
chine. The equalities in (9.2) make sure that we schedule the right number of
jobs of each processing time j ∈ [k].

Since the cardinality of the set A and hence the number of variables of
the integer program are effectively bounded in terms of the parameter, this
yields an fpt-reduction from p-Min-Makespan-Scheduling to p-Integer-
Programming. Therefore, p-Min-Makespan-Scheduling is fixed-param-
eter tractable by Theorem 9.19.

It remains to prove that we can actually compute a solution of cost at
most k for a given instance and not only decide if there exists one. To do
this, we observe that if we can solve the feasibility problem, we can also find
a solution for the integer linear program (9.1)–(9.3). Each variable takes a
value in [0, m]. We take the first variable xā1 and consider the integer linear
programs obtained from (9.1)–(9.3) by adding each of the constraints xā1 = 0,
xā1 = 1, xā1 = 2, . . ., xā1 = m until we find one that is solvable. For this
integer linear program we consider the second variable, et cetera. 
�

Lemma 9.21. Let I := (m, p1, . . . , pn) be an instance of Min-Makespan-
Scheduling and

L := max
({

pi

∣∣ i ∈ [n]
}
∪
{ 1

m

n∑
i=1

pi

})
.

Then
L ≤ opt(I) ≤ 2L,

where opt(I) is the cost of an optimal solution for I.



9.4 Integer Linear Programming 225

Proof: For the lower bound, observe that the cost of any solution must be
larger than the cost of every job and the average workload per machine.

For the upper bound, we construct a solution of cost at most 2L by a simple
greedy algorithm as follows: We process jobs 1, . . . , n in this order, scheduling
the next job onto the machine with the lowest workload so far (breaking ties
arbitrarily). Let (S1, . . . , Sm) be the solution obtained this way. We shall prove
that for every � ∈ [m] we have

∑
i∈S�

pi ≤ 2L.
Let � ∈ [m], and let r ∈ [n] be the last job scheduled onto machine �. Since

the workload of machine � before job r is scheduled onto it is lower than or
equal to the workload of all other machines at this and hence at any later
point in time, we have ∑

i∈S�\{r}
pi ≤

∑
i∈Sj

pi,

for all j ∈ [m]. Since

m∑
j=1

∑
i∈Sj

pi =
∑
i∈[n]

pi ≤ m · L,

it follows that
∑

i∈S�\{r} pi ≤ L. Since L ≥ pr, this implies∑
i∈S�

pi ≤ L + pr ≤ 2L. 
�

Theorem 9.22. Min-Makespan-Scheduling has an eptas.

Proof: Let I = (m, p1, . . . , pn) be an instance of Min-Makespan-Scheduling
and k ∈ N. We show how to compute a solution approximating the optimal
solution to a factor (1 + 1/k) by reducing the problem to the fixed-parameter
tractable standard parameterization p-Min-Makespan-Scheduling.

Let

L := max
({

pi

∣∣ i ∈ [n]
}
∪
{ 1

m

n∑
i=1

pi

})
.

Then by Lemma 9.21, opt(I) ≤ 2L.
Without loss of generality, we may assume that p1 ≥ p2 ≥ . . . ≥ pn.

Furthermore, let us assume for now that p1 ≥ L/k. We will see later that this
assumption is inessential. Let n′ ∈ [n] be maximum such that pn′ ≥ L/k.

For all i ∈ [n′], let

p′i :=

⌊
k2

L
· pi

⌋
. (9.4)

Then,

p′i ≥
⌊

k2

L
· L

k

⌋
= k. (9.5)

Thus,
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L

k2
· p′i ·

(
1 +

1

k

)
≥ L

k2
· p′i ·

(
1 +

1

p′i

)
(9.6)

=
L

k2
· p′i +

L

k2
(9.7)

≥ pi (because p′i ≥
k2

L
· pi − 1). (9.8)

Let S̄ = (S1, . . . , Sm) be an optimal solution for I. Then

opt(I) = max
1≤j≤m

∑
i∈Sj

pi.

We consider the new instance

I ′ := (m, p′1, . . . , p
′
n′).

and claim that
opt(I ′) ≤ 2k2. (9.9)

To see this, note that
(S1 ∩ [n′], . . . , Sm ∩ [n′])

is a solution for I ′, and thus we have

opt(I ′) ≤ max
1≤j≤m

∑
i∈Sj∩[n′]

p′i

≤ k2

L
· max
1≤j≤m

∑
i∈Sj∩[n′]

pi (because p′i ≤
k2

L
· pi)

≤ k2

L
· max
1≤j≤m

∑
i∈Sj

pi

=
k2

L
· opt(I) (because S̄ is optimal)

≤ 2k2 (because opt(I) ≤ 2L).

Applying the fpt-algorithm for the standard parameterization O(log k) times,
we can compute an optimal solution S̄′ := (S′

1, . . . , S
′
m) for I ′. Since (S1 ∩

[n′], . . . , Sm ∩ [n′]) is a solution for I ′, we have

opt(I ′) = max
1≤j≤m

∑
i∈S′

j

p′i ≤ max
1≤j≤m

∑
i∈Sj∩[n′]

p′i. (9.10)

Thus

max
1≤j≤m

∑
i∈S′

j

pi ≤
(

1 +
1

k

)
· max
1≤j≤m

∑
i∈S′

j

L

k2
· p′i (by (9.6)–(9.8))



9.4 Integer Linear Programming 227

≤
(

1 +
1

k

)
· max
1≤j≤m

∑
i∈Sj∩[n′]

L

k2
· p′i (by (9.10))

≤
(

1 +
1

k

)
· max
1≤j≤m

∑
i∈Sj∩[n′]

pi (because p′i ≤
k2

L
· pi).

This implies that if n′ = n, then S̄′ is a solution of I whose cost approximates
the cost of the optimal solution S̄ to the desired factor of (1+1/k). If n′ < n,
we have to schedule the remaining jobs n′+1, . . . , n. Recall that the processing
time of each of these jobs is smaller than L/k. We extend the partial solution
S̄′ greedily, that is, we process jobs n′ + 1, . . . , n in this order, scheduling
the next job onto the machine with the lowest workload so far (breaking ties
arbitrarily). Let S̄∗ = (S∗

1 , . . . , S∗
m) be the solution obtained this way.

We distinguish between two cases:

Case 1: The cost of the solution S̄∗ is the same as the cost of the partial
solution S̄′.

Then

max
1≤j≤m

∑
i∈S∗

j

pi = max
1≤j≤m

∑
i∈S′

j

pi

≤
(

1 +
1

k

)
· max
1≤j≤m

∑
i∈Sj∩[n′]

pi

≤
(

1 +
1

k

)
· max
1≤j≤m

∑
i∈Sj

pi

=

(
1 +

1

k

)
· opt(I).

Case 2: The cost of the solution S̄∗ is larger than the cost of the partial
solution S̄′.

We argue similarly as in the proof of Lemma 9.21. We observe that for all
j0 ∈ [m],

max
1≤j≤m

∑
i∈S∗

j

pi ≤
L

k
+

∑
i∈S∗

j0

pi,

because the last job scheduled on the machine with maximum workload has
processing time smaller than L/k. It follows that

max
1≤j≤m

∑
i∈S∗

j

pi ≤
L

k
+

1

m

∑
i∈[n]

pi ≤
L

k
+ opt(I).

Since L ≤ opt(I), we get
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max
1≤j≤m

∑
i∈S∗

j

pi ≤
(

1 +
1

k

)
· opt(I).

This completes Case 2.
It remains to consider the case n′ = 0, that is, instances where all jobs

have processing time at most L/k. For such instances, we can argue as in
Case 2. 
�

The Closest String Problem

The closest string problem asks for a string of minimum Hamming distance
from a given collection of strings. Recall that the Hamming distance dH(ā, b̄)
between two strings ā = a1 . . . an, b̄ = b1 . . . bn ∈ Σn is the number of positions
i ∈ [n] such that ai �= bi.

p-Closest-String
Instance: Strings ā1, . . . , āk ∈ Σn and an integer � ∈ N0.

Parameter: k.
Problem: Decide whether there a string b̄ ∈ Σn such that

dH(āi, b̄) ≤ � for all i ∈ [k].

Exercise 9.23. Prove that p-Closest-String ∈ XP.
Hint: Use dynamic programming. �

Exercise 9.24. Prove that the following parameterization of the closest
string problem is fixed-parameter tractable:

Instance: Strings ā1, . . . , āk ∈ Σn and an integer � ∈ N0.
Parameter: k + �.

Problem: Decide whether there a string b̄ ∈ Σn such that
dH(āi, b̄) ≤ � for all i ∈ [k].

�

Theorem 9.25. p-Closest-String is fixed-parameter tractable.

Proof: Let ā1, . . . , āk ∈ Σn, � ∈ N0 be an instance of p-Closest-String,
where āi = ai1 . . . ain for all i ∈ [k]. We formulate the problem as an integer
linear program with variables xij for i ∈ [k], j ∈ [n]. The intended meaning of
these variables is

xij =

{
1, if bj = aij ,

0, otherwise,
(9.11)

for some string b̄ = b1 . . . bn ∈ Σn with dH(āi, b̄) ≤ � for all i ∈ [k]. Let I1 be
the following integer linear program:
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xij − xi′j = 0, for all i, i′ ∈ [k], j ∈ [n] such that aij = ai′j , (9.12)

xij + xi′j ≤ 1, for all i, i′ ∈ [k], j ∈ [n] such that aij �= ai′j , (9.13)
n∑

j=1

xij ≥ n− �, for i ∈ [k], (9.14)

xij ∈ N0, for i ∈ [k], j ∈ [n]. (9.15)

Then every solution (xij)i∈[k],j∈[n] gives rise to a string b̄ = b1 . . . bn ∈ Σn with
dH(āi, b̄) ≤ � for all i ∈ [k]. We simply let bj := aij if xij = 1, and if xij = 0
for all i ∈ [k] we let bj be arbitrary (say, bj := a1j). The equalities (9.12)
and inequalities (9.13) make sure that b̄ is well-defined. The inequalities (9.14)
make sure that dH(āi, b̄) ≤ � for all i ∈ [k]. Conversely, every b̄ = b1 . . . bn ∈ Σn

with dH(āi, b̄) ≤ � for all i ∈ [k] gives rise to an integral solution (xij)i∈[k],j∈[n]

of I1 defined as in (9.11).
However, we cannot apply Theorem 9.19 to solve this integer linear pro-

gram, because the number of variables is not bounded in terms of the param-
eter.

The crucial observation we make now is that for every j ∈ [n] the con-
straints (9.12) and (9.13) only depend on the equalities that hold among the
aij , for i ∈ [k], and not on the actual values aij . Let

Ej := {(i, i′) | aij = ai′j}.

Then for every j ∈ [n] the constraints (9.12) and (9.13) only depend on the
equivalence relation Ej . Let F1, . . . , FK be a list of all equivalence relations on
[k] that appear among E1, . . . , En. Then K is bounded by the number B(k)
of equivalence relations on [k], which is known as the kth Bell number.

For all s ∈ [K], let ns be the number of occurrences of Fs among
E1, . . . , En, that is,

ns := |{j ∈ [n] | Fs = Ej}|.
We define a new integer program I2 in variables yis, i ∈ [k], s ∈ [K] as follows:

yis − yi′s = 0, for all s ∈ [K], (i, i′) ∈ Fs, (9.16)
q∑

p=1

yips ≤ ns, for all s ∈ [K], where i1, . . . , iq
is a system of representatives of
the equivalence classes of Fs,

(9.17)

K∑
s=1

yis ≥ n− �, for i ∈ [k], (9.18)

yis ∈ N0, for i ∈ [k], s ∈ [K]. (9.19)

Then every solution (xij)i∈[k],j∈[n] of I1 gives rise to a solution (yis)i∈[k],s∈[K]

of I2 defined by
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yis :=
∑

j∈[n],
Fs=Ej

xij .

Conversely, for every solution (yis)i∈[k],s∈[K] of I2 we can define a solution
(xij)i∈[k],j∈[n] of I1 as follows: For s ∈ [K], let f1, . . . , fq ⊆ [k] be the equiva-
lence classes of Fs, and let ip := min fp for p ∈ [q]. To simplify the notation, let
us assume without loss of generality that Ej = Fs precisely for j = 1, . . . , ns.
Recall that by (9.17) we have

∑q
p=1 yips ≤ ns. For p ∈ [q] and i ∈ fp, we let

xij := 1 for all j ∈
[

p−1∑
r=1

yirs + 1,

p∑
r=1

yirs

]
,

and xij := 0 otherwise. Then
∑ns

j=1 xij = yips = yis, the last equality holding
by (9.16). Now (xij)i∈[k],j∈[n] is a solution of I1: (9.12), (9.13), and (9.15) are
immediate from the definition of the xij ; by (9.18) we have

n∑
j=1

xij =

K∑
s=1

yis ≥ n− �

and thus (9.14) is satisfied, too.
Since the number of variables of I2 is bounded in terms of the parameter

k, by Theorem 9.19 we can find a solution (yis)i∈[k],s∈[K] of I2 with an fpt-
algorithm. From this solution, we can construct a solution (xij)i∈[k],j∈[n] of I1

and then a b̄ ∈ Σn with dH(āi, b̄) ≤ � for all i ∈ [k] in polynomial time. 
�

Notes

The notion of kernelization in the context of parameterized complexity theory
goes back to Downey and Fellows [83]. Of course, preprocessing algorithms
following similar strategies have been considered elsewhere. What is new here
is that there is an explicit success guarantee for the preprocessing algorithm
that is tied to the parameter.

Buss’ kernelization for vertex cover is attributed to S. Buss in [83]. Nieder-
meier and Rossmanith [166] gave a polynomial kernelization for p-3-Hitting-
Set that yields a kernel of size O(k3).

Crown rule reductions are from [53, 94]. Theorem 9.13 is proved in [53].
Variations of the crown rule reduction have been introduced to kernelize var-
ious other problems (see, for example, [67, 95, 159, 173, 174]). [3] experimen-
tally evaluates various kernelization strategies for vertex cover.

The linear program for vertex cover has been analyzed by Nemhauser and
Trotter [164]; Lemmas 9.16 and 9.17 have been proved there. Chen et al. [46]
observed that this yields a kernelization of vertex cover.
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Theorem 9.19 is due to Lenstra [152] and was later improved by Kan-
nan [145]. For an introduction to the area, called “algorithmic geometry
of numbers,” we refer the reader to the surveys [144, 151]. Hochbaum and
Shmoys [126] proved that Min-Makespan-Scheduling has a ptas. The ap-
proach to the problem by integer linear programming and the existence of
an eptas are from [9]. Garey and Johnson [114] proved that the strong NP-
completeness of the decision problem associated with an optimization problem
implies the nonexistence of an fptas. The strong NP-completeness of Min-
Makespan-Scheduling is from [115].

The fixed-parameter tractability of the parameterized closest string prob-
lem is due to Gramm et al. [119].

Open problems

A specific question that has received some attention and is also interesting
in connection with the theory of subexponential fixed-parameter tractability
presented in Chap. 16 is whether there is a kernel for p-d-Hitting-Set with
O(k) vertices. We have seen that not all fixed-parameter tractable problems
have a polynomial kernelization. But how about specific problems such as
p-Sat(Γ2,1)?
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The Automata-Theoretic Approach

Algorithms based on finite automata are very successfully applied in dif-
ferent areas of computer science, for example, automated verification and
database systems. Often, such algorithms are fixed-parameter tractable rather
than polynomial time. Automata-theoretic algorithms typically apply to logic-
based problems such as model-checking problems or database query evalua-
tion. In the following chapters, however, we will see that these techniques can
also be used for many combinatorial problems on trees and treelike graphs.

Ironically, the automata-theoretic method not only gives us a very gen-
eral and practically important paradigm for the design of fpt-algorithms,
but also generates our first (and the only known) examples of natural fixed-
parameter tractable problems with superexponential lower bounds on the pa-
rameter dependence of fpt-algorithms solving them. More precisely, we prove
that (under natural complexity theoretic assumptions) the model-checking
problem for first-order and monadic second-order logic on trees is fixed-
parameter tractable, but not decidable by an fpt-algorithm whose running
time is bounded by

o(k)

{
22

. . .
2

· nO(1).

Here k denotes the length of the input formula of the model-checking problem
and n the size of the input tree.

The automata-theoretic model-checking algorithms for monadic second-
order logic on strings and trees are introduced in Sects. 10.1 and 10.2. Sec-
tion 10.1 also contains a subsection on infinite strings, which explains how the
automata-theoretic approach is applied to the verification of reactive systems.
The reader not interested in this application may safely skip the subsection.
In Sect. 10.3, we prove the lower bound results.
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10.1 Model-Checking on Strings

The basic idea of the automata-theoretic approach is best explained with a
familiar example, regular expression pattern matching on strings. An instance
of the pattern matching problem consists of a string T (the text) over some
alphabet Σ and a regular expression P (the pattern) over the same alphabet.
The problem is to decide if T matches P , that is, if T is contained in the
regular language L(P ) described by P .1 Let n := |T | and k := |P |.

To solve the problem, we first construct a nondeterministic finite automa-
ton A for the language L(P ). We can easily construct such an automaton A

of size O(k) in linear time. Now we have to decide if A accepts T . We can
either do this in time O(k · n) by a direct simulation of all runs of A on T , or
by first constructing a deterministic automaton B that recognizes the same
language as A. This may lead to an exponential blowup in the number of
states, thus the size of B is O(2k). However, once we have constructed B and
stored it in an appropriate data structure, we can check if B accepts T in time
O(n). Overall, this second approach leads to an fpt-algorithm with a running
time of O(2k +n), which may be preferable over the O(k ·n) polynomial time
algorithm in the typical situation that n is much larger than k.

Let us now consider the case where the pattern is described in a more
powerful formalism than just regular expressions, where it is even difficult to
construct a nondeterministic finite automaton. Such a formalism for describing
patterns is monadic second-order logic.

Before we continue, we fix our notation for finite automata and remind
the reader of a few basic facts. A nondeterministic finite automaton (NFA) is
a tuple

A = (S, Σ, sI , Δ, F ),

where S is the finite set of states, Σ is the finite alphabet, sI ∈ S is the initial
state, Δ ⊆ S × Σ × S is the transition relation, and F ⊆ S is the set of
accepting states. If for all (s, a) ∈ S × Σ there is exactly one s′ such that
(s, a, s′) ∈ Δ, that is, if Δ is actually a function from S × Σ to S, then the
automaton A is deterministic (a DFA). We use L(A) to denote the language
recognized by A. Two automata are equivalent if they recognize the same
language. A language L ⊆ Σ∗ is regular if L = L(A) for some NFA A.

Fact 10.1. (1) For every NFA A with k states, there is an equivalent DFA
B with at most 2k states.

(2) For every DFA A over the alphabet Σ with k states, there is a DFA B

with k states such that L(B) = Σ∗ \ L(A).
(3) For all NFAs A1, A2 with k1 resp. k2 states, there is an NFA B with

k1 + k2 + 1 states such that L(B) = L(A1) ∪ L(A2).
(4) For all NFAs A1, A2 with k1 resp. k2 states, there is an NFA B with k1 ·k2

states such that L(B) = L(A1) ∩ L(A2).

1The more common problem of deciding if there is some substring of T that
matches P can easily be reduced to the version where T matches P .
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(5) For every NFA A over the alphabet Σ1×Σ2 with k states, there is an NFA
B with k states such that L(B) is the projection of L(A) to Σ1, that is,

L(B) =
{
a1 . . . an ∈ Σ∗

1

∣∣ n ≥ 0,

∃b1, . . . , bn ∈ Σ2 : (a1, b1)(a2, b2) . . . (an, bn) ∈ L(A)
}
.

(6) For every NFA A over the alphabet Σ1 with k states, there is an NFA B

over the alphabet Σ1 × Σ2 with k states such that

L(B) =
{
(a1, b1)(a2, b2) . . . (an, bn) ∈ (Σ1 × Σ2]

∗ ∣∣ n ≥ 0, a1 . . . an ∈ L(A)
}
.

Furthermore, in all cases B can be constructed from A (from A1, A2,
respectively) in time linear in the size of B.

Statements (2)–(5) of Fact 10.1 can be summarized by saying that the
class of regular languages is effectively closed under complementation, union,
intersection, and projection.

Finite Strings

Recall from Sect. 4.2 that monadic second-order logic, denoted by MSO, is
the fragment of second-order logic in which only set variables (that is, unary
relation variables) are allowed. To be able to specify languages in MSO, we
need to encode strings as structures. Recall from Example 4.11 how this is
done: Strings in Σ are viewed as structures over an alphabet τΣ which consists
of a binary relation symbol ≤ and a unary symbol Pa for every a ∈ Σ. A string
ā = a1 . . . an ∈ Σ∗ is represented by the structure S(ā) with universe [n] in
which ≤ is the natural order on [n] and Pa contains all i ∈ [n] with ai = a.

Let ϕ be a sentence of first-order logic or second-order logic of vocabulary
τΣ. To simplify the notation, for ā ∈ Σ∗ we write ā |= ϕ instead of S(ā) |= ϕ.
The language defined by ϕ is

L(ϕ) := {ā ∈ Σ∗ | ā |= ϕ}.

Example 10.2. Let Σ = {a, b, c}. The following first-order sentence defines
the language consisting of all strings over Σ in which every a is eventually
followed by a b:

∀x
(
Pax→ ∃y(x ≤ y ∧ Pby)

)
.

The same language is recognized by the DFA displayed in Fig. 10.1. �

The basis of the automata-theoretic approach to model-checking for MSO is
that the languages definable in MSO are precisely the regular languages.
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b, c

a

b

a, c

Fig. 10.1. The DFA for the sentence in Example 10.2

Theorem 10.3 (Büchi’s Theorem). A language is regular if and only if it
is definable in monadic second-order logic.

Furthermore, there are algorithms associating with every NFA A an MSO-
sentence ϕ such that L(ϕ) = L(A) and with every MSO-sentence ϕ an NFA
A such that L(A) = L(ϕ).

Proof: The forward direction is easy. To simulate an automaton, a monadic
second-order sentence simply guesses the states of an accepting run. This
requires one existentially quantified relation variable for each state and a first-
order formula stating that the sequence of states represented by the relation
variables is an accepting run of the automaton.

More precisely, let A = (S, Σ, sI , Δ, F ) be an NFA. Assume that S = [m]
and sI = 1. The following sentence ϕ defines the language recognized by A:

ϕ := ∃X1 . . .∃Xm

(
unique ∧ init ∧ trans ∧ acc ∧ nonempty

)
,

where unique, init, trans, acc, and nonempty are the following first-order for-
mulas:

• The intended meaning of the set variables Xs, for s ∈ [m] is that Xs

contains all positions in which an accepting run is in state s before reading
the letter at this position. The formula unique says that at each position
the automaton is in exactly one state:

unique := ∀x
( ∨

s∈[m]

Xsx ∧
∧

1≤s<s′≤m

(¬Xsx ∨ ¬Xs′x)
)
.

• The formula init says that the run starts with the initial state:

∀x
(
∀y x ≤ y → X1x

)
.

• The formula trans says that transitions between successive states are in
Δ:

∀x∀y
((

x ≤ y∧x �= y∧∀z(z ≤ x∨ y ≤ z)
)
→

∨
(s,a,s′)∈Δ

(Xsx∧Pax∧Xs′y)
)
.

• The formula acc says that the last state of the run is an accepting state.
As a matter of fact, the relation variables X1, . . . , Xm only describe the
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run up to the second-but-last state, because a run of the automaton has
one more state than the length of the string. Thus acc actually says that
an accepting state can be reached from the state at the last position:

∀x
(
∀z z ≤ x→

∨
(s,a,s′)∈Δ

s′∈F

(Xsx ∧ Pax)
)
.

• There is a slight problem with the formula as defined so far; it always holds
in the empty string. If the empty string is not in L(A) we let nonempty :=
∃x x = x. Otherwise, we can omit nonempty.

It should be clear from the construction that ϕ defines L(A). Before we prove
the backward direction, we illustrate the construction by an example.

Example 10.4. For the automaton displayed in Fig. 10.1, our construction
yields the following sentence:

ϕ = ∃X1∃X2

(
unique ∧ init ∧ trans ∧ acc

)
,

where

unique = ∀x
(
(X1x ∨X2x) ∧ (¬X1x ∨ ¬X2x)

)
,

init = ∀x
(
∀y x ≤ y → X1x

)
,

trans = ∀x∀y
((

x ≤ y ∧ x �= y ∧ ∀z(z ≤ x ∨ y ≤ z)
)
→(

(X1x ∧ Pax ∧X2y) ∨ (X1x ∧ Pbx ∧X1y)
∨ (X1x ∧ Pcx ∧X1y) ∨ (X2x ∧ Pax ∧X2y)

∨ (X2x ∧ Pbx ∧X1y) ∨ (X2x ∧ Pcx ∧X2y)
))

,

acc = ∀x
(
∀z z ≤ x→

(
(X1x ∧ Pbx) ∨ (X1x ∧ Pcx) ∨ (X2x ∧ Pbx)

))
.

As the automaton accepts the empty string, we omit the formula nonempty.
�

For the backward direction of the proof of Theorem 10.3, let Σ be a finite
alphabet and ϕ an MSO-sentence over the vocabulary τΣ. We first translate
ϕ into an equivalent sentence ϕ∗ that avoids the use of individual variables
except in a few controlled places. We use the MSO-formulas

singl(X) := ∃y
(
Xy ∧ ∀z(Xz → z = y)

)
,

le(X, Y ) := ∀x∀y
(
(Xx ∧ Y y)→ x ≤ y

)
,

symba(X) := ∀x(Xx→ Pax) (for a ∈ Σ),

sub(X, Y ) := ∀z(Xz → Y z).

The idea is to treat these formulas as new “second-order atomic formulas”
and use them to eliminate the old first-order atomic formulas and to replace
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individual variables x by set variables for the singleton {x}. Formally, we
associate a new relation variable X with every individual variable x. Of course,
we choose the new variables in such a way that they do not already appear
in ϕ so that no confusion arises. We inductively define a formula ψ∗ for every
subformula ψ of ϕ:

• For ψ = (x ≤ y), we let ψ∗ := le(X, Y ).
• For ψ = Pax, we let ψ∗ := symba(X).
• For ψ = Zx, we let ψ∗ := sub(X, Z).
• For ψ = ∃xχ, we let ψ∗ := ∃X(singl(X) ∧ χ∗).
• For ψ = ∀xχ, we let ψ∗ := ∀X(singl(X)→ χ∗).
• Boolean connectives and second-order quantifiers are just transfered from

ψ to ψ∗. For example, (ψ1 ∧ ψ2)
∗ := (ψ∗

1 ∧ ψ∗
2), and (∀Zψ)∗ := ∀Z ψ∗.

A straightforward induction shows that ϕ and ϕ∗ define the same language.

Example 10.5. For ϕ = ∃x∀Z
(
(Pcx ∧ Zx)→ ∀y y ≤ x

)
, we get as ϕ∗

∃X
(
singl(X)∧∀Z

(
(symbc(X)∧sub(X, Z))→ ∀Y (singl(Y )→ le(Y, X))

))
. �

To complete the proof of Theorem 10.3, we will inductively construct an
“equivalent” automaton for every subformula ψ of ϕ∗. We treat the formulas
singl(X), le(X, Y ), symba(X), and sub(X, Y ) as atomic.

Thus the subformulas ψ we have to consider have no free individual vari-
ables, but they still may have free relation variables. We encode interpreta-
tions of these variables into a larger alphabet and then consider the languages
defined by the subformulas over this larger alphabet. Suppose the relation
variables occurring in ϕ∗ are X1, . . . , Xk. Let

Σ′ := Σ× {0, 1}k.

A string (a1, b11, . . . , bk1) . . . (an, b1n, . . . , bkn) ∈ (Σ′)n corresponds to the
structure S := S(a1 . . . an) together with interpretations B1, . . . , Bk ⊆ [n]
of the relation variables X1, . . . , Xk, where Bi := {j ∈ [n] | bij = 1}. For a
formula ψ(X1, . . . , Xk) with free relation variables among X1, . . . , Xk, let us
write

(a1, b11, . . . , bk1) . . . (an, b1n, . . . , bkn) |= ψ

if S |= ψ(B1, . . . , Bk). In this sense, every subformula ψ of ϕ∗ defines a lan-
guage over Σ′. We shall inductively construct an NFA Aψ for every ψ that
recognizes the language over Σ′ defined by ψ.

(i) It is straightforward to construct automata for the atomic formulas
singl(Xi), le(Xi, Xj), symba(Xi), sub(Xi, Xj).

Example 10.6. Suppose that k = 3. Automata for ψ = singl(X1) and ψ =
le(X2, X3) are displayed in Fig. 10.2. A ∗ in a tuple describing a letter of the
alphabet Σ′ = Σ × {0, 1}3 indicates that any possible symbol is allowed at
this place. �
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(∗, 1, ∗, ∗)

(∗, 0, ∗, ∗) (∗, 0, ∗, ∗)

(∗, ∗, ∗, 0)

(∗, ∗, ∗, 1) (∗, ∗, 0, ∗)

Fig. 10.2. NFAs for singl(X1) and le(X2, X3)

(ii) For ψ = χ1∨χ2 and ψ = χ1∧χ2, we use Fact 10.1 (3) and (4), respectively.
For example, for ψ = χ1 ∨χ2, we let Aψ be an automaton that recognizes
the language L(Aχ1) ∪ L(Aχ2).

(iii) For ψ = ¬χ, we first determinize the NFA Aχ using Fact 10.1 (1) and
then complement it using Fact 10.1 (2).

(iv) For ψ = ∃Xi χ, we use Fact 10.1 (5) and (6).

(v) We rewrite formulas ψ = ∀Xi χ as ¬∃Xi¬χ and then use the constructions
described in (iii) and (iv).

The automaton Aϕ∗ constructed this way recognizes the language L′ defined
by ϕ∗ over Σ′. As ϕ∗ has no free relation variables and ϕ and ϕ∗ are equivalent,
a last application of Fact 10.1 (5) yields an automaton A that recognizes
L(ϕ) ⊆ Σ∗. 
�

Recall that STRING denotes the class of all structures representing strings.

Corollary 10.7. The model-checking for monadic second-order logic on the
class of strings, p-MC(STRING, MSO), is fixed-parameter tractable.

More precisely, there is a computable function f and an fpt-algorithm that
decides if a given string of length n satisfies a given MSO-sentence of length
k in time

O(f(k) + n).

Proof: Given a string ā ∈ Σ∗ and an MSO-sentence ϕ, our fpt-algorithm for
p-MC(STRING, MSO) first constructs a DFA A that recognizes the language
defined by ϕ and then checks in time O(n) if A accepts ā. 
�

As it turns out, the dominating term in the running time of our fpt-
algorithm is the size f(k) of the DFA for the language defined by the input
sentence ϕ (of length k). Let us define the tower function tow : N0 → N0

inductively by tow(0) := 0 and

tow(n + 1) := 2tow(n).

Thus tow(0) = 0, tow(1) = 1, tow(2) = 2, tow(3) = 4, tow(4) = 16, et cetera.
An analysis of the proof of Theorem 10.3 shows that the function f(k)

cannot be bounded by
tow(o(k)),
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that is, the size of the automaton grows as fast as a tower of 2’s of height
linear in the length of the sentence. To see this, note that for every negation
in the sentence, the automaton has to be determinized, which causes an ex-
ponential blowup in size. Let us mention that even an optimal construction
cannot achieve substantially better bounds. More precisely, the size of an NFA
recognizing the language defined by an MSO-sentence (even an FO-sentence)
of length k cannot be bounded by tow(o(

√
k)) (cf. Exercise 10.34).

The reader may have noted that negations are not the real problem, be-
cause we can first transform our sentence into an equivalent sentence in nega-
tion normal form and thereby avoid nested negations. However, we reduce
universal quantifiers to negations and existential quantifiers and thus intro-
duce additional negations for all universal quantifiers. As a matter of fact, we
only have to introduce new negations for quantifier alternations, because if
we only had universal quantifiers in our sentence we could model-check the
negation of the sentence, which is existential. So actually, the height of the
tower is determined by the number of quantifier alternations of the input sen-
tence. The number of quantifier alternation is usually much smaller than the
length of the sentence, because in general it does not require many quantifier
alternations to specify practically relevant properties. But note that even two
quantifier alternations lead to a doubly exponential blowup, and also note
that both first-order and second-order quantifiers count.

There are a few heuristic improvements that help to make automata-based
model-checking tractable despite the terrible worst-case behavior. First of all,
if the automaton is large, we should not determinize it in order to obtain a
running time of O(f(k) + n), but rather simulate the NFA directly, which
can be done in time O(g(k) · n), but for a g(k) that may be exponentially
smaller than f(k). As a second and extremely important improvement, we
can use the fact that DFAs can be efficiently minimized. This means that
every regular language has a canonical DFA with the minimum number of
states, and given some other DFA for the language, the minimal one can
be constructed in polynomial time from the given one. If we minimize the
automata at each intermediate step of the construction, we make sure that
we are always working with automata of an optimal size and do not waste
resources by constructing very large automata in situations where we do not
have to.

Infinite Strings and the Verification of Finite State Reactive
Systems

The theory of finite automata can be generically extended from finite to infi-
nite strings. An ω-string over a finite alphabet Σ is simply an infinite sequence
a1a2a3 . . ., where ai ∈ Σ for all i ∈ N. The set of all ω-strings over Σ is denoted
by Σω. An ω-language over Σ is a subset of Σω.

While the theory of ω-languages may look like a rather exotic mathemati-
cal discipline at first sight, it actually has important practical applications in
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computer science. Specifically, automata on infinite words play an important
role in synthesizing and verifying reactive systems. As opposed to systems
that carry out a specific task, such as computing a function for certain input
values, and then stop and possibly return a result, reactive systems never stop
and continuously carry out certain tasks, usually in response to interactions
with the environment. Typical examples of reactive systems are control sys-
tems such as an elevator control and operating systems. We are interested in
the behavior of such systems over time. A simple example of a property we
may want to verify for an elevator control system is “Whenever the button
‘1’ is pressed, the elevator will eventually arrive at the first floor.” To model
the systems, we consider the states of the system and the possible transitions
between the states. Computations of the system are then described by infinite
walks through this transition graph.

As we have already explained in Sect. 1.5, formally we model finite state
systems by Kripke structures, which are triples K = (V, E, λ) consisting of
a (finite) directed graph (V, E) together with a mapping λ that associates a
finite set of atomic propositions with each vertex. We call the set of all atomic
propositions occurring in a Kripke structure K the signature of K and denote
it by σ.2 Let Σ = Pow(σ). Then every vertex v ∈ V is labeled by the symbol
λ(v) ∈ Σ.

Computations of the system K = (V, E, λ) are walks in the graph (V, E). In
reactive systems, we are mainly interested in infinite computation walks.3 As-

sociated with a walk
ω
v= v1v2 . . . ∈ V ω is an ω-string λ(

ω
v) = λ(v1)λ(v2) . . . ∈

Σω. Properties of the walks
ω
v are specified as properties of the ω-string λ(

ω
v).

Typically, we want to verify that all computation walks of the system that
start in a certain initial state have some desirable properties. The language of
K at v ∈ V is the ω-language over Σ defined as

L(K, v) :=
{
λ(

ω
v)

∣∣ ω
v= v1v2 . . . walk in (V, E) with v1 = v

}
.

The verification problem then amounts to verifying that the language of the
system has certain desirable properties. Before we return to this verification
problem, let us first develop the basic theory of regular ω-languages.

A nondeterministic Büchi automaton is a tuple A = (S, Σ, sI , Δ, F ) just
like an NFA; the difference lies in the semantics. A run of A on an ω-string
a1a2 . . . ∈ Σω is a sequence s1s2 . . . ∈ Sω with s1 = sI and (si, ai, si+1) ∈ Δ
for all i ≥ 1. The run is accepting if some accepting state s ∈ F appears

infinitely often. The ω-language Lω(A) recognized by A is the set of all
ω
a∈ Σω

such that there is an accepting run of A on
ω
a.

2Note that a Kripke structure may be viewed as a relational structure of vocab-
ulary {E} ∪ σ, where E is a binary relation symbol and the atomic propositions in
σ are interpreted as unary relation symbols.

3Without loss of generality, we can always assume that each state has at least
one outgoing edge. Otherwise we add an additional dead state, add a loop to this
state, and add edges from all states with no outgoing edges to the dead state.
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Büchi automata and Büchi recognizable languages (also called ω-regular
languages) share many of the nice properties of finite automata and regu-
lar languages. In particular, the class of Büchi recognizable languages is ef-
fectively closed under complementation, union, intersection, and projections.
For union, intersection, and projections, one obtains similar bounds as in
Fact 10.1(3)–(5). An important difference between Büchi automata and fi-
nite automata is that deterministic Büchi automata are strictly weaker than
nondeterministic ones. This means that the complementation of Büchi recog-
nizable languages cannot be carried out by determinizing the automaton and
then complementing it. Instead, it can be proved that every nondeterminis-
tic Büchi automaton is equivalent to a deterministic Muller automaton and
vice versa. Muller automata are defined as Büchi automata, except that they
have a different acceptance condition. Complementation is now carried out by
transforming a given nondeterministic Büchi automaton into an equivalent
deterministic Muller automaton, complementing the Muller automaton, and
then transforming the resulting Muller automaton back to a Büchi automa-
ton. If this construction is carried out carefully, it yields a Büchi automaton
with 2O(n·log n) states recognizing the complement of the ω-language of a given
Büchi automaton with n states.

The representation of strings by structures can directly be extended from
finite strings to ω-strings, the only difference is that the universe4 of the

structure S
(ω
a
)

representing an ω-string
ω
a is N instead of [n] for some n ∈ N.

Thus every sentence ϕ of vocabulary τΣ also defines an ω-language. Using the
closure properties of Büchi automata instead of Fact 10.1, it is straightforward
to generalize Theorem 10.3 to ω-languages:

Theorem 10.8. An ω-language is Büchi recognizable if and only if it is de-
finable in monadic second-order logic.

Furthermore, there are algorithms associating with every nondeterministic
Büchi automaton A an MSO-sentence that defines the ω-language recognized
by A and with every MSO-sentence ϕ a nondeterministic Büchi automaton
that recognizes the ω-language defined by ϕ.

Let us return to the verification problem for finite state reactive systems
now. Recall that the goal is to verify that the language L(K, v) of a system K
at a state v has certain properties. We first note that the ω-language L(K, v)
is Büchi recognizable:

Lemma 10.9. Let K = (V, E, λ) be a Kripke structure with signature σ, Σ :=
Pow(σ), and v ∈ V . Then there exists a Büchi automaton AK,v with |V | states
such that

Lω(AK) = L(K, v).

Furthermore, AK,v can be computed from (K, v) in linear time.

4For the sake of the next theorem we suspend our proviso (cf. Proviso 4.7) that
the universes of structures are finite sets.
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Intuitively, Kripke structures can almost be viewed as Büchi automata. The
only differences are that Kripke structures do not have an acceptance con-
dition and that in Kripke structures the vertices are labeled with symbols
from the alphabet Σ and in Büchi automata the edges are labeled. So in our
construction, we shift the labeling from vertices to edges and let all states be
accepting.

Instead of a formal proof of the lemma, we just give an example:

Example 10.10. Let σ = {p, q} and thus Σ =
{
∅, {p}, {q}, {p, q}

}
. Fig. 10.3

shows a Kripke structure K with an initial state v marked by an incoming
arrow and the corresponding Büchi automaton AK,v. �

p, q

q

{p, q}

∅

{q}

{q}

{q}

Fig. 10.3. A Kripke structure and the corresponding Büchi automaton

The missing algorithmic piece, an emptiness test for Büchi automata, is
provided by the following lemma:

Lemma 10.11. There is a linear time algorithm that, given a nondetermin-
istic Büchi automaton A, decides if Lω(A) = ∅.

Proof: A Büchi automaton may be viewed as an edge-labeled directed graph
(we have done this in all our figures). To test if the language is nonempty,
we must test if there is some accepting run. Accepting runs of the automaton
correspond to infinite walks in the graph that start in the initial state and
infinitely often go through some accepting state. Such an infinite walk exists if
and only if there is a strongly connected component that contains an accepting
state and that is reachable from the initial state.

Using standard techniques, it can be tested in linear time if such a strongly
connected component exists. 
�

The following corollary states that the verification of properties of walks
that are specified in monadic second-order logic is fixed-parameter tractable.

Theorem 10.12. The following problem is fixed-parameter tractable:
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Instance: A Kripke structure K = (V, E, λ) of some signa-
ture σ, a state v ∈ V , and an MSO-sentence ϕ of
vocabulary τPow(σ).

Parameter: |ϕ|.
Problem: Decide whether ϕ holds on every

ω
a∈ L(K, v).

More precisely, the problem can be solved in time f(|ϕ|) · ||K|| for some com-
putable function f .

Proof: Let (K, v, ϕ) be an instance of the problem, and let Σ := Pow(σ) be
the corresponding alphabet. Let L be the ω-language defined by ϕ. We have
to decide if

L(K, v) ⊆ L.

Equivalently, we can test if L(K, v) ∩ (Σω \ L) = ∅. Note that (Σω \ L) is the
ω-language defined by ¬ϕ.

We proceed as follows: We compute a nondeterministic Büchi automaton
A of size O(||K||) that recognizes L(K, v) and a nondeterministic Büchi au-
tomaton B that recognizes the ω-language defined by ¬ϕ. Then we compute
a nondeterministic Büchi automaton C of size O(||A|| · ||B||) that recognizes
Lω(A) ∩ Lω(B). Finally, we test in linear time if Lω(C) = ∅. 
�

As for the MSO model-checking algorithm on finite strings, in the worst
case the running time of the fpt-algorithm in Theorem 10.12 is not bounded
by any tower of sublinear size in terms of the input sentence.

In practice, instead of monadic second-order logic one uses temporal logics,
specifically linear temporal logic LTL, to specify properties of computation
walks of systems, because it is usually much easier to specify properties of
practical interest in LTL. An additional huge advantage is that for every
LTL-formula ϕ there exists a Büchi automaton with at most

|ϕ| · 22|ϕ|

states that recognizes the language defined by ϕ. This means that the verifi-
cation problem for LTL-specifications,

Instance: A Kripke structureK = (V, E, λ) of some signature
σ, a state v ∈ V , and an LTL-formula ϕ over σ.

Parameter: |ϕ|.
Problem: Decide whether ϕ holds on every

ω
a∈ L(K, v).

can be solved in time O(|ϕ| · 22|ϕ| · ||K||). The semantics of LTL is defined in
such a way that this problem is precisely the parameterized model-checking
problem p-MC(LTL) for LTL.
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10.2 Model-Checking on Trees

Trees are directed graphs T = (T, E) that have one distinguished vertex r ∈ T
(the root) such that for every vertex t ∈ T there is exactly one path from r to
t.5 We usually call the vertices of a tree nodes. Nodes of out-degree 0 are called
leaves. If (v, w) ∈ E, then v is called the parent of w and w is called a child
of v. A tree T is d-ary, for some d ≥ 1, if every node has at most d children.
A tree is ordered if the children of every node are ordered; the order of the
children may either be given by a “next-sibling” relation or by using different
binary relations E1, E2, . . ., for the first, second, . . ., child. In particular, an
ordered binary tree is a triple T = (T, E1, E2), where (T, E1 ∪ E2) is a tree,
E1 ∩E2 = ∅, and for i = 1, 2, every node has at most one Ei-child. (Note that
this allows for a node to only have a second child, but no first child.) Automata
theory on trees is mainly concerned with ordered binary trees whose nodes
are labeled with symbols from some finite alphabet Σ. A Σ-tree is a tuple
(T, E1, E2, λ), where (T, E1, E2) is an ordered binary tree and λ : T → Σ.

A (bottom-up) nondeterministic tree automaton is a tuple A = (S, Σ, Δ, F ),
where

• S is a finite set of states,
• Σ is a finite alphabet,
• Δ ⊆ (S ∪ {⊥})× (S ∪ {⊥})× Σ× S is the transition relation.

Here ⊥ is a special symbol not contained in S. It is introduced to take
care of transitions at nodes that only have one child or no children at all.

• F ⊆ S is the set of accepting states.

A is deterministic if Δ is a function from (S ∪ {⊥})× (S ∪ {⊥})× Σ to S.
A run of a nondeterministic tree automaton A = (S, Σ, Δ, F ) on a Σ-tree

T = (T, E1, E2, λ) is a mapping ρ : T → S such that for all t ∈ T :

• If t has two children t1, t2 (in this order), then
(
ρ(t1), ρ(t2), λ(t), ρ(t)

)
∈ Δ.

• If t only has a first child t1, then
(
ρ(t1),⊥, λ(t), ρ(t)

)
∈ Δ.

• If t only has a second child t2, then
(
⊥, ρ(t2), λ(t), ρ(t)

)
∈ Δ.

• If t is a leaf,
(
⊥,⊥, λ(t), ρ(t)

)
∈ Δ.

A run ρ is accepting if ρ(r) ∈ F , where r denotes the root of the tree. The
automaton A accepts T if there is an accepting run of A on T . The class of
all Σ-trees accepted by A is denoted by L(A). This class is also called the tree
language recognized by A.

Example 10.13. Let A = ({s0, s1}, {0, 1}, Δ, {s0}), where

Δ =
{
(⊥,⊥, i, si)

∣∣ i ∈ {0, 1}
}

∪
{
(si,⊥, j, sk), (⊥, si, j, sk)

∣∣ i, j, k ∈ {0, 1} such that i + j ≡ k (mod 2)
}

5More precisely, such trees may be called directed or rooted trees. However, as
most of the trees considered in this book are directed, we prefer to just call them
trees and use the term undirected tree for connected acyclic (undirected) graphs.
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∪
{
(si, sj , k, s�)

∣∣ i, j, k, � ∈ {0, 1} such that i + j + k ≡ � (mod 2)
}
.

Then the tree language recognized by A consists of all {0, 1}-trees with an
even number of 1’s. Fig. 10.4 shows an accepting run of A on a {0, 1}-tree. �

1

0 1

1 0 0

1 1 1 0s1 s1 s1 s0

s0 s1 s1

s1 s0

s0

Fig. 10.4. An accepting run of the tree automaton of Example 10.13

A tree language is simply a class of Σ-trees, and a tree language is regular
if it is recognized by some nondeterministic tree automaton. It is not hard to
show that all statements of Fact 10.1, with (2), (5), (6) appropriately modified,
also hold for tree automata instead of string automata (with essentially the
same proofs).

Σ-trees may be represented in a straightforward way by structures of vo-
cabulary

τ2
Σ := {E1, E2} ∪ {Pa | a ∈ Σ},

where E1 and E2 are binary relation symbols and Pa is a unary relation
symbol for every a ∈ Σ. The class of all structures representing Σ-trees is
denoted by TREElob[Σ], and the union of all classes TREElob[Σ] is denoted
by TREElob. (The subscripts l, o, b indicate that we are considering labeled
ordered binary trees.) We usually do not distinguish between a Σ-tree and a
τ2
Σ-structure representing it.

A sentence ϕ of vocabulary τ2
Σ defines the tree language

L(ϕ) = {T ∈ TREElob[Σ] | T |= ϕ}.

Theorem 10.14. A tree language is regular if and only if it is definable in
monadic second-order logic.

Furthermore, there are algorithms associating with every nondeterministic
tree automaton A an MSO-sentence ϕ such that L(ϕ) = L(A) and with every
MSO-sentence ϕ a nondeterministic tree automaton A such that L(A) = L(ϕ).

We omit the proof, which is very similar to the proof of Theorem 10.3.

Corollary 10.15. p-MC(TREElob, MSO), the model-checking for monadic
second-order logic on the class of labeled ordered binary trees, is fixed param-
eter tractable.
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More precisely, there is a computable function f and an fpt-algorithm that
decides if a given tree in TREElob of size n satisfies a given MSO-sentence of
length k in time O(f(k) + n).

Again, the dependence f(k) of the running time of the fpt-algorithm on
the length k of the input sentence grows as fast as a tower of 2’s of height
linear in the length of the sentence.

So far, we have only applied the automata-theoretic method to binary
trees. Of course, it is straightforward to extend the results to d-ary trees for
any fixed d ≥ 2. But sometimes we do not have an a priori bound on the
arity of the trees. To distinguish them from d-ary trees for some fixed d,
arbitrary trees are often referred to as unranked trees. As an important appli-
cation, XML documents are modeled by labeled ordered unranked trees. Both
schema information (that is, information on the structure of the document)
and queries for XML can be specified in monadic second-order logic.

We may view labeled ordered unranked trees over some alphabet Σ as
structures of vocabulary

τu
Σ := {E, N} ∪ {Pa | a ∈ Σ},

where E and N are binary relation symbols and Pa is a unary relation symbol
for every a ∈ Σ. If a τu

Σ-structure

T =
(
T, ET , NT , (P T

a )a∈Σ

)
represents an unranked tree, then ET is the usual edge relation of the tree and
NT is the “next-sibling” relation on the children of each node.6 Let TREElo

denote the class of all labeled ordered unranked trees.

Theorem 10.16. The model-checking for monadic second-order logic on the
class of labeled ordered unranked trees, p-MC(TREElo, MSO), is fixed param-
eter tractable.

More precisely, there is a computable function f and an fpt-algorithm that
decides if a given tree in TREElo of size n satisfies a given MSO-sentence of
length k in time O(f(k) + n).

Proof: With every labeled ordered unranked tree

T =
(
T, ET , NT , (P T

a )a∈Σ

)
∈ TREElo,

we associate the labeled ordered binary tree

B =
(
B, EB

1 , EB
2 , (PB

a )a∈Σ

)
∈ TREElob,

where B := T , EB
1 is the “first-child” relation of T , EB

2 := NT is the “next-
sibling” relation of T , and PB

a := P T
a for all a ∈ Σ (see Fig. 10.5). Observe

that B can be computed from T in linear time.

6More precisely, NT =
S

t∈T NT
t , where NT

t = ∅ if t is a leaf and otherwise,

NT
t ⊆ {t′ ∈ T | ET tt′}2 is a relation making ({t′ ∈ T | ET tt′}, NT

t ) a directed path.
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1

2 3 4 5

6 7 8 9

10

T 1

2

6 3

7 4

10 8 5

9

B

Fig. 10.5. An unranked tree T and the corresponding binary tree B. In T , solid
arcs represent the edge relation ET , and dashed arcs represent the “next-sibling”
relation NT . In B, solid arcs represent the “first-child” relation EB

1 , and dashed arcs
represent the “second-child” relation EB

2

Now for every MSO-sentence ϕ of vocabulary τu
Σ we define an MSO-

sentence ϕ′ of vocabulary τ2
Σ such that

T |= ϕ ⇐⇒ B |= ϕ′. (10.1)

We first observe that the edge relation ET is definable in the structure B. We
let

edge(x, y) := ∃z
(
E1xz ∧ ∀Z

((
Zz ∧ ∀v∀w

(
(E2vw ∧ Zv)→ Zw

))
→ Zy

))
.

We claim that this formula says that y is a child of x. Remember that EB
1

is the “first-child” relation of T and EB
2 is the “next-sibling” relation. The

formula edge(x, y) states that every set Z of nodes that contains the first child
z of x and is closed under the “next-sibling” relation also contains y. This is
only possible if y is a child of x.

To obtain ϕ′ from ϕ, we simply replace every subformula Exy by edge(x, y)
and every subformula Nxy by E2xy.

By (10.1), the mapping (T , ϕ) �→ (B, ϕ′) yields an fpt-reduction from
p-MC(TREElo, MSO) to p-MC(TREElob, MSO), and we can apply Corol-
lary 10.15. 
�

Let us remark that Theorem 10.16, of course, implies the corresponding
result for any “weaker” tree model; for example, p-MC(C, MSO) ∈ FPT for
C = TREEl, the class of labeled (unordered) trees, or for C = TREE, the
class of (unlabeled, unordered, unranked) trees.
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Exercise 10.17. (a) Prove that the following problem is solvable in time
f(k) ·n, where k is the length of the input formula and n the size of the input
tree, and hence is fixed-parameter tractable:

Instance: A tree T ∈ TREElob, an MSO-formula ϕ(X) with
a free set variable X , and m ∈ N.

Parameter: |ϕ|.
Problem: Decide whether there exists an S ⊆ T with |S| ≤ m

such that T |= ϕ(S).

Hint: Interpret pairs (T , S), where T is a Σ-tree and S a set of nodes of T ,
as Σ× {0, 1}-trees.

Let ϕ(X) be the input formula. Compute a nondeterministic tree automa-
ton A over the alphabet Σ×{0, 1} such that for every Σ-tree T = (T, E1, E2, λ)
and every S ⊆ T ,

A accepts (T , S) ⇐⇒ T |= ϕ(S).

Let T = (T, E1, E2, λ) be the input tree. In a bottom-up fashion, for every
node t of the input tree and every state s of the automaton, compute the
minimum � such that there is a set S ⊆ T such that S contain precisely �
nodes of the subtree Tt rooted at t and there is a run ρ of A on (T , S) such
that ρ(t) = s. At the root, this gives us the necessary information to check
whether A accepts a pair (T , S) with |S| ≤ m.

(b) Show that the variant of the problem in (a) where |S| ≤ m is replaced by
|S| ≥ m is also solvable in time f(k) · n
(c) Show that the variant of the problem in (a) where |S| ≤ m is replaced by
|S| = m is solvable in time f(k) · n2. �

10.3 Lower Bounds

We have seen that the automata-theoretic fpt-algorithms for monadic second-
order model-checking on strings and trees, nice as they may be, have a very
bad worst-case behavior. In this section, we shall prove that there are no
substantially better fpt-algorithms for these model-checking problems. Let
us remind the reader that the model-checking problem for monadic second-
order logic can be decided in polynomial space by a straightforward algorithm;
actually, the problem is PSPACE-complete. But the running time of the naive
polynomial space algorithm is exponential in the length of the input string or
tree, and here we are interested in fpt-algorithms.

To keep the presentation simple, we only prove lower bound results for the
class TREE of (unlabeled, unordered, unranked) trees.
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Theorem 10.18. (1) Assume that PTIME �= NP. Then there is no fpt-algo-
rithm deciding p-MC(TREE, MSO) in time

f(k) · nO(1)

for any function f ∈ tow(o(k)).
(2) Assume that FPT �= AW[∗]. Then there is no fpt-algorithm deciding

p-MC(TREE, FO) in time

f(k) · nO(1)

for any function f ∈ tow(o(k)).
As usual, n denotes the size of the input tree and k the length of the input
sentence.

Of course, the theorem implies the same lower bounds for model-checking
on the larger class TREElo of labeled ordered trees. In Exercises 10.32 and
10.33, we shall prove the slightly weaker lower bounds for strings. In Exer-
cise 10.31, we shall see that part (1) of the theorem, the lower bound for
monadic second-order logic, also holds for the class TREEb of binary trees.
Part (2) does not hold for binary trees. The model-checking problem for first-
order logic on classes of graphs of bounded degree can be solved by an fpt-
algorithm with a triply exponential parameter dependence, and there is also
a corresponding lower bound.

Theorem 10.18 will be proved in the following three subsections. Before
we start, let us sketch the main idea of a proof of part (1). We encode propo-
sitional formulas γ in conjunctive normal form by trees T (γ) such that for
every h ≥ 1 there is an MSO-sentence sath such that

T (γ) |= sath ⇐⇒ γ is satisfiable

for all formulas γ in CNF with less than tow(h) variables. Assume that
p-MC(TREE, MSO) can be solved in time f(k) · nO(1). Then, in particular,
T (γ) |= sath is decidable in time f(|sath|) · ‖T (γ)‖O(1). The main step of the
proof consists in encoding CNF-formulas γ by trees T (γ) in such a way that
sath can be chosen of length O(h). Then, if f does not grow very rapidly,
f(|sath|) · ‖T (γ)‖O(1) will be polynomial in |γ|, contradicting PTIME �= NP.

Before encoding CNF-formulas by trees, we first encode natural numbers,
the indices of propositional variables, by trees appropriately.

Encoding Numbers by Trees

The first step of the proof of Theorem 10.18 is to encode nonnegative integers
by trees in such a way that the equality of (the encodings of) two large numbers
can be tested by small formulas.

Recall that for nonnegative integers i, n, the ith bit in the binary repre-
sentation of n is denoted by bit(i, n) (counting the least-significant bit as the
0th bit). Inductively we define trees T (n) for all nonnegative integers n:
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• T (0) is the one-node tree.
• For n ≥ 1, the tree T (n) is obtained by creating a new root and attaching

to it all trees T (i) for all i such that bit(i, n) = 1.

Example 10.19. Figure 10.6 shows the trees T (0) up to T (10), and Fig. 10.7

shows the tree T (2210

). �

T (0) T (1) T (2) T (3) T (4) T (5) T (6)

T (7) T (8) T (9) T (10)

Fig. 10.6. The trees T (0) up to T (10)

Fig. 10.7. The tree T (2210

)

It is easy to verify that the size of T (n) is O(n). More important for us is
the height of T (n), that is, the number of edges on the longest path from the

root to a leaf. For example, the tree T (2210

) has height 5. Clearly, extremely
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large numbers are encoded by trees of small height. The following lemma
makes this precise:

Lemma 10.20. For all h, n ≥ 0:

height(T (n)) < h ⇐⇒ n < tow(h).

Proof: The proof is by induction on h. For h = 0, the statement is trivial. For
the induction step, let h ≥ 0, we shall prove the claim for h +1. Observe that
for all � ≥ 1, n ≥ 0:

max{i ≥ 0 | bit(i, n) = 1} < � ⇐⇒ n < 2�. (10.2)

Thus for all n ≥ 0:

height(T (n)) < h + 1

⇐⇒ max
{
height(T (i))

∣∣ i ≥ 0 such that bit(i, n) = 1
}

< h

⇐⇒ max
{
i ≥ 0

∣∣ bit(i, n) = 1
}

< tow(h) (by the induction hypothesis)

⇐⇒ n < 2tow(h) = tow(h + 1) (by (10.2)). 
�

The next lemma shows that the tree encodings can be “controlled” by small
first-order formulas (of size linear in the height of the tree). If T = (T, E) is
a tree and t ∈ T , then by Tt we denote the subtree of T with root t.

Lemma 10.21. For all h ≥ 1 there is a first-order formula eqh(x, y) of length
O(h) such that for all trees T = (T, E) and t, u ∈ T we have: If there are
m, n < tow(h) such that the subtrees Tt and Tu are isomorphic to T (m) and
T (n), respectively, then

T |= eqh(t, u) ⇐⇒ m = n.

Furthermore, the formula eqh(x, y) can be computed in time O(h).

Proof: We define the formulas inductively. We can let eq1(x, y) be any valid
formula, for example, eq1(x, y) := ∀z z = z, because tow(1) = 1.

For the induction step, let h ≥ 1 and assume that eqh(x, y) is already
defined. To define eqh+1(x, y), let T = (T, E) be a tree and t, u ∈ T . Sup-
pose that there are m, n < tow(h + 1) such that the subtrees Tt and Tu

are isomorphic to T (m) and T (n), respectively. Then the subtrees rooted
at the children of t are isomorphic to T (m1), . . . , T (mk) for pairwise distinct
m1, . . . , mk < tow(h) and the children of u are isomorphic to T (n1), . . . , T (n�)
for pairwise distinct n1, . . . , n� < tow(h). Our formula has to express that
{m1, . . . , mk} = {n1, . . . , n�}, or equivalently, that for every mi there exists
an nj such that mi = nj and vice versa. As a first attempt, we define the
following formula:
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eq′h+1(x, y) := ∀w
(
Exw → ∃z

(
Eyz ∧ eqh(w, z)

))
∧ ∀z′

(
Eyz′ → ∃w′(Exw′ ∧ eqh(w′, z′)

))
.

This formula works fine, except that if we define eq′h(x, y) recursively then the
length of the formula grows exponentially in h. We can avoid this exponential
growth by a simple trick. Note first that the formula eq′h+1(x, y) is equivalent
to the following formula:(

∃w Exw ↔ ∃z Eyz
)

∧ ∀w
(
Exw → ∃z

(
Eyz ∧ ∀z′

(
Eyz′ → ∃w′

(
Exw′∧(

eqh(w, z) ∧ eqh(w′, z′)
)))))

.

Now observe that the formula

eqh(w, z) ∧ eqh(w′, z′)

is equivalent to

∀u∀v
(((

(u = w ∧ v = z) ∨ (u = w′ ∧ v = z′)
)
→ eqh(u, v)

))
.

Putting everything together, we let eqh+1(x, y) be the formula(
∃w Exw ↔ ∃z Eyz

)
∧

∀w
(
Exw → ∃z

(
Eyz ∧ ∀z′

(
Eyz′ → ∃w′

(
Exw′∧

∀u∀v
(((

(u = w ∧ v = z) ∨ (u = w′ ∧ v = z′)
)
→ eqh(u, v)

))))))
.

A simple induction shows that the length of the formula is O(h). It is obvious
that the formula can be computed in time linear in its length. 
�

Exercise 10.22. Prove that for all h ≥ 1 there is a formula numh(x) of size
O(h2) such that for all trees T = (T, E) and t ∈ T we have:

T |= numh(t) ⇐⇒ the subtree Tt is isomorphic to T (n) for

some n < tow(h). �

Encoding Propositional Formulas

We define trees encoding variables (taken from a fixed supply V1, V2, . . .),
literals, clauses, and CNF-formulas.

• For every i ≥ 1 we let Tvar(Vi) := T (i).
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• For every positive literal V we let Tlit(V ) be the tree obtained by creating
a new root and attaching the tree Tvar(V ) to it. For every negative literal
¬V we let Tlit(¬V ) be the tree obtained by creating a new root and a new
leaf and attaching the leaf and the tree Tvar(V ) to the root.

• For every clause δ :=
∨

i∈I λi we let Tclause(δ) be the tree obtained by
creating a new root and attaching the trees Tlit(λi) to it.

• For every CNF-formula γ :=
∧

i∈I δi we let T (γ) be the tree obtained by
creating a new root and attaching the trees Tclause(δi) to it.

Example 10.23. Figure 10.8 shows the tree T (γ) for the CNF-formula

γ := (V1 ∨ ¬V2) ∧ V2 ∧ (¬V1 ∨ V3). �

Fig. 10.8. A tree encoding the CNF-formula of Example 10.23

We call the nodes of a tree T = T (γ) that are roots of the subtrees
representing the clauses, (positive and negative) literals, and variables clause
nodes, (positive and negative) literal nodes, and variable nodes, respectively.

Lemma 10.24. There are first-order formulas

root(x), clause(x), lit(x), pos-lit(x), neg-lit(x), var(x)

such that for every CNF-formula γ and every node t of the tree T (γ),
(1) T (γ) |= root(t) if and only if t is the root of T (γ).
(2) T (γ) |= clause(t) if and only if t is a clause node.
(3) T (γ) |= lit(t) if and only if t is a literal node.
(4) T (γ) |= pos-lit(t) if and only if t is a positive literal node.
(5) T (γ) |= neg-lit(t) if and only if t is a negative literal node.
(6) T (γ) |= var(t) if and only if t is a variable node.

Proof: The different types of nodes are identified by their distance from the
root of the tree. The root is defined by the formula

root(x) := ∀y ¬Eyx.
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Clause nodes are children of the root and hence are defined by the formula

clause(x) := ∃y(root(y) ∧Eyx).

Literal nodes are children of clause nodes and hence are defined by the formula

lit(x) := ∃y(clause(y) ∧ Eyx).

Positive and negative literals are distinguished by their out-degree:

pos-lit(x) := lit(x) ∧ ∀y∀z
(
(Exy ∧ Exz)→ y = z

)
,

neg-lit(x) := lit(x) ∧ ¬pos-lit(x).

We have to be careful to distinguish variable nodes from the leaves introduced
for negated literals. As we start indexing variables with 1, the variable trees
have height at least one, and thus their roots have positive out-degree. We let

var(x) := ∃y(lit(y) ∧ Eyx) ∧ ∃z Exz. 
�

Let T (γ) = (T, E) and S ⊆ T . Then S is consistent if S only contains
variable nodes, and for every variable V , the set S either contains all nodes
representing occurrences of the variable V or none. Each consistent set S ⊆ T
represents an assignment V(S) to the variables of γ that sets precisely the
variables in S to true.

Example 10.25. Figure 10.9 shows two copies of the tree T (γ) for the for-
mula γ := (V1∨¬V2)∧V2∧(¬V1 ∨V3) (see Example 10.23). In each of the two
copies a set of variable nodes is selected (the white variable nodes). The set
in the first copy is consistent; it represents the assignment that sets V1 and
V2 to true and V3 to false. The set in the second copy is not consistent. �

Fig. 10.9. A consistent and an inconsistent set of variable nodes

Lemma 10.26. Let h ≥ 1 and n := tow(h). Then there is a first-order for-
mula sat-assh(X) of length O(h) with a free set variable X such that for all
CNF-formulas γ with variables among V1, . . . , Vn−1 and all subsets S of the
node set of T (γ):
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T (γ) |= sat-assh(S) ⇐⇒ S is a consistent set of variable nodes of T (γ)
and the assignment V(S) satisfies γ.

Furthermore, the formula sat-assh(X) can be computed in time O(h).

Proof: We first define a formula consh(X) stating that X is a consistent set
of variable nodes:

consh(X) :=∀x
(
Xx→ var(x)

)
∧∀x∀y

((
var(x) ∧ var(y) ∧ eqh(x, y)

)
→ (Xx↔ Xy)

)
,

where the subformula var(x) is taken from Lemma 10.24 and the subformula
eqh(x, y) from Lemma 10.21.

The formula encoded by the tree is satisfied by the assignment correspond-
ing to X if all its clauses contain a literal that is either positive and set to true
or negative and set to false. This is what the following formula expresses:

sat-assh(X) := consh(X) ∧ ∀x
(
clause(x)

→ ∃y
(
(Exy ∧ pos-lit(y) ∧ ∃z(Eyz ∧Xz))

∨ (Exy ∧ neg-lit(y) ∧ ∃z(Eyz ∧ var(z) ∧ ¬Xz))
))

. 
�

Corollary 10.27. Let h ≥ 1 and n := tow(h). Then there is a monadic
second-order sentence sath of length O(h) such that for all CNF-formulas γ
with variables among V1, . . . , Vn−1:

T (γ) |= sath ⇐⇒ γ is satisfiable.

Furthermore, the sentence sath can be computed in time O(h).

Corollary 10.28. Let h, k ≥ 1 and n := tow(h). Then there is a first-order
sentence wsath,k of length O(h + k2) such that for all CNF-formulas γ with
variables among V1, . . . , Vn−1:

T (γ) |= wsath,k ⇐⇒ γ is k-satisfiable.

Furthermore, the sentence wsath,k can be computed in time O(h + k2).

Proof: Let wsat-assh,k(x1, . . . , xk) be the formula obtained from the formula
sat-assh(X) of Lemma 10.26 by replacing every occurrence of a subformula

Xy by ∃z(eqh(z, y)∧
∨k

i=1 z = xi). Then for all CNF-formulas γ with variables
among V1, . . . , Vn−1 and all nodes t1, . . . , tk of T (γ):

T (γ) |= wsat-assh,k(t1, . . . , tk) ⇐⇒ t1, . . . , tk are variable nodes and the as-
signment V({t1, . . . , tk}) satisfies γ.

As a first attempt we let



10.3 Lower Bounds 257

wsat′h,k := ∃x1 . . .∃xk

( ∧
1≤i<j≤k

¬eqh(xi, xj) ∧ wsat-assh,k(x1, . . . , xk)
)
.

To get a sentence of the right length, we have to avoid the k · (k − 1)/2 addi-
tional occurrences of the formula eqh. This can be done by passing to the
formula

wsath,k := ∃x1 . . .∃xk

(
∀u∀v((

∨
1≤i<j≤k

(u = xi ∧ v = xj))→ ¬eqh(u, v))

∧ wsat-assh,k(x1, . . . , xk)
)
. 
�

Satisfiability Testing via Model-Checking

To prove Theorem 10.18, we use the formulas constructed in the previous
subsections and reduce satisfiability problems for propositional logic to model-
checking problems.

Proof of Theorem 10.18(1): Suppose that A is an algorithm deciding (T , ϕ) ∈
p-MC(TREE, MSO) in time

f(|ϕ|) · ‖T ‖O(1) (10.3)

for a function f(k) ∈ tow(o(k)). Using A as a subroutine, we will construct
an algorithm that solves Sat(CNF) in polynomial time.

We define a function H on the nonnegative integers by letting

H(n) := min{h | tow(h) ≥ n}. (10.4)

It is not hard to see that H(n) can be computed in time polynomial in n.

MSO-Sat(γ)
1. Rename the variables of γ to V1, . . . , Vn−1 for some n ∈ N

2. Compute T (γ)
3. h ← H(n)
4. Compute sath (from Corollary 10.27)
5. Check if T (γ) |= sath using the algorithm A

Algorithm 10.10.

Consider the algorithm MSO-Sat (Algorithm 10.10). By Corollary 10.27,
the algorithm correctly decides if the input formula γ is satisfiable. We shall
prove that the algorithm runs in polynomial time. Clearly, lines 1–4 run in
polynomial time. We know that for some constant c the length of sath is at
most c · h. Assume that the function f (in (10.3)) is nondecreasing. Let m



258 10 The Automata-Theoretic Approach

denote the length of the input formula γ, and note that n ≤ m. Then line 5
requires time

f(c · h) ·mO(1).

As f(k) ∈ tow(o(k)), for sufficiently large k we have f(k) ≤ tow(k/2c). Hence
for sufficiently large n and h = H(n) we have

f(c · h) ≤ tow(h/2) ≤ tow(h− 1).

Since tow(h− 1) < n, the running time of the algorithm is n ·mO(1). 
�

Proof of of Theorem 10.18(2): To keep the presentation simple, we only
prove the following weaker statement, in which we replace the assumption
FPT �= AW[∗] by the stronger assumption FPT �= W[2]:

Assume that FPT �= W[2]. Then there is no fpt-algorithm deciding
p-MC(TREE, FO) in time f(k)·nO(1) for any function f ∈ tow(o(k)).

Suppose for contradiction that (T , ϕ) ∈ p-MC(TREE, FO) is decided by the
algorithm A in time

f(|ϕ|) · ‖T ‖O(1) (10.5)

for a function f(k) ∈ tow(o(k)). We shall prove that p-WSat(CNF) ∈ FPT,
which by Theorem 7.1 implies W[2] = FPT.

FO-WSat(γ, k)
1. Rename the variables of γ to V1, . . . , Vn−1 for some n ∈ N

2. Compute T (γ)
3. h ← H(n)
4. Compute wsath,k (from Corollary 10.28)
5. Check if T (γ) |= wsath,k using the algorithm A

Algorithm 10.11.

Again let H be defined by (10.4). We claim that the algorithm FO-WSat
(Algorithm 10.11) is an fpt-algorithm for p-WSat(CNF). Correctness follows
from Corollary 10.28. Lines 1–4 run in polynomial time. It remains to bound
the time required by line 5.

We know that the length of wsath,k is at most d ·(h+k2) for some constant
d. We assume that the function f (in (10.5)) is nondecreasing. As f(�) ∈
tow(o(�)), for sufficiently large � we have f(�) ≤ tow(�/4d). In the following,
we assume that n is sufficiently large so that for all � ≥ d · H(n) we have
f(�) ≤ tow(�/4d). Let m denote the length of the input formula γ and note
that n ≤ m. Moreover, we may assume that every clause occurs at most once
in γ and hence, m = O(n · 22n).
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Case 1: n ≤ tow(k2).

Then, the size of T (γ) and the length of wsath,k can be bounded in terms
of k, and thus the time required by line 5 only depends on k.

Case 2: n > tow(k2). Then h = H(n) ≥ k2 and thus k′ := |wsath,k| ≤
d · (h + k2) ≤ 2d · h. Then for sufficiently large n, line 5 requires time

f(k′) ·mO(1) ≤ tow(k′/4d) ·mO(1) ≤ tow(h/2) ·mO(1)

≤ tow(h− 1) ·mO(1) ≤ n ·mO(1) = mO(1).

This completes the proof. 
�

Exercise 10.29. Prove Theorem 10.18(2) in its full strength, that is, the
same statement as above under the weaker assumption that FPT �= AW[∗].
Hint: Use the AW[∗]-completeness of AWSat(Γ2,1) (cf. Theorem 8.32). �

Exercise 10.30. Prove that Theorem 10.18 also holds for undirected trees,
that is, with TREE replaced by the class TREEu of undirected trees. �

Exercise 10.31. Prove that Theorem 10.18(1) also holds for binary trees,
that is, with TREE replaced by the class TREEb.

Remark: Theorem 10.18(2) does not hold for binary trees �

The goal of the following exercises is to prove an analogue of Theorem 10.18
for strings.

Exercise 10.32. Let Σ := {〈, 〉, /, 1}. By induction on the height h, for every
tree T = (T, E) we define a string str(T ) ∈ Σ∗ as follows: Let T be a tree of
height h, and let T1, . . . , Tk be the subtrees of T rooted at the children of the
root of T . We let

str(T ) := 〈11 . . . 1︸ ︷︷ ︸
h times

〉 str(T1) . . . str(Tk) 〈/ 11 . . . 1︸ ︷︷ ︸
h times

〉.

For n ≥ 0, we let S(n) := str(T (n)). For example,

S(0) = 〈〉 〈/〉,
S(1) = 〈1〉 〈〉 〈/〉 〈/1〉,
S(2) = 〈11〉 〈1〉 〈〉 〈/〉 〈/1〉 〈/11〉,
S(3) = 〈11〉 〈1〉 〈〉 〈/〉 〈/1〉 〈〉 〈/〉 〈/11〉,
S(4) = 〈111〉 〈11〉 〈1〉 〈〉 〈/〉 〈/1〉 〈/11〉 〈/111〉.

(compare this to Fig. 10.6).
Prove the following analogue of Lemma 10.21:
For all h ≥ 1 there is a formula eqh(x, x′, y, y′) of length O(h2) such that

for all strings ā := a1 . . . a� ∈ Σ∗ and i, j, i′, j′ ∈ [�] with i ≤ j and i′ ≤ j′
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we have: If there are m, n < tow(h) such that the substrings aiai+1 . . . aj and
ai′ai′+1 . . . aj′ are isomorphic to S(m) and S(n), respectively, then

ā |= eqh(i, j, i′, j′) ⇐⇒ m = n.

Furthermore, the formula eqh(x, x′, y, y′) can be computed in time O(h2). �

Exercise 10.33. Let Σ be as in Exercise 10.32. Prove the following state-
ments:
(a) Assume that PTIME �= NP. Then there is no fpt-algorithm deciding

p-MC(STRING[Σ], MSO) in time

f(k) · nO(1)

for any function f ∈ tow(o(
√

k)).
(b) Assume that FPT �= AW[∗]. Then there is no fpt-algorithm deciding

p-MC(STRING[Σ], FO) in time

f(k) · nO(1)

for any function f ∈ tow(o(
√

k)).
Here n denotes the size of the input string and k the length of the input
sentence. �

Exercise 10.34. Let Σ be as in Exercise 10.32. Prove that there is no func-
tion

f(n) ∈ tow(o(
√

n))

such that the following holds: For every first-order sentence ϕ over the alpha-
bet τΣ there is an NFA A of size at most f(|ϕ|) such that L(A) = L(ϕ). �

Notes

Büchi’s Theorem 10.3 is due to Büchi [29], Elgot [89], and Trakhtenbrot [200].
The version for infinite words (Theorem 10.8) is due to Büchi [30], and the
version for trees (Theorem 10.14) is due to Doner [74] and Thatcher and
Wright [196]. Rabin [175] proved a version of the theorem for infinite trees.
For more details on the interplay between logic and automata, we refer the
reader to [198, 118]. The main (algorithmic) motivation for Büchi’s theorem
and its variants was the design of satisfiability algorithms for monadic second-
order theories; the fixed-parameter tractable model-checking algorithms are a
by-product.

The automata-theoretic approach to model-checking in automated verifi-
cation was proposed by Vardi and Wolper [207]. A practical model-checking
tool built on this approach is the SPIN model checker [127]. Various parame-
terized problems in the context of model-checking and verification are studied
in [70].

The lower bound results presented in Sect. 10.3 are from [112].



11

Tree Width

Tree width is a parameter that measures the similarity of a graph or relational
structure with a tree. We will see in this chapter that many NP-hard decision
and optimization problems are fixed-parameter tractable when parameterized
by the tree width of the input structure. A very powerful and general theorem
due to Courcelle states that this is the case for all problems that are definable
in monadic second-order logic.

It turns out that, combined with other tools from structural graph theory,
algorithms for problems parameterized by the tree width can also serve as
building blocks of more complex algorithms for problems on arbitrary graphs.
This yields another very powerful technique for the design of fpt-algorithms
that we call the method of tree width reductions.

Tree decompositions of graphs and tree width were originally introduced
in the context of graph minor theory. The theory itself has some strong algo-
rithmic consequences. In particular, it can be used to prove very easily that
a number of natural parameterized graph problems are nonuniformly fixed-
parameter tractable. (Nonuniform fixed-parameter tractability will be defined
in Sect. 11.7.)

The chapter is organized as follows: Tree decompositions and tree width
of graphs are introduced in Sect. 11.1; the generalization to arbitrary rela-
tional structures is given in Sect. 11.3. In Sect. 11.2, we deal with the prob-
lem of computing tree decompositions of minimum or near-minimum width
by an fpt-algorithm. Courcelle’s Theorem will be proved in Sect. 11.4, and
in Sect. 11.5 we give several applications of this theorem. In Sect. 11.6 we
introduce the method of tree width reduction for designing fpt-algorithms.
Finally, Sect. 11.7 starts with a very brief introduction into graph minor the-
ory. We then define nonuniform fixed-parameter tractability and explain how
results from graph minor theory can be used to establish the nonuniform
fixed-parameter tractability of certain problems.

The last two sections have the character of an informal survey. Technical
details of the proofs of the results presented there are beyond the scope of
this book.
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11.1 Tree Decompositions of Graphs

Recall that trees are directed graphs T = (T, F ) that have one distinguished
vertex r ∈ T (the root) such that for every vertex t ∈ T there is exactly one
path from r to t. As before, we call the vertices of trees nodes . Unless explicitly
stated otherwise, we will always denote the node set of a tree T by T and the
edge set by F . We reserve the letter E for the edge relation of graphs. The
reason for these conventions is that we often work with trees and graphs at
the same time, and it will be important not to confuse them. If T is a tree
and t ∈ T , then Tt denotes the subtree of T rooted at t, that is, the induced
subgraph of T whose vertex set Tt consists of all vertices reachable from t.

A subset S ⊆ T of the node set of a tree T is connected (in T ) if it is
connected in the undirected graph underlying T .

Definition 11.1. A tree decomposition of a graph G = (V, E) is a pair
(T , (Bt)t∈T ), where T = (T, F ) is a tree and (Bt)t∈T a family of subsets
of V such that:
(1) For every v ∈ V , the set B−1(v) := {t ∈ T | v ∈ Bt} is nonempty and

connected in T .
(2) For every edge {v, w} ∈ E there is a t ∈ T such that v, w ∈ Bt.
The width of the decomposition

(
T , (Bt)t∈T

)
is the number

max
{
|Bt|

∣∣ t ∈ T
}
− 1.

The tree width tw(G) of G is the minimum of the widths of the tree decom-
positions of G. �

The purpose of the “−1” in the definition of the width of a decomposition
is to let trees have tree width 1 (cf. Exercise 11.5).

Example 11.2. Consider the graph displayed in Fig. 11.1. Figure 11.2 shows
four different tree decompositions of this graph. The first has width 8, and the
others have width 2. It follows from Exercise 11.5 below that the graph has tree
width at least 2, so these tree decompositions have minimum width. Observe
that the second and third tree decomposition are quite different, even though
they have the same tree, whereas the third and fourth tree decomposition only
differ in the direction of the tree edges, but are the same otherwise. �

We need some additional terminology: Let G = (V, E) be a graph and
(T , (Bt)t∈T ) a tree decomposition of G. The sets Bt with t ∈ T are the bags of
the decomposition. If both endpoints of an edge {v, w} ∈ E are contained in
a bag Bt, then we say that the edge {v, w} is realized by Bt. Note that every
edge is realized by at least one bag.

For a subset U ⊆ T we let

B(U) :=
⋃

u∈U

Bu.
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Fig. 11.1. A graph

{1, . . . , 9} {3, 7, 9}

{3, 7, 8}

{2, 3, 8}

{1, 2, 8}

{3, 4, 7}

{4, 6, 7}

{4, 5, 6}

{3, 7, 9}

{3, 7, 8}

{1, 3, 8}

{1, 2, 3}

{3, 6, 7}

{3, 5, 6}

{3, 4, 5}

{1, 2, 3}

{1, 3, 8}

{3, 7, 8}

{3, 7, 9}
{3, 6, 7}

{3, 5, 6}

{3, 4, 5}

Fig. 11.2. Four tree decompositions of the graph in Fig. 11.1

For a subset W ⊆ V we let

B−1(W ) :=
⋃

v∈W

B−1(v) = {t ∈ T | ∃v ∈ W : v ∈ Bt}.

Since {v, w} ∈ E implies that B−1(v) ∩B−1(w) �= ∅, we observe that if W is
a connected subset of G, then B−1(W ) is a connected subset of T .

When describing algorithms on tree decompositions, it will often be con-
venient to represent the bags of a tree decomposition as tuples of elements
instead of sets: An ordered tree decomposition of width k of a graph G is a
pair (T , (b̄t)t∈T ), where every b̄t is a (k + 1)-tuple (bt

1, . . . , b
t
k+1) of vertices

of G, and (T , ({bt
1, . . . , b

t
k+1})t∈T ) is a tree decomposition of G. Every tree

decomposition whose bags are all nonempty immediately yields an ordered
tree decomposition; we just order the elements of the bags and fill the tuples
up to length k + 1 (where k is the width of the decomposition) by repeating
elements if necessary.

Every graph G = (V, E) has a tree decomposition (T , (Bt)t∈T ) where T
consists of just one node t with Bt = V . We call this decomposition the 1-
node tree decomposition of G. The 1-node tree decomposition has width |V |−1.
Thus every graph G = (V, E) has tree width at most |V | − 1.
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Observe that if a graph H = (V H, EH) is a subgraph of a graph G =
(V G , EG), then every tree decomposition of G induces a tree decomposition of
H obtained by deleting all vertices in V G \ V H from all bags. In particular,
this implies that tw(H) ≤ tw(G).

The following fundamental lemma establishes a connection between con-
nectivity of a graph and of its tree decompositions. Let G = (V, E) be a graph
and X, Y, S ⊆ V . We say that S separates X from Y if every path from a
vertex in X to a vertex in Y contains a vertex of S. Note that S is not re-
quired to be disjoint from X and Y . In particular, any superset of X or of Y
separates X from Y . If G = (V, E) is a graph and S ⊆ V , then G \ S denotes
the induced subgraph of G with vertex set V \ S.

Lemma 11.3. Let (T , (Bt)t∈T ) be a tree decomposition of a graph G =
(V, E). Then for every edge (t, u) of T ,

Bt ∩Bu

separates B(T \ Tu) from B(Tu).

Proof: Let Vt := B(T \ Tu) and Vu := B(Tu). Let v1, . . . , vn be a path in G
with v1 ∈ Vt and vn ∈ Vu. Then there is an i ∈ [n] such that either vi ∈ Vt∩Vu

or (vi ∈ Vt and vi+1 ∈ Vu).
Suppose first that vi ∈ Vt∩Vu. Then B−1(vi)∩(T \Tu) �= ∅ and B−1(vi)∩

Tu �= ∅. As B−1(vi) is connected, it follows that t, u ∈ B−1(vi) and hence that
vi ∈ Bt ∩Bu.

We argue similarly if vi ∈ Vt and vi+1 ∈ Vu: As {vi, vi+1} ∈ E, there
is an s ∈ T such that vi, vi+1 ∈ Bs. If s ∈ Tu, then s ∈ B−1(vi) ∩ Tu,
and hence B−1(vi) ∩ Tu �= ∅. By the assumption vi ∈ Vt, we know that
B−1(vi)∩(T \Tu) �= ∅. As B−1(vi) is connected, it follows that t, u ∈ B−1(vi),
and thus vi ∈ Bt ∩Bu. If s ∈ T \ Tu, we exchange the roles of vi and vi+1 in
the preceding argument. 
�

Using this lemma, one can derive the further basic facts about tree decom-
positions contained in the following exercises.

Exercise 11.4. Let G = (V, E) be a graph, C ⊆ V a clique in G, and
(T , (Bt)t∈T ) a tree decomposition of G. Prove that there is a node t ∈ T
such that C ⊆ Bt.

Note that this implies that a complete graph with n vertices has tree width
n− 1. �

Note that the empty graph has tree width −1, and that a graph with at
least one vertex has tree width 0 if and only if it has no edges.

Exercise 11.5. (a) Prove that a graph has tree width at most 1 if and only
if it is acyclic.

(b) Prove that a cycle has tree width 2. �
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For k, � ≥ 1, the (k × �)-grid is the graph

Gk×� :=
(
[k]× [�],

{
{(i, j), (i′, j′)}

∣∣ |i− i′|+ |j − j′| = 1
})

.

Exercise 11.6. (a) Prove that tw(Gk,�) ≤ min{k, �} for all k, � ∈ N.

(b) Prove that for every k ∈ N and every S ⊆ [k]× [k] of cardinality at most
(k − 1) there are a connected component C of Gk×k \ S and i, j ∈ [k] such
that:
• C contains more than half of the vertices of Gk×k, that is, |C| > k2

2 .
• C contains row i and column j, that is, {i} × [k] ⊆ C and [k]× {j} ⊆ C.
Hint: Prove this by induction on k. In the induction step, suppose that there
exists a set S that does not have the desired properties. Delete a row that
does not intersect S and the leftmost column that intersects S and apply the
induction hypothesis.

(c) Use Lemma 11.16 below to prove that tw(Gk,k) ≥ k − 1.

Remark: It can actually be proved that tw(Gk,k) = k. �

Recall that a graph G = (V, E) is k-connected , for some k ≥ 1, if |V | > k
and for every set S ⊆ V of less than k elements the graph G \ S is connected.

Exercise 11.7. Prove that a k-connected graph has tree width at least k. �

Definition 11.8. A tree decomposition (T , (Bt)t∈T ) of a graph G is small if
for all t, t′ ∈ T with t �= t′ we have Bt �⊆ Bt′ . �

Observe that a tree decomposition (T , (Bt)t∈T ) is small if and only if for
all tree edges (t, u) ∈ F , neither Bt ⊆ Bu nor Bu ⊆ Bt. This follows from the
fact that if Bt ⊆ Bt′ for nodes t, t′ ∈ T , then Bt ⊆ Bs for all nodes on the
undirected path from t to t′ in T .

Lemma 11.9. (1) Let (T , (Bt)t∈T ) be a small tree decomposition of a graph
G = (V, E). Then |T | ≤ |V |.

(2) Every graph G has a small tree decomposition of width tw(G). Further-
more, an arbitrary tree decomposition can be transformed into a small
tree decomposition of the same width in linear time.

Proof: The proof of (1) is by induction on |V |, using the fact that the bag of
every leaf in a small tree decomposition contains an element not contained in
any other bag.

To construct a small tree decomposition from an arbitrary decomposition
(T , (Bt)t∈T ), starting from the leaves of T we contract all edges (t, u) of T for
which either Bt ⊆ Bu or Bu ⊆ Bt and let the larger of the two bags Bt, Bu

be the new bag of the vertex resulting from the contraction. 
�

Lemma 11.10. Every (nonempty) graph G of tree width at most w has a
vertex of degree at most w.
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Proof: Let G = (V, E) be a graph and (T , (Bt)t∈T ) a small tree decomposition
of width at most w of G. If G has at most (w + 1) vertices, then all vertices
have degree at most w. Otherwise, T has at least 2 vertices. Let u be a leaf
of T with parent s and v ∈ Bu \ Bs. Then Bu is the only bag that contains
v. Thus all edges that have v as an endpoint must be realized by Bu. As
|Bu \ {v}| ≤ w, this implies that the degree of v is at most w. 
�

Corollary 11.11. Every graph G = (V, E) of tree width at most w has at
most w · |V | edges.

Proof: This follows by an induction on the number of the vertices using the
previous lemma and the fact that every subgraph of a graph of tree width at
most w has tree width at most w. 
�

11.2 Computing Tree Decompositions

Not surprisingly, the problem Tree-Width of deciding if a graph has tree
width k is NP-complete. In this section we will see that the natural parame-
terization of the problem is fixed-parameter tractable:

p-Tree-Width
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether tw(G) = k.

Theorem 11.12 (Bodlaender’s Theorem). There is a polynomial p and
an algorithm that, given a graph G = (V, E), computes a tree decomposition
of G of width k := tw(G) in time at most

2p(k) · n,

where n := |V |.

Corollary 11.13. p-Tree-Width is fixed-parameter tractable.

We will not give a proof of Bodlaender’s Theorem. Instead, we prove the
following weaker proposition, which is strong enough to derive most of the
fixed-parameter tractability results in the following sections, though usually
not the optimal time bounds for the algorithms.

Proposition 11.14. There is an algorithm that, given a graph G = (V, E),
computes a tree decomposition of G of width at most 4 · tw(G) + 1 in time

2O(k) · n2,

where k := tw(G) and n := |V |.
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The algorithm in Proposition 11.14 is based on a connection between tree
decompositions and separators, which will be made precise in Theorem 11.17,
and a standard algorithm for computing small separators in a graph. It does
not involve any large constants hidden in the big-O notation. (A more precise
upper bound for the running time is O(33k ·k·n2).) An advantage the algorithm
in Proposition 11.14 has over Bodlaender’s algorithm is that the exponent is
linear in k, whereas the polynomial in the exponent of the running time of
Bodlaender’s algorithm is cubic.

Definition 11.15. Let G = (V, E) be a graph and W ⊆ V . A balanced W -
separator is a set S ⊆ V such that every connected component C of G \ S
contains at most |W |/2 elements of W . �

Lemma 11.16. Let G = (V, E) be a graph of tree width at most k and W ⊆
V . Then there exists a balanced W -separator of G of cardinality at most k+1.

Proof: Let (T , (Bt)t∈T ) be a tree decomposition of G. Let t ∈ T be a node of
minimum height such that B(Tt) contains more than |W |/2 elements of W .
The height of a node t is the height of the subtree Tt. Let

S := Bt.

Let u1, . . . , um be the children of t. For i ∈ [m], let Ci := B(Tui
) \ S. Fur-

thermore, let C0 := B(T \ Tt) \ S. Then for i ∈ [0, m], the set Ci contains at
most |W |/2 elements of W . It follows from Lemma 11.3 that every connected
component of G \ S is contained in Ci for some i ∈ [0, m]. 
�

The following theorem is a partial converse of the previous lemma (whose
statement is repeated as part (1) of the theorem to give a more complete
picture). The proof of Proposition 11.14, which we will give below, is an al-
gorithmic version of the proof of the theorem.

Theorem 11.17. Let G = (V, E) be a graph and k ≥ 1.
(1) If G has tree width at most k, then for every W ⊆ V there exists a balanced

W -separator of cardinality at most k + 1.
(2) If for every W ⊆ V with |W | = 2k+3 there exists a balanced W -separator

of cardinality at most k + 1, then G has tree width at most 3k + 3.

Proof: (1) is Lemma 11.16. To prove (2), we actually prove the following
stronger statement:

(2′) If for every W ⊆ V with |W | = 2k+3 there exists a balanced W -separator
of cardinality at most k + 1, then for every W ⊆ V with |W | ≤ 2k + 3 the
graph G has a tree decomposition (T , (Bt)t∈T ) of width at most 3k + 3
such that W ⊆ Br for the root r of T .
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The proof is by induction on |V |. For |V | ≤ 3k + 4, the 1-node tree de-
composition of G has the desired properties. So suppose |V | > 3k + 4. Let
W ⊆ V such that |W | ≤ 2k + 3. Without loss of generality we may assume
that |W | = 2k + 3. If this is not the case, we can add vertices to W because
|V | ≥ 2k +3. Let S be a balanced W -separator of cardinality at most (k +1),
and let C1, . . . , Cm be the connected components of G \ S.

For i ∈ [m], let Vi := Ci ∪S and Gi the induced subgraph of G with vertex
set Vi. Since

|Vi ∩W | ≤ |Ci ∩W |+ |S| ≤ �|W |/2�+ |S| ≤ k + 1 + k + 1 < 2k + 3 = |W |,

we have |Vi| < |V |. Let Wi := (Ci∩W )∪S and note that |Wi| ≤ |Ci∩W |+|S| ≤
2k + 2. The separation property is inherited by the subgraph Gi, and thus by
the induction hypothesis, Gi has a tree decomposition (Ti, (B

i
t)t∈Ti

), where
Ti = (Ti, Fi), such that:

• The width of (Ti, (B
i
t)t∈Ti

) is at most 3k + 3.
• Wi ⊆ Bri

for the root ri of Ti.

Now we join these tree decompositions (Ti, (B
i
t)t∈Ti

), for i ∈ [m], together at
a new root r with Br := W ∪S and obtain a tree decomposition of G with the
desired properties. More precisely, assume that the Ti are pairwise disjoint
and let r be a new node not contained in any Ti. Let

T := {r} ∪
⋃

i∈[m]

Ti, F :=
{
(r, ri)

∣∣ i ∈ [m]
}
∪

⋃
i∈[m]

Fi,

and T = (T, F ). For t ∈ T , let

Bt :=

{
Bi

t, if t ∈ Ti for some i ∈ [m],

W ∪ S, if t = r.

To see that (T , (Bt)t∈T ) is a tree decomposition of G, note that the only
vertices that any two of the graphs Gi have in common are contained in the
separator S. Since S is contained in Bri

for all i ∈ [m] and in Br, condition (1)
of Definition 11.1 is satisfied. All edges of G that are not edges of any Gi have
both endpoints in S and are therefore realized by Br. Thus condition (2) is
also satisfied.

The width of (T , (Bt)t∈T ) is at most 3k + 3, because the width of the
(Ti, (B

i
t)t∈Ti

) is at most 3k + 3 and |Br| = |W ∪ S| ≤ 3k + 4. 
�
If we want to implement the inductive proof of the previous theorem in

an efficient algorithm, the main task is to compute balanced W -separators
efficiently. The problem is that there are only efficient algorithms for comput-
ing separators for two sets, but not multiway separators for many sets. The
following definition and lemma will be used to handle this problem. There
is a small price we have to pay: Instead of separating a set W into (poten-
tially many) parts of cardinality at most |W |/2, we separate it into two (not
necessarily connected) parts of cardinality at most (2/3)|W |.
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Definition 11.18. Let G = (V, E) be a graph and W ⊆ V . A weakly balanced
separation of W is a triple (X, S, Y ), where X, Y ⊆ W , S ⊆ V are pairwise
disjoint sets such that
(1) W = X ∪ (S ∩W ) ∪ Y .
(2) S separates X from Y .
(3) 0 < |X |, |Y | ≤ (2/3)|W |.
The order of the weakly balanced separation (X, S, Y ) is |S|. �

Lemma 11.19. Let k ≥ 2, G = (V, E) be a graph of tree width at most k,
and W ⊆ V with |W | ≥ 2k+3. Then there exists a weakly balanced separation
of W of order at most (k + 1).

Proof: We let S be a balanced W -separator of cardinality at most (k +1). Let
C1, . . . , Cm be a list of all connected components of G\S that have a non-empty
intersection Wi := Ci∩W with W . Then |Wi| ≤ |W |/2 for all i ∈ [m]. It follows
that m ≥ 2, because W \ S =

⋃m
i=1 Wi and |W \ S| ≥ |W | − (k + 1) > |W |/2.

Without loss of generality we may assume that |W1| ≥ |W2| ≥ . . . ≥ |Wm|.
Let i ∈ [m] be minimum such that

i∑
j=1

|Wj | >
|W \ S|

3
. (11.1)

Then i is well defined, because
∑m

j=1 |Wj | = |W \ S| > |W \ S|/3. We let

X :=
i⋃

j=1

Wj and Y :=
m⋃

j=i+1

Wj .

Then |X | > |W \S|/3 > 0 and |Y | = |W \S|−|X | < (2/3)|W \S| ≤ (2/3)|W |.
To prove that |X | ≤ (2/3)|W |, we distinguish between two cases: If |W1| >
|W \ S|/3, then i = 1. Thus |X | = |W1| ≤ |W |/2 ≤ (2/3)|W |, and |Y | > 0
because m ≥ 2. If |W1| ≤ |W \ S|/3, then |Wi| ≤ |W \ S|/3 and hence

|X | =
i∑

j=1

|Wj | =
i−1∑
j=1

|Wj |+ |Wi| ≤
|W \ S|

3
+
|W \ S|

3
=

2

3
|W \ S|.

Hence |X | ≤ (2/3)|W | and |Y | = |W \ S| − |X | ≥ |W \ S|/3 > 0. 
�

Lemma 11.20. There is an algorithm that solves the following problem in
time O(k · ||G||):

Instance: A graph G = (V, E), sets X, Y ⊆ V , and k ∈ N.
Problem: Decide whether there exists a set S ⊆ V of at most k

elements that separates X from Y and compute such
a set if it exists.
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The problem can easily be reduced to a network flow problem and solved by
standard algorithms within the desired time bounds. We give an elementary
algorithm. It is based on a proof of Menger’s Theorem, which states that for
all graphs G, all X, Y ⊆ V , and all k ∈ N, either there are k +1 disjoint paths
in G from X to Y , or there is set S of at most k elements separating X from
Y .

Proof of Lemma 11.20: Let G = (V, E) be a graph and X, Y ⊆ V .
Let P be a family of pairwise disjoint paths in G from X to Y . (Two

paths are disjoint if they have no vertex in common.) A P-alternating walk
is a sequence Q = w1 . . . wm of vertices of G such that {wi, wi+1} ∈ E for all
i ∈ [m− 1] (that is, Q is a walk) and:

(i) No edge occurs twice on Q; that is, {wi, wi+1} �= {wj , wj+1} for all distinct
i, j ∈ [m− 1].

(ii) If wi occurs on a path P = v1 . . . v� ∈ P , say, wi = vj , then wi+1 = vj−1

or wi−1 = vj+1.

Condition (ii) says that if Q intersects a path in P ∈ P , then the intersection
consists of at least one edge, and the edge appears on Q in the opposite
direction as on P .

Claim 1. Let P be a family of pairwise disjoint paths from X to Y and Q
a P-alternating walk from X to Y . Then there exists a family Q of pairwise
disjoint paths from X to Y such that |Q| = |P|+ 1.

X

YQ

P1

P2

P3

(a)

X

Y

(b)

Fig. 11.3. Proof of claim 1. The figure in (a) shows a family P = {P1, P2, P3} of
pairwise disjoint paths from X to Y and a P-alternating path Q; the figure in (b)
shows the resulting family Q of pairwise disjoint paths from X to Y

Proof: The proof is illustrated by Fig. 11.3. The edge set of the paths in Q
consists of all edges of Q that do not appear on a path in P and all edges of
paths in P that do not appear on Q.

It is easy to see that these edges form a family of |P| + 1 disjoint paths
from X to Y and possibly some cycles, which we discard. Intuitively, we can
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think of each path in P and the walk Q as sending a unit flow from X to Y .
On edges traversed in both directions, the flow cancels out. The claim follows
from flow conservation. �

For every family P of pairwise disjoint paths from X to Y , we let R(P) be
the set of all vertices v of G such that there is a P-alternating walk from X to
v. For every P ∈ P , we let cP be the first vertex on P that is not contained
in R(P ), and we let C(P) be the set of all cP for P ∈ P . Note that cP is well-
defined for every P ∈ P , because by (ii) there can never be a P-alternating
walk that ends in the last vertex of a path P ∈ P .

Claim 2. Let P be a family of pairwise disjoint paths from X to Y such that
there is no P-alternating walk from X to Y . Then C(P) separates X from Y .

X

YQ

P1

P2

P3

cP1

cP2

cP3

wi′

wi

(a)

X

Y

cP1

wi′

(b)

Fig. 11.4. Proof of claim 2

Proof: The proof is illustrated by Fig. 11.4. Suppose for contradiction that
Q = w1 . . . wm is a path from X to Y that contains no vertex in C(P). Let
i ∈ [m] be minimum such that wi �∈ R(P). Such an i exists, because otherwise
there would be a P-alternating walk from X to wm ∈ Y , which contradicts
the hypothesis of the claim.

Then wi must occur on some path in P . Let P = v1 . . . v� ∈ P and j, k ∈ [�]
such that wi = vj and cP = vk. Then j ≥ k by the definition of cP , and since
Q contains no vertex in C(P), actually j > k. Now the idea is to say that

w1 . . . wi−1 wi(= vj) vj−1 . . . vk+1 vk(= cP )

is a P-alternating walk from X to cP , which is impossible. Unfortunately, the
walk w1 . . . wivj−1 . . . vk is not necessarily P-alternating, because some edge
might occur twice. Let i′ ∈ [i] be minimum such that there is a j′ ∈ [k + 1, j]
with wi′ = vj′ . Then

w1 . . . wi′−1 wi′ (= vj′ ) vj′−1 . . . vk+1vk(= cP )

is a P-alternating walk from X to cP . This is a contradiction, which proves
claim 2. �
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Claim 3. There is a linear time algorithm that, given a graph G = (V, E),
subsets X, Y ⊆ V , and a family P of pairwise disjoint paths from X to Y ,
either returns a P-alternating walk from X to Y , or, if no such walk exists,
computes the set C(P).

Proof: The set R(P) can be computed by a simple modification of a standard
depth-first search. Edges on the paths in P can only be traversed in one
direction (opposite to the direction of the path). Some care needs to be taken
with the vertices on the paths in P . If vertex vi on a path v1 . . . v� is entered
from a vertex other than vi+1, the only vertex that can be reached in the next
step is vi−1. We leave it to the reader to work out the details.

Once R(P) is computed, we check if it contains a vertex y ∈ Y . If it does,
we construct a P-alternating walk from X to y from the depth-first search
tree. If it does not, we compute the set C(P) in the obvious way. �

Let us put things together to complete the proof of Lemma 11.20. Let
G = (V, E) be the input graph and X, Y ⊆ V . We iteratively compute families
Pi of i disjoint paths from X to Y as follows: We let P0 := ∅. At the ith stage
of the iteration, we use claim 3 to either compute a Pi−1-alternating walk Qi

if there exists one, or compute C(Pi−1). If Qi exists, we use the construction
described in the proof of claim 1 to construct a family Pi of disjoint paths from
X to Y with |Pi| = |Pi−1|+ 1. If Qi does not exist, we return S := C(Pi−1).
Once we have constructed |Pk+1| we stop the construction, because at this
stage we know that there exists no set of cardinality k that separates X from
Y .

Each iteration requires linear time, and the number of iterations required
is at most k + 1. Thus the total running time is O(k · ||G||). 
�

Corollary 11.21. There is an algorithm that solves the following problem in
time O(k · ||G||):

Instance: A graph G = (V, E), pairwise disjoint sets X, Y, Z ⊆
V , and k ∈ N.

Problem: Decide whether there exists a set S ⊆ V \ (X ∪ Y )
such that |S| ≤ k, Z ⊆ S, and S separates X from
Y and compute such a set if there exists one.

Proof: Let G = (V, E) be a graph, X, Y, Z ⊆ V pairwise disjoint, and k ∈ N.
The algorithm first checks if there is an edge from X to Y . If there is, then

clearly there exists no set disjoint from X and Y that separates X from Y ,
and the algorithm immediately rejects.

Otherwise, let S(X) be the set of all vertices in V \X that are adjacent
to a vertex in X , and define S(Y ) analogously. Let V ′ := V \ (X ∪ Y ) and
G′ the induced subgraph of G with vertex set V ′. Note that a set S ⊆ V ′

separates X and Y in G if and only if it separates S(X) and S(Y ) in G′. So
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we can apply the algorithm of Lemma 11.20 to (G′, S(X), S(Y ), k) to find a
separating set disjoint from X and Y . To satisfy the additional constraint that
the separating set S is a superset of Z, we apply the algorithm of Lemma 11.20
to (G′, S(X) ∪ Z, S(Y ) ∪ Z, k). 
�

Corollary 11.22. There is an algorithm that solves the following problem in
time O(33k · k · ||G||):

Instance: A graph G = (V, E), k ∈ N, a set W ⊆ V such that
|W | = 3k + 1.

Problem: Decide whether there exists a weakly balanced sep-
aration of W of order at most (k + 1) and compute
such a separation if it exists.

Proof: Let G = (V, E) be a graph, k ∈ N, and W ⊆ V with |W | = 3k + 1.
The algorithm simply checks for all disjoint nonempty sets X, Y ⊆W with

|X |, |Y | ≤ 2k if there exists a set S with |S| ≤ k+1 such that S∩W = W \(X∪
Y ) and S separates X from Y by applying the algorithm of Corollary 11.21
to X , Y , Z := W \ (X ∪ Y ), and k + 1. If it finds such an S, then (X, S, Y )
is the desired weakly balanced separation of W . If the algorithm fails for all
X, Y then there exists no weakly balanced separation of W .

As 33k+1 is an upper bound for the number of pairs of disjoint subsets of
W , the running time of the algorithm is bounded by O(33k · k · ||G||). 
�

Proof of Proposition 11.14: Consider the algorithm Rooted-TDec (Algo-
rithm 11.5). The test in line 1 is sound because by Corollary 11.11 a graph
of tree width at most k has at most k · |V | edges. Note that the number m
of connected components of G \ S is at least 2, because the separator S of
a weakly balanced separation splits the graph into at least two connected
components. Thus the graphs Gi are all proper subgraphs of G. “Joining the
tree decompositions” in line 12 means constructing a new tree decomposition
(T , (Bt)t∈T ) as in the proof of Theorem 11.17. Since |W | ≤ 3k + 1, this tree
decomposition has width ≤ 4k + 1.

Therefore, if G = (V, E) is a graph of tree width at most k and W ⊆ V such
that |W | ≤ 3k+1, then Rooted-TDec(G, k, W ) returns a tree decomposition
(T , (Bt)t∈T ) of G of width at most 4k + 1 such that W ⊆ Br for the root r of
T .

The reason that we obtain a slightly weaker bound 4k+1 (instead of 3k+3)
on the tree width than in Theorem 11.17 is that a weakly balanced separator of
W only guarantees that the connected components contain at most (2/3)|W |
elements of W , whereas a balanced separator guarantees |W |/2.

Let us analyze the running time of Rooted-TDec(k,G, W ). We measure
the running time in terms of the number n := |V | of vertices of the input graph
G. We can assume that ||G|| ∈ O(k·n); otherwise the algorithms stops in line 1.
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Rooted-TDec(k,G, W )
// k ≥ 1, G = (V, E) graph,
// W ⊆ V with |W | ≤ 3k + 1
1. if |E| > k · |V | then halt with “failure”
2. if |V | ≤ 4k + 2 then

3. return 1-node tree decomposition of G
4. else let W ′ ⊇ W with |W ′| = 3k + 1
5. if there exists a weakly balanced separation of W ′ then

6. let S be the separator of such a separation
7. let C1, . . . , Cm be the connected components of G \ S
8. else halt with “failure”
9. for i = 1, . . . , m do

10. let Gi be the induced subgraph of G with vertex set Ci ∪ S
11. (Ti, (B

i
t)t∈Ti) ← Rooted-TDec(k,Gi, (W

′ ∩ Ci) ∪ S)
12. Join (Ti, (B

i
t)t∈Ti), for i ∈ [m], at a new root r with Br = W ′∪S

13. return the resulting tree decomposition

Algorithm 11.5.

To simplify the analysis slightly, let us assume that the separator S computed
by the algorithm has exactly (k + 1) elements. We can always increase the
cardinality of the separator artificially by adding arbitrary elements of V \W .
We get the following recurrence for the running time T (n):

T (n) =

{
O(k), if n ≤ 4k + 2,

maxm,n1,...,nm

(∑
i∈[m] T (ni)

)
+ O(33k · k · n), otherwise,

(11.2)
where the maximum is taken over all m ≥ 2 and n1, . . . , nm ∈ [n − 1] such
that ∑

i∈[m]

(ni − (k + 1)) = n− (k + 1).

This condition is explained by the fact that the intersection of the vertex sets
of the graphs Gi is precisely S. Letting T ′(�) := T (� + (k + 1)), we get the
simpler recurrence

T ′(n′) =

⎧⎪⎪⎨⎪⎪⎩
O(k), if n′ ≤ 3k + 1,

maxm,n′
1,...,n′

m

(∑
i∈[m] T

′(n′
i)
)

+ O
(
33k · k · (n′ + k + 1)

)
,

otherwise,

where the maximum is taken over all m ≥ 2 and n′
1, . . . , n

′
m ∈ [n′ − 1] such

that
∑

i∈[m] n
′
i = n′. An easy induction shows that for all n′, k ∈ N we have

T ′(n′) ≤ c · 33k · k · (n′)2

for a suitable constant c. Of course, this implies
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T (n) = T ′(n− k + 1) ≤ c · 33k · k · n2.

Finally, we present the algorithm claimed to exist in Proposition 11.14:
Given a graph G, for k = 1, 2, . . . it runs Rooted-TDec(k,G, ∅) until it
returns a tree decomposition. The running time of this algorithm is bounded
by ∑

k∈[tw(G)]

c · 33k ·k ·n2 ≤ c · tw(G) ·n2 ·
∑

k∈[tw(G)]

33k = O
(
33tw(G) · tw(G) ·n2

)
. 
�

11.3 Tree Decompositions of Arbitrary Structures

The definition of tree decompositions and tree width generalizes to arbitrary
relational structures in a straightforward way.

Definition 11.23. A tree decomposition of a τ -structure A is a pair

(T , (Bt)t∈T ),

where T = (T, F ) is a tree and (Bt)t∈T a family of subsets of the universe A
of A such that:
(1) For all a ∈ A, the set {t ∈ T | a ∈ Bt} is nonempty and connected in T .
(2) For every relation symbol R ∈ τ and every tuple (a1, . . . , ar) ∈ RA, where

r := arity(R), there is a t ∈ T such that a1, . . . , ar ∈ Bt.
The width of the decomposition

(
T , (Bt)t∈T

)
is the number

max
{
|Bt|

∣∣ t ∈ T
}
− 1.

The tree width tw(A) of A is the minimum of the widths of the tree decom-
positions of A. �

We use the same terminology for tree decompositions of structures as for
tree decompositions of graphs. For instance, the sets Bt are called the bags of
a decomposition

(
T , (Bt)t∈T

)
of a τ -structure A. A tuple (a1, . . . , ar) ∈ RA,

where R ∈ τ , is realized by a bag Bt if a1, . . . , ar ∈ Bt.

Example 11.24. Let τ := {R, E, P}, where R is ternary, E binary, and P
unary, and let A = (A, RA, EA, PA) with

A := {1, 2, . . . , 9},
RA :=

{
(3, 7, 9), (3, 9, 7), (7, 3, 9), (7, 9, 3), (9, 3, 7), (9, 7, 3)

}
,

EA :=
{
(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 1)

}
,

PA := {1, 5}.

Figure 11.6 illustrates the structure. Figure 11.2 on p. 263 shows four different
tree decompositions of the structure. �
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Fig. 11.6. The structure of Example 11.24

Definition 11.25. The Gaifman graph (or primal graph) of a τ -structure A
is the graph G(A) := (V, E), where V := A and

E :=
{
{a, b}

∣∣ a, b ∈ A, a �= b, there exists an R ∈ τ and a tuple

(a1, . . . , ar) ∈ RA, where r := arity(R), such that

a, b ∈ {a1, . . . , ar}
}
. �

Example 11.26. The Gaifman graph of the structure introduced in Exam-
ple 11.24 (displayed in Fig. 11.6) is displayed in Fig. 11.1 on p. 263. �

The previous two examples suggest the following result:

Proposition 11.27. A structure has the same tree decompositions as its
Gaifman graph.

Proof: Let A be a τ -structure and G(A) its Gaifman graph. The only reason
a tree decomposition of G(A) may not be a tree decomposition of A or vice
versa is that condition (2) of the definition of tree decompositions is violated,
that is, some edge or tuple in a relation is not realized. We shall prove that
this can never happen.

Every edge of the graph is realized by some bag of every tree decom-
position of the structure, because, by definition of the Gaifman graph, ev-
ery edge is contained in some tuple of some relation of the structure. For
the converse direction, let (T , (Bt)t∈T ) be a tree decomposition of G(A) and
(a1, . . . , ar) ∈ RA for some R ∈ τ . Then {a1, . . . , ar} is a clique in G(A). Thus
by Exercise 11.4, there exists a t ∈ T such that {a1, . . . , ar} ⊆ Bt. 
�

Combined with Bodlaender’s Theorem 11.12, this yields:

Corollary 11.28. There is a polynomial p and an algorithm that, given a
structure A, computes a tree decomposition of A of width k := tw(A) in time
at most

2p(k) · ||A||.

The next lemma generalizes Corollary 11.11 to arbitrary structures by
proving that the size of structures of bounded tree width is linear in the
cardinality of their universe.
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Lemma 11.29. Let τ be a vocabulary and r := arity(τ) the maximum of the
arities of the relations in τ . Then for every τ-structure A,

||A|| ∈ O
(
|τ | · r2 · (tw(A) + 1)r−1 · |A|

)
.

Proof: Let A be a τ -structure and R ∈ τ an s-ary relation symbol. We shall
prove that

|RA| ≤ s · (tw(A) + 1)s−1 · |A|. (11.3)

Recalling that ||A|| := |τ | + |A| +
∑

R∈τ (|RA| + 1) · arity(R), the statement
of the lemma follows.

To prove (11.3), let (T , (Bt)t∈T ) be a small tree decomposition A, and let
t be a leaf of T and a ∈ Bt \

⋃
u∈T\{t} Bu. Then all tuples of RA in which

a occurs are realized by Bt. Thus there are at most s · (tw(A) + 1)s−1 such
tuples.

Now a similar inductive argument as in the proof of Corollary 11.11 proves
(11.3). 
�

Sometimes, in particular if the arity of the vocabulary is high, the running
time of the algorithms we aim at can be improved considerably by a simple
trick, namely by decomposing the incidence structure AI (see Definition 6.12)
of the given structure A instead of the structure itself.

Example 11.30. Let r ∈ N and τ := {R} with r-ary R. For the τ -structure
A := ([r], {(1, 2, . . . , r)}) we have tw(A) = r − 1 and tw(AI) = 1. �

Exercise 11.31. Let A be a τ -structure and arity(τ) ≥ 2. Prove that:

(a) tw(AI) ≤ tw(A) + 1, and if arity(τ) ≤ tw(A), then tw(AI) ≤ tw(A).

(b) tw(A) < (tw(AI) + 1) · (arity(τ) − 1).

Hint: Consider a tree decomposition of AI of width wI := tw(AI). Let us
assume for simplicity that the vocabulary of A consists of a single r-ary rela-
tion symbol R. If we replace every element bR,ā with ā = (a1, . . . , ar) ∈ RA

in every bag of the decomposition by a1, . . . , ar, we obtain a tree decomposi-
tion of A of width at most (wI + 1) · r − 1, which is not good enough. Show
that if we just replace bR,ā by a2, . . . , ar everywhere, then we obtain a tree
decomposition of A of width (wI + 1) · (r − 1)− 1. �

For graphs, instead of working with the incidence structure, it is more
convenient (but equivalent) to work with the hypergraph representation. Let
G = (V, E) be a graph. Our standard way of representing G by a relational
structure is to view V as the universe of the structure and E as a binary
relation on V . We usually denote this {E}-structure by the same letter G and
call it the standard representation of G. Observe that G viewed as a graph and
G viewed as an {E}-structure have the same tree width.

An alternative is to view G as a hypergraph and represent this hypergraph
by a structure of vocabulary τHG = {VERT,EDGE, I} (see Example 4.9):
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Definition 11.32. Let G = (V, E). The hypergraph representation of G is the
τHG-structure GHG defined as follows:
• The universe of GHG is V ∪ E.
• VERTGHG := V .
• EDGEGHG := E.
• IGHG := {(v, e) | v is incident with e}. �

Exercise 11.33. Let G be a graph and GHG its hypergraph representation.
Prove that

tw(G) = tw(GHG). �

We will work with the hypergraph representation of graphs later in this
chapter because monadic second-order logic (MSO) is more expressive over
the hypergraph representation. For example, we will see in Example 11.49
that there is an MSO-sentence hamiltonian of vocabulary τHG such that for
every graph G,

GHG |= hamiltonian ⇐⇒ G has a Hamiltonian cycle.

It can be proved that there is no MSO-sentence ϕ of vocabulary {E} such
that for every graph G,

G |= ϕ ⇐⇒ G has a Hamiltonian cycle,

where the G on the left-hand side is the standard representation of the graph
G.

Strictly speaking, in our applications we never need the additional expres-
sive power of MSO over the hypergraph representation, because we are always
dealing with graphs of bounded tree width. The following theorem shows that
for graphs of bounded tree width, MSO over the hypergraph representation
has the same expressive power as MSO over the standard representation.

Theorem 11.34. Let w ≥ 1. Then for every MSO-sentence ϕ of vocabulary
τHG there is an MSO-sentence ϕ′ of vocabulary {E} such that for all graphs
G of tree width at most w,

GHG |= ϕ ⇐⇒ G |= ϕ′.

We omit the proof.

11.4 Algorithms on Structures of Bounded Tree Width

The importance of tree width and tree decompositions for computer science
is mainly due to the fact that many hard algorithmic problems can be solved
very efficiently, usually in linear time, when the input structure is restricted
to be of bounded tree width. The method used to achieve this is known as
dynamic programming on a tree decomposition; it is usually straightforward to
adapt this method to a specific problem. We illustrate this with two examples:
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Example 11.35. In this example, we will show that for every k ∈ N the
3-Colorability problem restricted to input graphs of tree width at most k
can be solved in linear time.

Given a graph G = (V, E), we first compute a small tree decomposition
(T , (Bt)t∈T ) of G of width≤ k using Bodlaender’s algorithm and the algorithm
of Lemma 11.9(2). Then, starting with the leaves of T , for all t ∈ T we
inductively compute partial solutions for the subgraph induced on B(Tt). More
precisely, for every node t ∈ T we compute two sets Col(t) and Extcol(t) that
are defined as follows:
• Col(t) is the set of all 3-colorings of the induced subgraph of G with vertex

set Bt. We represent these colorings as mappings f : Bt → {1, 2, 3}.
• Extcol(t) is the set of all colorings in Col(t) that can be extended to 3-

colorings of the induced subgraph of G with vertex set B(Tt).
Then G is 3-colorable if and only if Extcol(r) �= ∅, where r denotes the root
of T .

To see how the sets Col(t) and Extcol(t) are computed, let t be a node of
T . The set Col(t) can easily be computed in time O(3k+1 ·k2) by going through
all mappings f : Bt → {1, 2, 3} and filtering out those that are not proper
3-colorings. If t is a leaf, then Extcol(t) = Col(t). Otherwise, let t1, . . . , tm
be the children of T and assume that the sets Extcol(ti), for i ∈ [m], have
already been computed. Then Extcol(t) is the set of all f ∈ Col(t) such that
for all i ∈ [m] there exists an fi ∈ Extcol(ti) such that f coincides with fi on
Bt ∩ Bti

. This set can easily be computed in time O(32(k+1) · k · m), which
amounts to O(32(k+1) · k) per edge of the tree.

Since |T | ≤ |V |, the overall running time (including time required by

Bodlaender’s algorithm) is thus 2kO(1) · |V |. �

Note that in the previous example we have actually proved that the fol-
lowing “parameterized” problem is fixed-parameter tractable:

p∗-tw-3-Colorability
Instance: A graph G.

Parameter: tw(G).
Problem: Decide whether G is 3-colorable.

The reason that we put “parameterized” in quotation marks and the p with an
asterisk is that according to our formal definition, p∗-tw-3-Colorability is
not a parameterized problem, because the parameterization is not polynomial
time computable (unless PTIME = NP).1 Nevertheless, the parameterization
is computable by an fpt-algorithm (with respect to itself). Large parts of
the theory go through if we weaken the assumption that a parameterization
be polynomial time computable to fpt-computable. In this chapter, we will
continue to use the more liberal notion and indicate this with an asterisk.

1Another irrelevant formality is that the tree width is not always a positive
integer but may be 0 or even −1.



280 11 Tree Width

Exercise 11.36. Prove that the following problem is solvable in time 2kO(1) ·
n, where n is the number of vertices of the input graph and k its tree width.

p∗-tw-Hamiltonicity
Instance: A graph G.

Parameter: tw(G).
Problem: Decide whether G has a Hamiltonian cycle.

Hint: Let (T , (Bt)t∈T ) be a tree decomposition of G of width tw(G). At each
node t of T , compute all sets {(v1, w1), . . . , (v�, w�)} ⊆ B2

t such that for all
i ∈ [�] there exists a path Pi from vi to wi in the induced subgraph of G with
vertex set B(Tt) such that the paths P1, . . . , P� are pairwise disjoint, and all
vertices in B(Tt) occur on one of these paths. �

Courcelle’s Theorem

Theorem 11.37 (Courcelle’s Theorem). The following problem is fixed-
parameter tractable:

p∗-tw-MC(MSO)
Instance: A structure A and an MSO-sentence ϕ.

Parameter: tw(A) + |ϕ|.
Problem: Decide whether A |= ϕ.

Moreover, there is a computable function f and an algorithm that solves it in
time

f(k, �) · |A|+ O(||A||),
where k := tw(A) and � := |ϕ|.

Let us remark that the term O(||A||) in the running time is only needed to
compute the reduct of the input structure A to the vocabulary τϕ of the input
sentence ϕ of the model-checking problem. The term can be omitted if the
input structure has vocabulary τϕ.

The theorem is proved by reducing the problem p∗-tw-MC(MSO) to
p-MC(TREEl, MSO), the model-checking problem for MSO on labeled trees,
which is fixed-parameter tractable by Theorem 10.16. In the first part of the
proof, which is completed with Lemma 11.39, we associate a labeled tree
T (A,D) with every tree decomposition D = (T , (Bt)t∈T ) of a structure A in
such a way that T (A,D) carries all the information needed to reconstruct A.
The tree underlying T (A,D) is just T , and the labeling of a node t encodes
the induced substructure of A with vertex set Bt. Furthermore, the labeling
carries the information of how the different bags of the decomposition inter-
sect. In the second part of the proof (Lemmas 11.41 and 11.42), we translate
MSO-formulas over the structure A into MSO-formulas over the labeled tree
T (A,D). This yields the desired reduction.
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Let τ = {R1, . . . , Rm}, where, for i ∈ [m], the relation Ri is ri-ary. Let
A be a τ -structure and D = (T , (b̄t)t∈T ) an ordered tree decomposition (see
p. 263) ofA of width k. We define a labeling λ of the tree T = (T, F ) as follows:
We want the label λ(t) to encode the isomorphism type of the substructure of
A induced by the bag b̄t and the interaction of b̄t with the bag of the parent
of t. We let

λ(t) :=
(
λ1(t), . . . , λm+2(t)

)
,

where

• for 1 ≤ i ≤ m,

λi(t) = {(j1, . . . , jri
) ∈ [k + 1]ri | (bt

j1 , . . . , b
t
jri

) ∈ RA
i },

• λm+1(t) := {(i, j) ∈ [k + 1]2 | bt
i = bt

j},

• λm+2(t) :=

⎧⎪⎨⎪⎩
{(i, j) ∈ [k + 1]2 | bt

i = bs
j}, for the parent s of t if t

is not the root of T ,

∅, if t is the root of T .

We let
T (A,D) := (T, F, λ).

Note that the alphabet of T (A,D) is

Σ(τ, k) := Pow([k+1]r1)×· · ·×Pow([k+1]rm)×Pow([k+1]2)×Pow([k+1]2).

(Recall that Pow(Y ) denotes the power set of Y .)
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(a)

A
t1

t2

t3

t4

t5

t6

t7

(3, 7, 9)

(3, 7, 8)

(1, 3, 8)

(1, 2, 3)

(3, 6, 7)

(3, 5, 6)

(3, 4, 5)

(b)

D

Fig. 11.7. The structure A and tree decomposition D of Example 11.38

Example 11.38. Recall the structure A in Fig. 11.7(a), which was intro-
duced in Example 11.24. Its vocabulary consists of a ternary relation R =: R1,
a binary relation E =: R2, and a unary relation P =: R3. (See Example 11.24
for a formal definition of the structure.)
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Figure 11.7(b) shows an ordered tree decomposition D of width 2 of the
structure. The alphabet of the tree T (A,D) is

Σ
(
{R1, R2, R3}, 2

)
= Pow([3]3)×Pow([3]2)×Pow([3])×Pow([3]2)×Pow([3]2).

The label in T (A,D) of the right leaf t7 with (ordered) bag b̄t7 = (3, 4, 5) is

λ(t7) =
(
∅,

{
(1, 2), (2, 3)

}
,
{
3
}
,
{
(1, 1), (2, 2), (3, 3)

}
,
{
(1, 1), (3, 2)

})
. �

Lemma 11.39. Given a τ-structure A of width ≤ k, an ordered small tree
decomposition D of A of width ≤ k and the corresponding Σ(τ, k)-labeled tree
T (A,D) can be computed in time

f(k, τ) · |A|

for a suitable computable function f .

Proof: This follows immediately from the definition of T (A,D), Lemma 11.29,
and the fact that the number of nodes in a small tree decomposition of A is
at most |A| (by Lemma 11.9). 
�

We now turn to the second part of the proof of Courcelle’s Theorem, the
translation of an MSO-sentence ϕ over a structure A into a sentence ϕ∗ over
the labeled tree T (A,D) associated with some ordered tree decomposition D
of A.

In the following, let τ = {R1, . . . , Rm}, k ≥ 1, and Σ := Σ(τ, k). Let A
be a τ -structure and D = (T , (b̄t)t∈T ) an ordered tree decomposition of A of
width k. Furthermore, let T (A,D) = (T, F, λ).

We represent subsets and elements of A by (k + 1)-tuples of subsets of T .
For every S ⊆ A and i ∈ [k + 1] we let

Ui(S) := {t ∈ T | bt
i ∈ S},

and we let Ū(S) := (U1(S), . . . , Uk+1(S)). For an element a ∈ A, we let
Ui(a) := Ui({a}) and Ū(a) := Ū({a}).

Example 11.40. Consider the structure A and tree decomposition D of Ex-
ample 11.38 again. We have Ū(7) =

(
∅, {t1, t2}, {t5}

)
, and

Ū({3, 5, 6}) =
(
{t1, t2, t5, t6, t7}, {t3, t5, t6}, {t4, t6, t7}

)
. �

Lemma 11.41. Let Ū = (U1, . . . , Uk+1) be a tuple of subsets of T . Then there
exists an S ⊆ A such that Ū = Ū(S) if and only if the following conditions
are satisfied for all s, t ∈ T and i, j ∈ [k + 1]:
(1) If (i, j) ∈ λm+1(t), then (t ∈ Ui ⇐⇒ t ∈ Uj).
(2) If t is a child of s and (i, j) ∈ λm+2(t), then (t ∈ Ui ⇐⇒ s ∈ Uj).
Furthermore, Ū = Ū(a) for an element a ∈ A if in addition to (1) and (2)
the following conditions are satisfied for all s, t ∈ T and i, j ∈ [k + 1]:
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(3) If t ∈ Ui and t ∈ Uj, then (i, j) ∈ λm+1(t).
(4) If t is a child of s, t ∈ Ui, and s ∈ Uj, then (i, j) ∈ λm+2(t).
(5)

⋃
�∈[k+1] U� is nonempty and connected.

Proof: Clearly, every tuple Ū = Ū(S) satisfies (1) and (2) and every tuple
Ū = Ū(a) satisfies (1)–(5).

Conversely, let Ū be a tuple that satisfies (1) and (2). Let

S := {a ∈ A | a = bt
i for some i ∈ [k + 1] and t ∈ Ui}.

Suppose for contradiction that Ū �= Ū(S). Then there are s, t ∈ T and i, j ∈
[k + 1] such that bt

i = bs
j and t ∈ Ui, but s �∈ Uj . Since B−1(bt

i) is connected,
we may assume that either s = t or t is a child of s or s is a child of t. If s = t,
then bt

i = bs
j implies (i, j) ∈ λm+1(t). Hence t ∈ Ui and s �∈ Uj contradicts (1).

Otherwise, it contradicts (2).
Now suppose that Ū satisfies (1)–(5). Let S be defined as above. By (5),

S is nonempty. Suppose for contradiction that S has more than one element.
Then there are i, j ∈ [k + 1], s, t ∈ T such that bt

i �= bs
j and bt

i, b
s
j ∈ S, or

equivalently, t ∈ Ui and s ∈ Uj . Since
⋃k+1

i=1 Ui is connected (by (5)), we can
find such i, j, s, t such that either s = t or t is a child of s or s is a child of t.
But then either (3) or (4) imply that bt

i = bs
j , which is a contradiction. 
�

Recall the definitions regarding monadic second-order logic on labeled trees
(from Sect. 10.2). In particular, recall that the alphabet τu

Σ of structures rep-
resenting unranked Σ-labeled trees contains a binary relation symbol E for
the edge relation of the tree and unary relation symbols Pc for the symbols
c ∈ Σ. (We will not use the next-sibling relation N here.)

Using the characterizations of tuples of sets Ū(S) and Ū(a) given in
Lemma 11.41, we are going to define MSO-formulas set(X1, . . . , Xk+1) and
elem(X1, . . . , Xk+1) such that for all (k + 1)-tuples Ū = (U1, . . . , Uk+1) of
subsets of T ,

T (A,D) |= set(U1, . . . , Uk+1) ⇐⇒ there is an S ⊆ A with Ū = Ū(S);

T (A,D) |= elem(U1, . . . , Uk+1) ⇐⇒ there is an a ∈ A with Ū = Ū(a).

Conditions (1)–(5) of the lemma can be expressed by formulas ϕ1, . . . , ϕ5 of
MSO. For example, for condition (1) we take the formula

ϕ1(X1, . . . , Xk+1) := ∀x
∧

i,j∈[k+1]

( ∨
c=(c1,...,cm+2)∈Σ

(i,j)∈cm+1

Pcx →
(
Xix↔ Xjx

))
,

and for condition (4) we take the formula

ϕ4(X1, . . . , Xk+1) := ∀x∀y
∧

i,j∈[k+1]

((
Eyx ∧Xix ∧Xjy

)
→

∨
c=(c1,...,cm+2)∈Σ

(i,j)∈cm+2

Pcx
)
.
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The formulas ϕ2 and ϕ3 for conditions (2) and (3) can be defined simi-
larly. Note that the formulas ϕ1, . . . , ϕ4 are first-order formulas. Condition (5)
cannot be expressed in first-order logic, but requires a genuinely (monadic)
second-order formula. We first define a formula connected(X) expressing that
the set X of vertices of a tree (or an arbitrary directed graph) is connected.

connected(X) := ¬∃Y
( Y is a proper nonempty subset of X︷ ︸︸ ︷
∀y(Y y → Xy) ∧ ∃x(Xx ∧ ¬Y x) ∧ ∃yY y

∧ ∀y∀z
(
(Y y ∧Xz ∧ (Eyz ∨ Ezy))→ Y z

)︸ ︷︷ ︸
Y is closed under neighbors in X

)
.

Then condition (5) can be expressed by the formula

ϕ5(X1, . . . , Xk+1) := ∃x(X1x ∨ . . . ∨Xk+1x) ∧ connected(X1 ∪ . . . ∪Xk+1),

where we obtain connected(X1 ∪ . . . ∪Xk+1) from connected(X) by replacing
every atomic formula of the form Xu by X1u ∨ . . . ∨Xk+1u. We let

set(X1, . . . , Xk+1) := ϕ1(X1, . . . , Xk+1) ∧ ϕ2(X1, . . . , Xk+1),

elem(X1, . . . , Xk+1) :=
∧

i∈[5]

ϕi(X1, . . . , Xk+1).

Lemma 11.42. Every MSO-formula ϕ(X1, . . . , Xp, y1, . . . , yq) of vocabulary
τ can be effectively translated into an MSO-formula ϕ∗(X̄1, . . . , X̄p, Ȳ1, . . . , Ȳq)
of vocabulary τu

Σ such that for all S1, . . . , Sp ⊆ A, a1, . . . , aq ∈ A,

A |= ϕ(S1, . . . , Sp, a1, . . . , aq)

⇐⇒
T (A,D) |= ϕ∗(Ū(S1), . . . , Ū(Sp), Ū(a1), . . . , Ū(aq)).

Proof: For an atomic formula ϕ(y1, . . . , yr) = Ry1 . . . yr, where R = Ri is
r = ri-ary, we let ϕ∗(Ȳ1, . . . , Ȳr) be the formula

∃x
( ∨

i1,...,ir∈[k+1]

(Y1,i1x ∧ . . . ∧ Yr,ir
x ∧

∨
c=(c1,...,cm+2)∈Σ

(i1,...,ir)∈ci

Pc x)
)
;

that is, we express that there must be some tree node contained in all Ȳi such
that the corresponding elements are related by R = Ri.

Atomic formulas ϕ(y1, y2) of the form y1 = y2 can be treated similarly.
For an atomic formula ϕ(X, y) = Xy we let

ϕ∗(X̄, Ȳ ) := ∃x
∨

i∈[k+1]

(Yix ∧Xix).
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For the inductive step, Boolean connectives are handled in the straight-
forward way. For example, if ϕ = ψ1 ∧ ψ2 we let ϕ∗ := ψ∗

1 ∧ ψ∗
2 .

To deal with quantifiers, we use the formulas elem and set introduced
before the statement of the lemma. For example, if ϕ = ∃y ψ we let

ϕ∗ := ∃Y1 . . .∃Yk+1

(
elem(Y1, . . . , Yk+1) ∧ ψ∗),

and if ϕ = ∀X ψ we let

ϕ∗ := ∀X1 . . .∀Xk+1

(
set(X1, . . . , Xk+1)→ ψ∗). 
�

Proof of Theorem 11.37: Consider the algorithm Courcelle displayed
as Algorithm 11.8. Using the preceding lemma it is easy to verify that
Courcelle(A, ϕ) correctly decides if A |= ϕ.

Courcelle(A, ϕ)
1. Check if the vocabulary τϕ of ϕ is contained in the vocabulary

of A; if not, reject.
2. Let A′ be the τϕ-reduct of A.
3. Compute an ordered tree decomposition D = (T , (b̄t)t∈T ) of A′

of width tw(A′) and the labeled tree T (A′,D).
4. Compute the formula ϕ∗.
5. Check if T (A′,D) |= ϕ∗.

Algorithm 11.8.

Let us analyze the running time of Courcelle(A, ϕ). Lines 1 and 2 require
time O(‖A‖). In the following, let n := |A′| = |A|, k := tw(A), and � := |ϕ|. By
Bodlaender’s Theorem 11.12 and Lemma 11.39, line 3 requires time f ′

1(k
′, τϕ)·

n for a suitable computable function f1, where k′ := tw(A′). Since the size of
τϕ is bounded in terms of � and k′ ≤ k, we have f ′

1(k
′, τϕ) ·n ≤ f1(k, �) ·n for a

suitable f1. Clearly, ϕ∗ only depends on ϕ and k′; hence, it can be computed
in time f2(k, �). Let �∗ := |ϕ∗|. Finally, by Theorem 10.16, line 5 requires time
f(�∗) · ‖T (A′,D)‖. Altogether, this gives us the desired time bound. 
�

We say that a class C of structures has bounded tree width if there is a
w ∈ N such that all structures in C have tree width at most w.

Corollary 11.43. Let C be a polynomial time decidable class of structures
of bounded tree width. Then p-MC(C, MSO) is fixed-parameter tractable.

The reader who wonders why we require the class C in the corollary to be
polynomial time decidable may recall Exercise 4.31.

Exercise 11.44. Prove that the following problem is solvable in time

O(‖A‖) + f(k, �) · |A|,



286 11 Tree Width

for some computable function f , where k is the tree width of the input struc-
ture A and � the length of the input formula.

Instance: A structure A, an MSO-formula ϕ(X) with a free
unary relation variable X , and m ∈ N.

Parameter: tw(A) + |ϕ|.
Problem: Decide whether there exists an S ⊆ A with |S| ≤

m such that A |= ϕ(S).

Hint: Apply Exercise 10.17 to the formula ϕ∗ obtained by Lemma 11.42.

(b) Show that the variant of the problem in (a) where |S| ≤ m is replaced by
|S| ≥ m is also solvable in time O(‖A‖) + f(k, �) · |A| for some computable
function f .

(c) Show that the variant of the problem in (a) where |S| ≤ m is replaced
by |S| = m is solvable in time O(‖A‖) + f(k, �) · |A|2 for some computable
function f . �

11.5 Applications of Courcelle’s Theorem

Courcelle’s Theorem provides us with a very easy way to prove that many
combinatorial problems parameterized by the tree width are fixed-parameter
tractable. This is illustrated by the following examples and exercises:

Example 11.45. The following parameterization of the circuit satisfiability
problem by the tree width of the input circuit is fixed-parameter tractable:

p∗-tw-Sat(CIRC)
Instance: A Boolean circuit C.

Parameter: tw(C).
Problem: Decide whether C is satisfiable.

To see this, recall that by Example 4.18 there is an MSO-sentence stating that
a circuit is satisfiable. �

Example 11.46. It follows directly from Courcelle’s Theorem that p∗-tw-3-
Colorability is fixed-parameter tractable, because a graph is 3-colorable if
and only if it satisfies the MSO-sentence col3 of Example 4.17.

With only slightly more effort, we can also use Courcelle’s Theorem to
prove that the following parameterization of the general colorability problem
by the tree width of the input graph is fixed-parameter tractable:

p∗-tw-Colorability
Instance: A graph G and � ∈ N.

Parameter: tw(G).
Problem: Decide whether G is �-colorable.
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It follows easily from Lemma 11.10 that a graph of tree width k is �-colorable
for all � ≥ k + 1. Our fpt-algorithm for p∗-tw-Colorability proceeds as
follows: Given a graph G and an � ∈ N, it first computes k := tw(G) using
Bodlaender’s algorithm. Then it immediately accepts if � ≥ k + 1, otherwise
it uses Courcelle’s algorithm to check if G satisfies the MSO-sentence col� of
Example 4.17, which states that a graph is �-colorable. �

The distance dG(v, w) between two vertices v, w of a graph G is the mini-
mum of the lengths of paths from v to w, or ∞ if no such path exists.

Exercise 11.47. Let k ∈ N and G = (V, E) a graph. An L(2, 1)-k-coloring
of G is a mapping C : V → [k] such that for all v, w ∈ V :
• If dG(v, w) = 1, then |C(v)− C(w)| ≥ 2.
• If dG(v, w) = 2, then |C(v)− C(w)| ≥ 1.
Such colorings are motivated by the problem of assigning frequencies to trans-
mitters.

Prove that for every k ∈ N the following problem is fixed-parameter
tractable:

p∗-tw-L(2, 1)-Coloring
Instance: A graph G and k ∈ N.

Parameter: tw(G) + k.
Problem: Decide whether G has an L(2, 1)-k-coloring.

Remark: The parameterization of the L(2, 1)-Coloring problem by tree
width alone is para-NP-complete. As a matter of fact, it can be proved that
already the following problem is NP-complete:

Instance: A graph G of tree width 2 and k ∈ N.
Problem: Decide whether G has an L(2, 1)-k-coloring.

Furthermore, the problem is in polynomial time if the input graph is a tree
or forest. �

Exercise 11.48. Prove that the following parameterization of the indepen-
dent set problem by tree width is fixed-parameter tractable:

p∗-tw-Independent-Set
Instance: A graph G and � ∈ N.

Parameter: tw(G).
Problem: Decide whether G has an independent set of � ele-

ments.

Hint: Use Exercise 11.44. �

Example 11.49. It is not obvious how to prove that p∗-tw-Hamiltonicity
is fixed-parameter tractable by applying Courcelle’s Theorem. Remember that
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there is no MSO-sentence stating that a graph in standard representation has
a Hamiltonian cycle.

The trick is to work with the hypergraph representation. We shall prove
that there is a sentence hamiltonian of vocabulary τHG such that GHG sat-
isfies hamiltonian if and only if G is Hamiltonian. Since G and GHG have
the same tree width, it thus follows from Courcelle’s Theorem that p∗-tw-
Hamiltonicity is fixed-parameter tractable.

To define the sentence hamiltonian, recall that we use the abbreviation
∃=kx χ(x) for a sentence stating that there are precisely k elements x satis-
fying χ. The formula

cycle-cover(Y ) := ∀y(Y y → EDGE y) ∧ ∀x
(
VERTx→ ∃=2y(Y y ∧ Ixy)

)
,

states that Y is the edge set of a family of disjoint cycles that covers all
vertices of a graph.

Let us say that two edges are adjacent if they have a common endpoint.
The following formula says that y, z are adjacent edges:

adj(y, z) := ∃x(Ixy ∧ Ixz).

By using the fact that a set of edges is connected if and only if it does not
contain a proper subset that is closed under the adjacency relation, we express
that Y is a connected set of edges by the following formula edge-conn(Y ):

Y is a set of edges︷ ︸︸ ︷
∀y(Y y → EDGE y)∧¬∃Z

( Z is a nonempty proper subset of Y︷ ︸︸ ︷
∀y(Zy → Y y) ∧ ∃y(Y y ∧ ¬Zy) ∧ ∃yZy

∧ ∀y∀z
(
(Zy ∧ adj(y, z) ∧ Y z)→ Zz

)︸ ︷︷ ︸
Z is closed under adjacency

)
.

Since a connected cycle cover is a Hamiltonian cycle, the following sentence
states that a graph is Hamiltonian:

hamiltonian := ∃Y
(
cycle-cover(Y ) ∧ edge-conn(Y )

)
. �

The previous applications of Courcelle’s Theorem may not be very im-
pressive, because all problems they covered can easily be proved to be fixed-
parameter tractable directly by dynamic programming on a tree decomposi-
tion. But even for such problems, Courcelle’s Theorem gives us a quick and
easy way to show that they are fixed-parameter tractable without working out
the tedious details of a dynamic programming algorithm. Of course, we cannot
expect the algorithms obtained through the general mechanism of Courcelle’s
Theorem to be optimal. A careful analysis of the combinatorics of the specific
problem at hand will usually yield more efficient fpt-algorithms.

Let us give two more examples, which involve problems that we have not
seen before.
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A feedback vertex set in a graph G = (V, E) is a set S ⊆ V that contains at
least one vertex of each cycle of G. The Feedback-Vertex-Set problem asks
if a graph has a feedback vertex set of � elements. It is well-known to be NP-
complete. We use Courcelle’s Theorem to prove that the parameterization of
the problem by the tree width of the input graph is fixed-parameter tractable:

p∗-tw-Feedback-Vertex-Set
Instance: A graph G and � ∈ N.

Parameter: tw(G).
Problem: Decide whether G has a feedback vertex set of �

elements.

Proposition 11.50. p∗-tw-Feedback-Vertex-Set is fixed-parameter trac-
table.

Proof: As for Hamiltonicity, we work with the hypergraph encoding of graphs
as structures. For every k ∈ N, we shall define an MSO-formula feedback(X)
of vocabulary {VERT,EDGE, I} such that for every G = (V, E) and S ⊆ V ,

GHG |= feedback(S) ⇐⇒ S is a feedback vertex set of G.

Then Exercise 11.44 yields the desired result.
We define an auxiliary formula cycle-family(Y ) stating that Y is the edge

set of a family of cycles with pairwise disjoint sets of vertices:

cycle-family(Y ) := ∀y(Y y → EDGE y)

∧ ∀x
((

VERTx ∧ ∃y(Y y ∧ Ixy)
)
→ ∃=2y(Y y ∧ Ixy)

)
.

The first line of the formula says that Y is a set of edges. The second line says
that if a vertex x is incident with at least one edge in Y , then it is incident
with exactly two edges in Y .

Now we let

feedback(X) := ∀x(Xx→ VERTx)

∧ ∀Y
((
∃yY y ∧ cycle-family(Y )

)
→ ∃x∃y(Xx ∧ Y y ∧ Ixy)

)
.


�

Crossing Numbers

In our last example, we consider a problem for which there is no obvious
dynamic programming algorithm. As a matter of fact, the only known fpt-
algorithm for this problem is based on Courcelle’s Theorem.

In this section, we will treat drawings of graphs informally. A more precise
treatment of planar drawings will be given in Chap. 12. The crossing number



290 11 Tree Width

of a graph is the least number of edge crossings required to draw the graph
in the plane such that in each point of the plane at most two edges cross.
It is NP-complete to decide if a graph has crossing number at most k. The
problem has an obvious parameterization:

p-Crossing-Number
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether the crossing number of G is k.

Using Courcelle’s Theorem, we can prove that the parameterization of the
crossing number problem by k plus the tree width of the input graph is
fixed-parameter tractable. We will see in the next subsection how this result
can be used to prove that p-Crossing-Number itself is also fixed-parameter
tractable:

Proposition 11.51. The following parameterization of Crossing-Number
is fixed-parameter tractable:

Instance: A graph G and k ∈ N.
Parameter: k + tw(G).

Problem: Decide whether the crossing number of G is k.

In the proof of the proposition, we will use Kuratowski’s characterization
of planar graphs by excluded topological subgraphs. A graph G is a subdivision
of a graph H if G is obtained from H by replacing the edges of H by paths of
positive length. A graph H is a topological subgraph of a graph G if G has a
subgraph that is a subdivision ofH. We do not distinguish between a graphH
being a topological subgraph of a graph G or being isomorphic to a topological
subgraph of G.
K5 denotes the complete graph with 5 vertices, and K3,3 denotes the com-

plete bipartite graph with 3 vertices on each side.

Fact 11.52 (Kuratowski’s Theorem). A graph is planar if and only if it
contains neither K5 nor K3,3 as a topological subgraph.

Figure 11.9 shows a nonplanar graph with K5 as a topological subgraph
highlighted. We will use Kuratowski’s Theorem combined with the following
exercise to obtain an MSO-sentence that defines planar graphs.

Exercise 11.53. Prove that for every graph H there is an MSO-sentence
top-subH of vocabulary {VERT,EDGE, I} such that for every graph G:

GHG |= top-subH ⇐⇒ H is a topological subgraph of G.

Hint: First introduce a formula path(x, y, Z) stating that Z is the set of edges
of a path from vertex x to vertex y. �
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Fig. 11.9. A nonplanar graph with K5 as a topological subgraph

Lemma 11.54. For every k ∈ N0, there is an MSO-sentence crossk of vo-
cabulary {VERT,EDGE, I} such that for every graph G

GHG |= crossk ⇐⇒ the crossing number of G is at most k.

Furthermore, crossk can be effectively constructed from k.

Proof: The proof is by induction k.
The sentence cross0 is supposed to say that a graph is planar. We let

cross0 := ¬top-subK5
∧ ¬top-subK3,3

,

where top-subK5
(top-subK3,3

) are the sentences constructed in Exercise 11.53
stating that a graph containsK5 (K3,3, respectively) as a topological subgraph.
The correctness of the sentence cross0 follows from Kuratowski’s Theorem.

Let us now turn to the definition for crossk for k ≥ 1. For a graph G =
(V, E) and edges e1, e2 ∈ E that do not have an endpoint in common, we let
Ge1×e2 be the graph obtained from G by deleting the edges e1 and e2 and
adding a new vertex x and four edges connecting x with the endpoints of the
edges of e1 and e2 in G (see Fig. 11.10).

e1

e2

x

Fig. 11.10. A graph G with selected edges e1, e2 and the resulting Ge1×e2

The following claim is obvious:
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Claim 1. Let k ≥ 1. A graph G = (V, E) has crossing number at most k if
and only if G = (V, E) has crossing number at most k − 1 or there are edges
e1, e2 ∈ E that do not have an endpoint in common such that Ge1×e2 has
crossing number at most k − 1. �

The next claim shows how we can exploit this in monadic second-order
logic:

Claim 2. For every MSO-sentence ϕ there exists an MSO-formula ϕ×(y1, y2)
such that for all graphs G = (V, E) and edges e1, e2 ∈ E that do not have an
endpoint in common we have:

GHG |= ϕ×(e1, e2) ⇐⇒ (Ge1×e2)HG |= ϕ.

Furthermore, ϕ×(y1, y2) can be effectively constructed from ϕ.
The proof of this claim relies on a standard technique from logic known as

the method of syntactic interpretations (see, for example, [88]). For readers
familiar with this technique, the proof should be easy. Those not familiar with
the technique can find a direct proof of the claim in [122]. �

We let

crossk := crossk−1 ∨ ∃y1∃y2

(
EDGE y1 ∧ EDGE y2 ∧ ¬∃x(Ixy1 ∧ Ixy2)

∧ cross×k−1(y1, y2)
)
. 
�

Proof of Proposition 11.51: The proposition follows from Lemma 11.54 and
Courcelle’s Theorem. 
�

11.6 Tree Width Reduction

The algorithmic applications of tree width we have seen so far are all of the
form: “Problem Q parameterized by the tree width of the input structure
is fixed-parameter tractable,” or “Problem Q restricted to input structures
of bounded tree width is tractable.” Surprisingly, tree width can also play a
role in proving tractability results that do not explicitly involve structures of
bounded tree width. We will see some examples in this section.

We saw in the previous section that the feedback vertex set problem pa-
rameterized by the tree width of the input graph is fixed-parameter tractable.
Here, we will apply this result to prove that the standard parameterization of
the problem is fixed-parameter tractable:

p-Feedback-Vertex-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a feedback vertex set of k

elements.
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Theorem 11.55. p-Feedback-Vertex-Set is fixed-parameter tractable.

Proof: The proof is based on the simple observation that the tree width of a
graph that has a feedback vertex set of k elements is at most k + 1. To see
this, let G = (V, E) be a graph and S ⊆ V a feedback vertex set of G. Then
the graph G \ S is acyclic and thus has a tree decomposition (T , (Bt)t∈T ) of
width 1. Then (T , (Bt ∪ S)t∈T ) is a tree decomposition of G of width |S|+ 1.

Now the statement follows from the fixed-parameter tractability of p-
Tree-Width (Corollary 11.13) and p∗-tw-Feedback-Vertex-Set (Propo-
sition 11.50). 
�

The fpt-algorithm for p-Feedback-Vertex-Set is a very simple example
for an algorithmic strategy that has led to the solution of some long-standing
open problems in graph algorithms. In very general terms, the strategy can
be described as follows:

Complex instances: If the input graph is very complex (where “complex” de-
pends on the parameter), then the answer to the problem is trivial (de-
pending on the problem, either all complex instances are “yes”-instances
or all complex instances are “no”-instances).

Structured instances: If the input graph is not very complex, then we know
something about its structure, and we can use this structural information
to further simplify the instance until we obtain an instance of bounded
tree width.

Instances of bounded tree width: On instances of bounded tree width we can
solve the problem, either directly or by applying Courcelle’s Theorem.

Our fpt-algorithm for p-Feedback-Vertex-Set is a degenerated example
of an algorithm following this strategy: “Complex instances” are all instances
(G, k) where tw(G) > k+1; all such instances are “no”-instances. All instances
that are not complex are of bounded tree width, and we never have to consider
any intermediate “structured instances.”

However, in most applications the intermediate step of dealing with struc-
tured instances is the most significant one. This step may be viewed as a pre-
processing step similar to kernelization. Instead of reducing the input instance
to an equivalent instance whose size is bounded in terms of the parameter,
we reduce the input instance to an equivalent instance whose tree width is
bounded. We call the method tree width reduction.

While conceptually separate, often the first two steps dealing with com-
plex and structured instances are combined: A reduction algorithm for the
structured instances is applied to the input no matter if it is “complex” or
“structured.” If the reduction algorithm produces an instance of bounded tree
width, then we can continue and solve the instance. If the reduction algorithm
fails, then we know the input instance must be complex and hence trivial for
our problem.
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As an example, let us consider the parameterized crossing number problem.
An instance (G, k) is considered “complex” if the genus of G is at least (k+1).
A graph has genus at most k if it can be embedded into an orientable surface
of genus k, that is, a sphere with k handles attached to it. Each handle can be
used to eliminate at least one crossing. Thus a pair (G, k) is a “no”-instances of
p-Crossing-Number if G has genus at least k+1. The “structured instances”
of a tree width reduction algorithm for the crossing number problem will be
those pairs (G, k) where G has genus at most k. The structure of graphs of
bounded genus is sufficiently simple and well understood to support a tree
width reduction.

Lemma 11.56. There is a computable function g : N → N and an fpt-
algorithm that, given an instance (G, k) of p-Crossing-Number, computes
an equivalent instance (G′, k) such that tw(G′) ≤ g(k).

By combining this lemma with Proposition 11.51, we immediately get:

Theorem 11.57. p-Crossing-Number is fixed-parameter tractable.

A proof of Lemma 11.56 is beyond the scope of this book, but let us sketch
the main idea: The structural result underlying the algorithm is that graphs of
bounded genus and large tree width contain large planar pieces with a gridlike
structure. Somewhere in the center of these planar grids2 we can find edges
that under any reasonable embedding of the graph in the plane will not be
involved in any crossing. Such edges can be “contracted” without changing
the crossing number of the input graph. This gives us an equivalent smaller
instance of the problem. We repeat this process until we obtain a graph whose
tree width is so small that we can no longer guarantee the existence of large
planar grids in it.

We close this section by briefly describing a much deeper application of
the tree width reduction method, namely to the disjoint path problem, whose
parameterized version is defined as follows:

p-Disjoint-Paths
Instance: A graph G and pairs (s1, t1), . . . , (sk, tk) of vertices

of G.
Parameter: k (the number of pairs (si, ti)).

Problem: Decide whether there exist pairwise disjoint paths
P1, . . . ,Pk in G, where for i ∈ [k], Pi is a path from
si to ti.

Theorem 11.58. p-Disjoint-Paths is fixed-parameter tractable.

2Of course, grids are always planar, so why do we explicitly refer to the grids
here as planar? More precisely, instead of “large planar grids” we could say planar
induced subgraphs with large grid minors.
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Let us very briefly sketch the main idea of the proof: An instance of p-
Disjoint-Paths is “complex” if it is “highly connected” in some specific
sense. It is not hard to imagine that in such highly connected instances, we
can always find a family of disjoint paths connecting the sources si to the sinks
ti. A very deep structural theorem says that if a graph is not highly connected,
then it has a tree decomposition whose bags are “almost of bounded genus.”
If such graphs have large tree width, we can again find large planar grids in
them. When routing disjoint paths through a large grid—much larger than
the number of paths—we can always avoid a vertex in the middle of the grid.
Thus we can as well delete this middle vertex. We obtain a smaller equivalent
instance. We repeat this process until we obtain an instance of bounded tree
width and solve the problem directly there.

11.7 Graph Minors

The structure theory underlying the results described in the previous section,
in particular, Theorem 11.58 is known as “graph minor theory.”

Definition 11.59. A graph H is a minor of a graph G if H can be obtained
from a subgraph of G by contracting edges. �

e

Fig. 11.11. Contraction of the edge e

The example in Fig. 11.11 illustrates what we mean by contracting an edge
in a graph.

Graph minor theory is a structure theory of graphs with excluded minors,
that is, it makes statements about the structure of graphs that do not contain
certain other graphs as minors. A fundamental result of the theory, which
also underlies the tree width reduction algorithms for p-Crossing-Number
and p-Disjoint-Paths, is the following excluded grid theorem. Recall from
Exercise 11.6 that large grids have large tree width. The excluded grid theorem
may be seen as a converse of this, as it states that large tree width forces large
grids (as minors).

Theorem 11.60 (Excluded Grid Theorem). There is a computable func-
tion w : N → N such that the (k × k) grid is a minor of every graph of tree
width at least w(k).
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For a proof of the theorem, we refer the reader to [72]. The best-known upper

bound for the tree width w(k) is 202k5

.

The main result of graph minor theory is a characterization of classes of
graphs closed under minors that generalizes Kuratowski’s characterization of
planar graphs. A class C of graphs is minor closed if for every graph G ∈ C,
all minors of G are also in C. For example, it is not hard to see that the class
of all planar graphs and, for every w ≥ 1, the class of all graphs of tree width
at most w, are minor closed. It is also not hard to see that a class C of graphs
is minor closed if and only if it can be characterized by a family of excluded
minors. This means that there exists a class F of graphs such that

C = Excl(F) := {G | no graph in F is a minor of G}.

A variant of Kuratowski’s Theorem states that the class of planar graphs is
Excl({K5,K3,3}), that is, the class of planar graphs is characterized by the
two excluded minors K5 and K3,3.

3

Theorem 11.61 (Graph Minor Theorem). Every class of graphs that is
minor closed can be characterized by finitely many excluded minors.

More precisely, for every minor closed class C of graphs there exist graphs
F1, . . . ,Fn such that

C = Excl({F1, . . . ,Fn}).

A proof of the Graph Minor Theorem is sketched in [72].
Let us now discuss some algorithmic consequences of the Graph Minor

Theorem. We need one more deep result:

Theorem 11.62. The following problem is fixed-parameter tractable:

p-Minor
Instance: Graphs G and H.

Parameter: ||G||.
Problem: Decide whether G is a minor of H.

More precisely, there is a computable function f and an fpt-algorithm for p-
Minor whose running time is f(k) · n3, where k denotes the parameter and
n the number of vertices of the input graph H.

The proof of this theorem is similar to the proof of Theorem 11.58.

Corollary 11.63. Every class of graphs that is minor closed is decidable in
cubic time.

3Incidentally, for planar graphs the characterizations by excluded minors and
excluded topological subgraphs coincide. In general, this is not the case. It is also
not the case that every class of graphs closed under topological subgraphs can be
characterized by finitely many excluded topological subgraphs.
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Applications of Corollary 11.63 are based on the observation that the slices
of certain parameterized problems are minor closed. Each slice of such a prob-
lem is thus decidable in cubic time. This does not mean that the problem is
fixed-parameter tractable, but at least it shows that the problem is nonuni-
formly fixed-parameter tractable in the sense of the following definition:

Definition 11.64. A parameterized problem (Q, κ) is nonuniformly fixed-pa-
rameter tractable if there is a function f : N→ N and a constant c such that
for every k ∈ N, the kth slice (Q, κ)k of (Q, κ) is decidable in time f(k) · nc,
where n denotes the length of the input. �

Theorem 11.63 yields:

Corollary 11.65. Let (Q, κ) be a parameterized problem on graphs such that
for every k ∈ N, either the class {G ∈ Q | κ(G) = k} or the class {G �∈ Q |
κ(G) = k} is minor closed.

Then (Q, κ) is nonuniformly fixed-parameter tractable.

For every k, the class of all graphs that have a vertex cover of at most k
elements and the class of all graphs that have a feedback vertex set of at most k
elements are minor closed. It follows that the problems p-Vertex-Cover and
p-Feedback-Vertex-Set are nonuniformly fixed-parameter tractable, but
we knew that already. In the following example, we consider a new problem.

Example 11.66. The following problem is nonuniformly fixed-parameter
tractable:

p-Disjoint-Cycles
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has k disjoint cycles.

To see this, note that the class of all graphs that do not have k disjoint cycles
is minor closed. �

These examples illustrate that for some parameterized problems, graph
minor theory provides an extremely simple method for proving nonuniform
fixed-parameter tractability. We may use this as a quick and dirty test for
fixed-parameter tractability. If our problem passes the test, we can analyze it
more carefully and try to find a uniform fpt-algorithm. In this sense, we can
use graph minor theory as a tool similar to Courcelle’s Theorem.

Let us remark, though, that the approach by Courcelle’s Theorem is more
transparent and at least in principle bears the possibility of an automatized
optimization, because we can effectively translate our MSO-formula into a
canonical minimized deterministic tree automaton. The graph minor approach
does not bear such possibilities, because in general there is no effective way
of obtaining a finite family of excluded minors characterizing a given class of
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graphs. Even if we know such a family for a specific class, it may be quite
large. Furthermore, the function f in Theorem 11.62 grows extremely fast.

Exercise 11.67. Prove that p-Disjoint-Cycles is fixed-parameter tracta-
ble.

Hint: Prove that graphs of large tree width always have many disjoint cycles.
Then use the tree width reduction method. �

Exercise 11.68. Prove that the following problem is in XP:

p-Topological-Subgraph
Instance: Graphs G and H.

Parameter: ||G||.
Problem: Decide whether G is a topological subgraph of H.

�

Notes

Tree decompositions and tree width were introduced by Robertson and Sey-
mour [183]. Independently, Arnborg and Proskurowski [15] introduced the
equivalent concept of partial k trees. The NP-completeness of Tree-Width
is due to Arnborg et al. [13]. Bodlaender’s Theorem is proved in [25]. Proposi-
tion 11.14 is from [179, 185], and an improved version of the algorithm can be
found in [178]. For a survey on algorithms on graphs of bounded tree width,
see [26].

Monadic-second order definability on graphs has been studied intensely
by Courcelle in a long series of papers. Theorem 11.34 is from [58]. The fact
that Hamiltonicity of graphs in standard representation cannot be expressed
in MSO is from [59]. Syntactic interpretations for monadic second-order logic
have been studied in [56, 60]. The MSO-definability of planarity and planar
embeddings of graphs has been investigated in [61]. Courcelle’s Theorem is
from [57], and the extension in Exercise 11.44 can be found in [14].

The NP-completeness of the L(2, 1)-Coloring problem on graphs of tree
width 2 (see Exercise 11.47) is due to Fiala, Golovach, and Kratochv́ıl [98].

The nonuniform fixed-parameter tractability of p-Feedback-Vertex-
Set based on the graph minor theorem was observed in [97]; uniform fixed-
parameter tractability of p-Feedback-Vertex-Set (Theorem 11.55) and of
p-Disjoint-Cycles (Exercise 11.67) is due to Bodlaender [24]. There have
been considerable efforts to improve the running time of fpt-algorithms for
p-Feedback-Vertex-Set; the currently best algorithms can be found in
[66, 125].
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What we call the method of tree width reductions was introduced by
Robertson and Seymour in [185] to prove Theorems 11.58 and 11.62. Theo-
rem 11.57 is from [122].4

The Graph Minor Theorem was proved in a long series of articles by
Robertson and Seymour [181]. The Excluded Grid Theorem, which is one
building block of the Minor Theorem, can be found in [184]. The best-known

upper bound of 202k5

for the tree width in the Excluded Grid Theorem is
due to Robertson et al. [186] (also cf. [73]). The applications of the results
of graph minor theory to nonuniform fixed-parameter tractability are due to
Fellows and Langston [97].

Open Problems

It is usually straightforward to prove that a problem parameterized by the
tree width of the input structure is fixed-parameter tractable. The following
problem is an interesting example where this is not the case:

p∗-tw-Graph-Isomorphism
Instance: Graphs G and H.

Parameter: tw(G).
Problem: Decide whether G and H are isomorphic.

It is known that this problem is in XP [23], but it is an open problem whether
it is fixed-parameter tractable.

One of the most intensely studied open problems in the area of fixed-
parameter tractability is the question whether the directed version of the
feedback vertex set problem is fixed-parameter tractable:

p-Directed-Feedback-Vertex-Set
Instance: A directed graph G = (V, E) and k ∈ N.

Parameter: k.
Problem: Decide whether there is a set S ⊆ V with |S| = k

such that G \ S is acyclic.

Some partial results are known [176, 177], but the problem is still open even
on planar directed graphs.

Finally, it is not known if p-Topological-Subgraph is fixed-parameter
tractable.

4Lemma 11.56 is stated differently than the corresponding result in [122] (Corol-
lary 8). But it is not hard to prove that the two statements are equivalent, because
we can replace each “forbidden edge” (an edge that is not allowed to cross any other
edge) by (k + 1) parallel paths of length 2.
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Planarity and Bounded Local Tree Width

In the previous chapter, we saw that many graph problems that are hard in
general become tractable when restricted to input graphs of bounded tree
width. We have also seen examples of hard problems that become tractable
on graphs of bounded degree (the parameterized dominating set problem is
an example, see Corollary 1.20).

In this section, we will continue the theme of hard problems becoming
tractable on restricted input graphs and structures. We will mainly be in-
terested in planar graphs. It is a well-known fact that algorithmically planar
graphs can be handled much better than general graphs, and it is no surprise
that this fact also bears fruit in the context of fixed-parameter tractability.
In Sect. 12.1, we illustrate some of the main ideas underlying fpt-algorithms
on planar graphs by three examples: the parameterized independent set, the
dominating set, and the subgraph isomorphism problem.

It turns out that a crucial structural property many of these fpt-algorithms
rely on is that planar graphs of small diameter have small tree width. An-
other perspective on this property is that “local” neighborhoods of vertices
in a planar graph have a tree width that is bounded in terms of the radius
of the neighborhood. We say that planar graphs have bounded local tree
width. Other interesting classes of graphs share this property, for example,
graphs of bounded degree or graphs of bounded genus (that is, graphs that
can be embedded into a fixed surface). In Sect. 12.2, we prove a very general
result stating that all problems definable in first-order logic become fixed-
parameter tractable when restricted to input structures of bounded local tree
width. (Compare this to Courcelle’s Theorem, which states that all problems
definable in monadic second-order logic become fixed-parameter tractable
when restricted to input structures of bounded tree width.) In Sect. 12.3,
we briefly discuss fpt-algorithms on classes of graphs with excluded minors.
Fixed-parameter tractability on planar graphs is one of the most extensively
studied topics in parameterized complexity theory. It has led to numerous nice
algorithms relying on a number of different ideas. Some of the more refined
algorithms will be presented in the last section of this chapter.
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12.1 Algorithms on Planar Graphs

We review some basic definitions and facts on planar graphs. Intuitively speak-
ing, a graph is planar if it can be drawn in the Euclidean plane without edges
crossing. For a detailed introduction, the reader may consult a book on graph
theory (for example, [72]).

A (polygonal) arc Γ in the plane is the image of a continuous, piecewise
linear, one-to-one function γ : {x ∈ R | 0 ≤ x ≤ 1} → R2. Its endpoints are
γ(0) and γ(1); all other points are interior points of the arc. A polygon is the
image of a continuous, piecewise linear function γ : {x ∈ R | 0 ≤ x ≤ 1} → R2

such that γ is one-to-one on the half open interval {x ∈ R | 0 ≤ x < 1} and
γ(0) = γ(1).

The boundary ∂X of a set X ⊆ R2 is the set of all points y ∈ R2 such
that every neighborhood of y meets both X and R2 \X . Let X ⊆ R2 be open.
Elements x and y are arc-connected in X , if x = y or there is an arc in X with
endpoints x and y. The corresponding equivalence classes are the regions of
X . We shall need:

Fact 12.1 (Jordan Curve Theorem for Polygons). Let Γ be a polygon.
Then R2 \ Γ has two regions, of which exactly one is unbounded. Each of the
two regions has Γ as its boundary.

Definition 12.2. A planar embedding of a graph G = (V, E) is a mapping Π
with domain V ∪E (where V and E are assumed to be disjoint) such that:
• For every v ∈ V , the image Π(v) is a point in R2.
• For every e = {v, w} ∈ E, the image Π(e) is an arc in R2 with endpoints

Π(v) and Π(w).
• The restriction of Π to V is one-to-one.
• For all e, f ∈ E with e �= f , the arcs Π(e) and Π(f) have no interior point

in common.
• For all v ∈ V and e ∈ E, the point Π(v) is not an interior point of the arc

Π(e).
A graph is planar if it has a planar embedding. A plane graph is a pair (G, Π)
consisting of a (planar) graph G and a planar embedding Π of G. �

If (G, Π) is a plane graph, we write Π(G) to denote the point set

Π(V ) ∪
⋃
e∈E

Π(e).

The faces of (G, Π) are the regions of the open set R2 \ Π(G). Since Π(G) is
a bounded subset of R2, it lies inside some sufficiently large disc, and hence
exactly one of its faces, namely the face containing the complement of the
disc, is unbounded; it is called the outer face of (G, Π).

In the following lemma, we collect a few basic topological facts about
planar graphs. Part (1) is an immediate consequence of the Jordan Curve
Theorem. For a proof of Part (2), we refer the reader to [72].
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Lemma 12.3. Let (G, Π) be a plane graph.
(1) If G is a cycle, then (G, Π) has precisely two faces, and their boundary is

Π(G).
(2) If G is connected and every edge lies on a cycle of G, then the boundaries

of the faces of (G, Π) are images of cycles, and the image of every edge of
G is contained in the boundary of precisely two faces.

In the following, instead of saying that the image of a cycle is the boundary
of a face, we will just say that the cycle is the boundary of a face. Similarly,
we will say that an edge or a vertex is contained in the boundary of a face.

Fact 12.4 (Euler’s Formula). Let (G, Π) be a nonempty connected plane
graph with n vertices, m edges, and � faces. Then

n−m + � = 2.

For a proof, we refer the reader to [72].

Lemma 12.5. There is an algorithm that assigns to every plane graph (G, Π)
with G = (V, E) and |V | ≥ 3 a plane graph (G′, Π′) with G′ = (V ′, E′) in time
O(‖G‖) such that:
• V = V ′, E ⊆ E′, and Π′ extends Π.
• G′ is connected.
• Each edge of G′ lies on a cycle of G′.
• The faces of (G′, Π′) are triangles (that is, the boundaries of the faces are

cycles of G′ of length three).

Proof: If G has s connected components, the algorithm first connects the com-
ponents by s− 1 edges, then ensures that every edge is on a cycle, and finally
subdivides the cycles that are boundaries of faces into cycles of length 3. 
�

The following lemma shows that the size of a planar graph G = (V, E) is
linear in the number of its vertices, that is,

||G|| = O(|V |).

In particular, this means that the running time of a linear time algorithm on
planar graphs is linear in the number of vertices.

Lemma 12.6. Let G = (V, E) be a planar graph. If |V | ≥ 3 then |E| ≤
3|V | − 6.

Proof: Let n := |V | and m := |E|. Suppose that n ≥ 3. Let Π be a planar
embedding of G. By the previous lemma, adding edges we may assume that
G is connected and that the faces of (G, Π) are triangles. Let � be the number
of faces of (G, Π). Then

3� = 2m,
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because, by Lemma 12.3(2), every edge lies on the boundary of precisely two
faces. Thus by Euler’s formula,

m = n + �− 2 = n +
2

3
m− 2,

which implies m = 3n− 6. 
�
Our fpt-algorithms for problems on planar graphs are based on the follow-

ing well-known fact, which we will often use tacitly:

Fact 12.7. There is a linear time algorithm that decides if a given graph is
planar and, if it is, computes a planar embedding of the graph.

For a proof, we refer the reader to [128, 197].

Independent Set

We present an fpt-algorithm for the planar restriction of the parameterized
independent set problem,

p-Planar-Independent-Set
Instance: A planar graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has an independent set of k ele-

ments.

Our algorithm is a bounded search tree algorithm based on the fact that
planar graphs always have a vertex of small degree.

Lemma 12.8. Let G = (V, E) be a nonempty planar graph. Then G has a
vertex of degree at most 5.

Proof: If all vertices had degree at least 6, the graph G would have at least
3 · |V | edges. This contradicts Lemma 12.6. 
�

Theorem 12.9. p-Planar-Independent-Set is fixed-parameter tractable.
More precisely, there is an algorithm that, given a planar graph G and

k ∈ N, decides if G has an independent set of k elements in time O(6k · n),
where n is the number of vertices of G.

Proof: Let G = (V, E) be a nonempty planar graph and k ∈ N. For v ∈ V
let N(v) := {w ∈ V | w = v or {v, w} ∈ E}. By the preceding result, there
is a vertex v in G of degree at most 5. Every maximal independent set of G
contains either v or a neighbor of v. Thus, G has an independent set of k
elements if and only if (G \N(v) or G \N(w), for some neighbor w of v, has an
independent set of k − 1 elements). This is the basis of an obvious recursive
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search strategy; since the parameter decreases by one in each step, we obtain
a search tree of size at most 6k. 
�

Let us remark that the parameterized clique problem restricted to planar
graphs, though no longer equivalent to the independent set problem for pla-
nar graphs by the simple reduction that maps a graph to its complement,
is trivially fixed-parameter tractable. The reason is that by Lemma 12.6, no
planar graph contains a clique with five or more vertices.

Dominating Set

As a second example, we consider the planar restriction of the parameterized
dominating set problem:

p-Planar-Dominating-Set
Instance: A planar graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a dominating set of k ele-

ments.

Recall that the distance dG(v, w) between two vertices v, w of a graph G
is the minimum of the lengths of paths from v to w, or ∞ if no such path
exists. The diameter of a graph is the maximum of the distances between any
two vertices. Our fpt-algorithm for planar dominating set and most of the
fpt-algorithms on planar graphs that follow are based on the fact that the
tree width of a planar graph can be bounded in terms of its diameter.

Recall that a tree T is a spanning tree of a graph G if T has the same
vertices as G and every edge of T appears as an (undirected) edge in G.

Lemma 12.10. Let G be a planar graph that has a spanning tree of height �.
Then

tw(G) ≤ 3�.

Furthermore, given G with n vertices and a spanning tree of height �, a tree
decomposition of G of width at most 3� can be computed in time O(� · n).

Observing that a graph of diameter D (with D ∈ N0) has a spanning tree
of height at most D, which can be obtained in linear time by a breadth-first
search, we get:

Corollary 12.11. A planar graph with n vertices and of diameter D has a
tree decomposition of width at most 3D that can be found in time O(D · n).

Proof of Lemma 12.10: Let G = (V, E) be planar graph, and let Π be a
planar embedding of G. By Lemma 12.5 we may assume that the faces of
(G, Π) are triangles. Let S be a spanning tree of G of height �. Let Su denote
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the undirected tree underlying S. (Recall that we view trees as being directed
from the root to the leaves.)

We first define a graph T u = (T u, Fu), which will be the undirected tree
underlying the tree of the tree decomposition we aim at, in the following way:

• T u is the set of faces of (G, Π).
• For t, t′ ∈ T u,

{t, t′} ∈ Fu ⇐⇒ ∂t and ∂t′ share an edge that is not an edge of Su

(cf. Fig. 12.1(a)–(c)). Recall that we say that a vertex or an edge is contained
in the boundary ∂t of the face t if its image under Π is contained in ∂t.
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BA = {1, 2, 3}, BB = {1, 3, 4},

BC = {1, 4, 5}, BD = {1, 2, 5},

BE = {2, 3, 6, 1}, BF = {3, 6, 7, 1, 2},

BG = {3, 4, 7, 1}, BH = {4, 5, 6, 1, 2},

BI = {2, 5, 6, 1}, BJ = {4, 6, 7, 1, 2, 3}.

(d)

Fig. 12.1. (a) A graph G embedded into the plane, (b) a spanning tree S of G,
(c) the undirected tree T u, (d) the bags of the tree decomposition

Claim 1. T u is acyclic.

Proof: Assume that t1, . . . , ts is a cycle in T u. For i = 1, . . . , s let ei be an edge
shared by ∂ti and ∂ti+1 (where ts+1 = t1) that is not an edge of Su. Choose
an interior point ai on Π(ei) and let Γi be an arc with endpoints ai and ai+1
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Fig. 12.2. Illustration of the proof of claim 1. Γ is the white polygon

(where as+1 = a1) and with interior in ti (cf. Fig. 12.2). Then Γ1 ∪ . . .∪ Γs is
a polygon Γ, which by the Jordan Curve Theorem divides the plane into two
regions. Both regions contain vertices of G. Since no edge of S crosses Γ, this
contradicts the fact that S is a spanning tree of G and thus proves claim 1. �

We will see that T u is connected and thus is an undirected tree in a
moment. First, we define the bags of the tree decomposition. For t ∈ T u let
Bt be the set of vertices of G in t together with all their ancestors in the
spanning tree. That is, we let

Bt := {u ∈ G | u ≤S v for some vertex v in ∂t},

where u ≤S v denotes that u = v or u is an ancestor of v in S (cf. Fig. 12.1(d)).
Observe that if a bag Bt contains a descendant of a vertex v in the tree S,

then it also contains v. In particular, the root of S is contained in every bag.

Claim 2. For all t ∈ T u, the bag Bt has at most 3� + 1 elements.

Proof: Since (G, Π) is a triangulation, the boundary ∂t of a face t contains 3
vertices. Each of these vertices has at most � ancestors in S. They share at
least one ancestor, the root of S, and thus Bt has at most 3� + 1 elements. �

Claim 3. Every edge {u, v} ∈ E is realized in some bag.

Proof: We have u, v ∈ Bt for every face t containing this edge. �

Claim 4. For every vertex v ∈ V the set B−1(v) = {t ∈ T u | v ∈ Bt} is
connected in T u.

Proof: We prove the claim by induction on the height of v in the spanning
tree S.

As the induction base, suppose that v is a leaf of S. Then B−1(v) is the set
of faces whose boundary contains v. Let e1, . . . , em be the edges of G incident
with v. Exactly one of them, say, e1, is an edge of Su. Suppose that Π maps
the edges e1, . . . , em in clockwise order around v, and let ti be the face whose
boundary contains ei and ei+1 (where em+1 := e1) (see Fig. 12.3). Then the
faces t1, . . . , tm form a path in T u.
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v

e1

e2

e3

e4

t1

t2
t3

t4

Fig. 12.3. The base step of the proof of claim 4 (for m = 4)

In the induction step, let v be a vertex that is not a leaf of S. Then v is
contained in Bt for all faces t such that v is in the boundary of t and in all
Bt such that some descendant w of v in S is contained in Bt.

Suppose first that v is not the root of S. Let e1, . . . , em be the edges of
G incident with v. For notational convenience, let em+1 = e1. Suppose that
Π maps the edges in clockwise order around v, and let ti be the face whose
boundary contains ei and ei+1. Assume that e1 is the edge in Su that connects
v with its parent in S. Furthermore, let 1 < i1 < i2 . . . < ik ≤ m be such
that ei1 , . . . , eik

are in S and let w1, . . . , wk be the corresponding children (see
Fig. 12.4).

v

w2 w1

e1 e2

e3

e4e5

e6

e7

t1
t2

t3
t4t5

t6

t7

Fig. 12.4. The inductive step of the proof of claim 4 (for m = 7, k = 2, i1 = 4, and
i2 = 6)

The vertex v is contained in the bags Bt1 , . . . , Btm
and in all bags that

contain a child wi of v. More formally,

B−1(v) = {t1, . . . , tm} ∪
k⋃

j=1

B−1(wj).

By the induction hypothesis, B−1(wj) is connected in T u for all j ∈ [k];
moreover, tij−1, tij

∈ B−1(wj). Therefore it suffices to show that for 1 ≤ i ≤ m
there is a path from t1 to ti in B−1(v). Let 2 ≤ i ≤ m. If i is distinct from
i1, . . . , ik, then ti−1 and ti are adjacent in T u. If i = ij for some j ∈ [k], then
ti−1 and ti are contained in B−1(wj) and hence there is a path from ti−1 to
ti in B−1(wj).
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In the remaining case that v is the root of S, we can argue similarly. This
completes the proof of claim 4. �

Since for the root r of S we have

B−1(r) = T u,

claim 4 shows that T u is connected and hence is an undirected tree.
Finally, we let T = (T, F ) be any (directed) tree with underlying undi-

rected tree T u (in particular, T = T u). Then (T , (Bt)t∈T ) is the desired tree
decomposition. 
�

Lemma 12.12. A connected graph with a dominating set of k elements has
diameter at most 3k − 1.

Proof: Let G = (V, E) be a connected graph and S a dominating set of G of
cardinality k. Let v, w ∈ V , and let P be a path from v to w of smallest length.
Every vertex in S dominates at most 3 vertices on P , because otherwise there
would be a shorter path from v to w. Thus P contains at most 3k vertices
and therefore its length is at most 3k − 1. 
�

Theorem 12.13. p-Planar-Dominating-Set is fixed-parameter tractable.

Proof: An fpt-algorithm for p-Planar-Dominating-Set first checks if the
input graph has a connected component of diameter at least 3k. If it has, the
algorithm immediately rejects. Otherwise, by Corollary 12.11, the tree width
of the planar input graph is at most 9k− 3. Thus the dominating set problem
can be solved by the methods of the previous chapter (either by dynamic pro-
gramming on a tree decomposition or by applying Courcelle’s Theorem). 
�

Observe that the same technique can also be applied to prove that p-
Planar-Independent-Set is fixed-parameter tractable.

Subgraph Isomorphism

As a third example, we consider the parameterized subgraph isomorphism
problem restricted to planar graphs:

p-Planar-Subgraph-Isomorphism
Instance: A planar graph G and arbitrary graph H.

Parameter: |H |.
Problem: Decide whether G has a subgraph isomorphic toH.
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Actually, in this section we will only prove that the restriction of the prob-
lem to connected input graphs H is fixed-parameter tractable. The technique
we will use to prove this will be considerably generalized in the next section
to prove a “Courcelle-style” theorem for parameterized problems on planar
graphs. This general theorem will then imply that p-Planar-Subgraph-
Isomorphism is fixed-parameter tractable for arbitrary and not only con-
nected H.

Let G = (V, E) be a graph and v ∈ V . For every r ∈ N0, the r-sphere
around v is the set

SG
r (v) := {w ∈ V | dG(v, w) = r}.

For 0 ≤ i ≤ j, the [i, j]-sphere is the set

SG
[i,j](v) :=

⋃
r∈[i,j]

SG
r (v) = {w ∈ V | i ≤ dG(v, w) ≤ j}.

Furthermore, for r ∈ N0, the r-neighborhood of v is the set

NG
r (v) := SG

[0,r](v) = {w ∈ V | dG(v, w) ≤ r}.

We write NG
r (v) (and similarly SGr (v) and SG[i,j](v)) to denote the induced

subgraph of G with vertex set NG
r (v) (SG

r (v) and SG
[i,j](v), respectively).

A crucial fact that follows from Lemma 12.10 is that in planar graphs
the spheres and thus the neighborhoods have tree width bounded by their
“thickness” (radius in case of neighborhoods). The following lemma makes
this precise.

Lemma 12.14. Let G = (V, E) be a planar graph and v ∈ V .
(1) For all r ≥ 1 we have

tw
(
NG

r (v)
)
≤ 3r.

(2) For all i, j ∈ N0 with i ≤ j we have

tw
(
SG[i,j](v)

)
≤ 3(j − i + 1).

Proof: The first statement is an immediate consequence of Lemma 12.10,
because a breadth-first search tree with root v is a spanning tree of N G

r (v) of
height at most r.

For i ≤ 1, the second statement follows from the first one because

SG
[1,j](v) ⊆ SG

[0,j](v) = NG
j (v).

If i > 1, we contract all edges of the subgraph SG[0,i−1](v). In other words, we

replace the subgraph SG[0,i−1](v) by a single vertex v′ and add edges from this

vertex to all vertices of SG
i (v) (cf. Fig. 12.5). We obtain a planar graph G′
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such that the sphere SG′

[1,j−i+1](v
′) is isomorphic to (actually, identical with)

the sphere SG[i,j](v) of G. We have already seen that

tw
(
SG

′

[1,j−i+1](v
′)
)
≤ 3(j − i + 1). 
�

We use these results to show that p-Planar-Subgraph-Isomorphism re-

v v′

Fig. 12.5. Contracting SG
[0,1](v)

stricted to connected input graphs H is fixed-parameter tractable. Note first
that the subgraph isomorphism problem parameterized by the tree width of
the input graph G plus the size of the graph H is fixed-parameter tractable.
This can either be shown directly by dynamic programming on a tree de-
composition or by Courcelle’s Theorem 11.37. For the latter, recall that by
Example 5.11, for every graph H there is a first-order sentence subH such that
for all graphs G we have

G |= subH ⇐⇒ G has a subgraph isomorphic to H.

Now let H be a connected graph with k vertices. Let G = (V, E) be a planar
graph with n vertices. Clearly, if G has a subgraph isomorphic to H, then
there is a vertex v ∈ V such that the induced subgraph N G

k−1(v) of G has a

subgraph isomorphic to H. Since NG
k−1(v) has tree width at most 3(k−1), we

know that NG
k−1(v) |= subH can be decided in time

f(k) · |NG
k−1(v)| ≤ O(f(k) · n)

by Courcelle’s Theorem. Thus we can decide if there exists a v ∈ V such
that N G

k−1(v) |= subH in time O(f(k) ·n2). This proves that the restriction of
p-Planar-Subgraph-Isomorphism to connected input graphs H is fixed-
parameter tractable. It is not difficult, though it is tedious, to extend this to
arbitrary input graphs H.

The running time of the fpt-algorithm we just described is quadratic in n.
We can improve this to linear by using a more efficient cover of G than the
family of sets NG

k−1(v) with v ∈ V .
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Definition 12.15. Let r, w ≥ 1. An (r, w)-cover of a graph G = (V, E) is a
family U of subsets of V with the following properties:
(1) For every v ∈ G there exists a U ∈ U such that NG

r (v) ⊆ U .
(2) For every U ∈ U , the tree width of the induced subgraph of G with vertex

set U is at most w. �

Lemma 12.16. Let G = (V, E) be a planar graph, v ∈ V , and r ≥ 1. Then
the family

U :=
{
SG

[i,i+2r](v)
∣∣ i ≥ 0

}
is an (r, 3(2r + 1))-cover of G.

Proof: Recall that SG
[i,i+2r](v) = {w ∈ V | i ≤ dG(v, w) ≤ i + 2r}. Clearly, the

family U satisfies condition (1) of the definition of an (r, 3(2r + 1))-cover. By
Lemma 12.14, it also satisfies condition (2). 
�

Putting all pieces together we get:

Theorem 12.17. The problem

Instance: A planar graph G and a connected graph H.
Parameter: |H |.

Problem: Decide whether G has a subgraph isomorphic toH.

is fixed-parameter tractable.
More precisely, there is an algorithm that, given a planar graph G = (V, E)

with n vertices and a connected graph H with k vertices, decides if G has a
subgraph isomorphic to H in time f(k) · n for some computable function f .

Proof: Let G = (V, E) be a planar graph and H a connected graph with k
vertices. Recall that G has a subgraph isomorphic to H if there is some vertex
v ∈ V such that N G

k−1(v) has a subgraph isomorphic to H.

Now let v0 ∈ V be an arbitrary vertex. Since
{
SG

[i,i+2(k−1)](v0)
∣∣ i ≥ 0

}
is a

(k−1, 3(2(k−1)+1))-cover of G, it follows that G has a subgraph isomorphic to
H if there is some i ≥ 0 such that SG

[i,i+2(k−1)](v0) has a subgraph isomorphic

to H. This shows that SubIso(G,H) (Algorithm 12.6) correctly decides if G
has a subgraph isomorphic to H.

To analyze the running time of the algorithm, for i ≥ 0 let ni :=∣∣SG
[i,i+2(k−1)](v0)

∣∣, and let r := max{i | ni > 0}. Since every vertex v ∈ V

is contained in at most 2k − 1 of the sets SG
[i,i+2(k−1)](v0), we have

r∑
i=1

ni ≤ (2k − 1) · n,

where n := |V |. The test in line 4 can be carried out in time
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SubIso(G,H)
// G = (V, E) a planar graph, H a connected graph with k vertices
1. Choose an arbitrary v0 ∈ V
2. i ← 0
3. while SG

[i,i+2(k−1)](v0) �= ∅ do

4. if SG
[i,i+2(k−1)](v0) has a subgraph isomorphic to H then

5. accept

6. else i ← i + 1
7. reject.

Algorithm 12.6.

f(k) · ni

for some computable function f (by the discussion following Lemma 12.14).
Line 3 requires time O(ni), and all other lines only require constant time.
Thus the overall running time is bounded by

r∑
i=1

(
f(k) · ni + O(ni)

)
≤ g(k) · n

for a suitable computable function g. 
�

12.2 Local Tree Width

In the preceding section, we saw that some parameterized problems intractable
for the class of all graphs are fixed-parameter tractable when restricted to
planar graphs. In this section, we generalize these results in various ways:

• We show that such fixed-parameter tractability results not only hold for
specific problems, but for all first-order definable problems.

• We show that the results are not specific to graphs, but hold on “planar
relational structures.”

• We show that the results hold on considerably larger classes of structures
than just planar graphs or structures.

Let us start by generalizing some of the notation introduced in the previous
section from graphs to arbitrary structures. Let A be a τ -structure. Recall
from Definition 11.25 that the Gaifman graph ofA is the graph G(A) = (V, E),
where V = A and

E =
{
{a, b}

∣∣ a, b ∈ A, a �= b, there exists an R ∈ τ and a tuple
(a1, . . . , ar) ∈ RA, where r := arity(R), such that
a, b ∈ {a1, . . . , ar}

}
.
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The distance dA(a, b) between two elements a, b ∈ A is the distance between
a and b in G(A), that is, the minimum length of a path between a and b in
G(A). For r ≥ 1 and a ∈ A we define the r-neighborhood NA

r (a) of a in A by

NA
r (a) := {b ∈ A | dA(a, b) ≤ r},

that is, NA
r (a) = N

G(A)
r (a). For S ⊆ A, we set NA

r (S) :=
⋃

a∈S NA
r (a).

By NA
r (a) (NA

r (S)) we denote the induced substructure of A with universe
NA

r (a) (NA
r (S), respectively).

We could now define a structure A to be planar if its Gaifman graph is
planar. However, we directly introduce a more general notion.

Definition 12.18. A class C of structures has bounded local tree width if
there is a function h : N → N such that ltw(A, r) ≤ h(r) for all A ∈ C and
r ∈ N, where

ltw(A, r) := max
{
tw

(
NA

r (a)
) ∣∣ a ∈ A

}
.

C has effectively bounded local tree width if in addition h can be chosen as a
computable function.

The function r �→ ltw(A, r) is called the local tree width of A. �

Example 12.19. Clearly, we have

ltw(A, r) ≤ tw(A),

for all A and r. This implies that every class of bounded tree width also has
effectively bounded local tree width. �

Example 12.20. Let A be a structure of degree d, where the degree of A is
the degree of its Gaifman graph G(A). Then for every r ∈ N we have

ltw(A, r) ≤ d ·
∑
i∈[r]

(d− 1)i−1 ≤ dr.

This is immediate, since NA
r (a) has at most 1 + d ·

∑
i∈[r](d− 1)i−1 elements.

Thus the class DEG(d) of all structures of degree at most d has effectively
bounded local tree width. �

Example 12.21. Let G be a planar graph. Then by Lemma 12.14(1), for all
r ≥ 1 we have

ltw(G, r) ≤ 3r.

Thus the class PLANAR of all planar graphs has effectively bounded local
tree width. �

Other important classes of structures of effectively bounded local tree
width are structures of bounded genus , that is, structures that can be em-
bedded into a fixed surface such as the torus.

The main result of this section reads as follows:
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Theorem 12.22. Let C be a polynomial time decidable class of structures
of effectively bounded local tree width. Then p-MC(C, FO), the parameterized
model-checking problem for first-order logic on the class C, is fixed-parameter
tractable.

More precisely, there is an algorithm that, given A ∈ C and a first-order
sentence ϕ, decides if A |= ϕ in time O(‖A‖)+f(|ϕ|)·|A|2 for some computable
function f .

Before we prove the theorem, let us discuss some of its consequences and
also limitations. From the preceding examples we obtain:

Corollary 12.23. Let d ∈ N. The parameterized model-checking problem for
first-order logic on the class of structures of degree at most d is fixed-parameter
tractable.

Corollary 12.24. The parameterized model-checking problem for first-order
logic on the class of planar graphs is fixed-parameter tractable.

It follows immediately from the corollaries that many of the best-studied
problems in parameterized complexity theory, such as p-Independent-Set,
p-Subgraph-Isomorphism, p-Dominating-Set, p-Clique-Dominating-
Set, and p-Vertex-Deletion are fixed-parameter tractable when restricted
to planar graphs or to graphs of bounded degree. Similarly, p-Kernel is fixed-
parameter tractable when restricted to planar directed graphs or to directed
graphs of bounded in- and out-degree.

Recall that the unrestricted parameterized model-checking problem for
first-order logic, p-MC(FO), is complete for the class AW[∗]. Thus the re-
striction of the problem to classes of input structures of effectively bounded
local tree width reduces the complexity considerably. One note of care: Even
though p-MC(FO) is the defining complete problem for AW[∗], this does not
imply that every graph problem in AW[∗] becomes fixed-parameter tractable
when restricted to planar graphs or to graphs of bounded degree.

Exercise 12.25. Find a parameterized problem for graphs that is W[1]-com-
plete and remains W[1]-complete when restricted to planar graphs.

Hint: Let Σ be a finite alphabet. Define an encoding g that associates with
every x ∈ Σ∗ a planar graph g(x) such that g is one-to-one, polynomial
computable, and its inverse is also polynomial time computable. �

The reader may wonder if we can generalize Theorem 12.22 from first-
order to monadic second-order logic (just like Courcelle’s Theorem). Unless
PTIME �= NP, we cannot do this: It is known that 3-Colorability is NP-
complete for the class of planar graphs of degree at most 4. Since there
is a formula of monadic second-order logic that defines the class of all 3-
colorable graphs (see Example 4.17), it follows that neither Corollary 12.23
nor Corollary 12.24 can be extended to monadic second-order logic. As a
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matter of fact, it follows that the problems p-MC(PLANAR, MSO) and
p-MC(DEG(4), MSO) are complete for para-NP.

Let us close this discussion with a few remarks on the running time of our
fpt-algorithm for p-MC(C, FO) for arbitrary classes C of effectively bounded
local tree width and also for the special cases p-MC(PLANAR, FO) and
p-MC(DEG(d), FO). Recall the linear fpt-algorithm for the planar subgraph
isomorphism problem (see Theorem 12.17). Using covers in a similar way, the
running time of our fpt-algorithm for p-MC(C, FO) in terms of the number
of vertices of the input structure can be improved to n1+ε for every ε ≥ 0
(instead of n2). For a large subfamily of the family of all classes of struc-
tures of bounded local tree width, which includes the class of planar graphs
and all classes of structures of bounded degree, the running time can even be
improved to linear.

The parameter dependence is more problematic, because the lower bounds
of Sect. 10.3 apply. Recall that by Theorem 10.18(2), unless FPT = AW[∗],
there is no fpt-algorithm for p-MC(TREE,FO) with an elementary parameter
dependence. Clearly, the class TREE of unranked trees has bounded local
tree width. Encoding the directed trees by undirected trees, this yields a
corresponding lower bound for undirected trees and hence for planar graphs.

Only for structures of bounded degree we can do slightly better, but even
for MC(DEG(d), FO), where d ≥ 3, we get a triply exponential lower bound
on the parameter dependence. For d = 2, this can be reduced to doubly
exponential.

Proof of Theorem 12.22

The proof crucially depends on the fact that first-order logic can only ex-
press local properties of structures. This informal statement is made precise
by Gaifman’s Theorem. To formally state the theorem, we need a few prelim-
inaries.

Lemma 12.26. Let τ be a vocabulary and r ∈ N. Then there is a first-order
formula δr(x, y) such that for all τ-structures A and all elements a, b ∈ A we
have

dA(a, b) ≤ r ⇐⇒ A |= δr(a, b).

Proof: We let δ1(x, y) be the formula

x = y ∨
∨

R∈τ
with arity(R)=s

∃z1 . . .∃zs

(
Rz1 . . . zs ∧

∨
1≤i,j≤s

(zi = x ∧ zj = y)
)
.

For x �= y, this formula says that x and y are adjacent in the Gaifman graph.
We define the formulas δr(x, y) for r > 1 inductively, letting

δr(x, y) := ∃z
(
δr−1(x, z) ∧ δ1(z, y)

)
. 
�
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In the following, we will write d(x, y) ≤ r and d(x, y) > r instead of δr(x, y)
and ¬δr(x, y), respectively.

A first-order τ -formula ψ(x) is r-local if the validity of ψ(x) only depends
on the r-neighborhood of x, more precisely, if for all τ -structures A and a ∈ A:

A |= ψ(a) ⇐⇒ NA
r (a) |= ψ(a).

Fact 12.27 (Gaifman’s Theorem). Every first-order sentence is equiva-
lent to a Boolean combination of sentences of the form

∃x1 . . .∃x�

( ∧
1≤i<j≤�

d(xi, xj) > 2r ∧
∧

i∈[�]

ψ(xi)
)
,

with �, r ≥ 1 and r-local ψ(x). Furthermore, such a Boolean combination can
be found in an effective way.

For a proof of Gaifman’s theorem, we refer the reader to [87]. Let us point
out that the effectivity statement follows easily from the completeness theorem
for first-order logic.

Besides Gaifman’s Theorem, the main ingredient of our proof of Theo-
rem 12.22 is an fpt-algorithm that solves a generalization of the indepen-
dent set problem on input graphs of effectively bounded local tree width. Let
G = (V, E) be a graph, S ⊆ V , and �, r ∈ N. Then S is (�, r)-scattered if there
exist v1, . . . , v� ∈ S such that dG(vi, vj) > r for 1 ≤ i < j ≤ �.

Observe that a set S is (�, 1)-scattered if it contains an independent set of
� elements.

Lemma 12.28. Let C be a class of graphs of effectively bounded local tree
width. Then there is an algorithm that, given a graph G = (V, E) ∈ C, a set
S ⊆ V , and �, r ∈ N, decides if S is (�, r)-scattered in time g(�, r) · |V | for
some computable function g.

Proof: We first observe that the problem is fixed-parameter tractable if pa-
rameterized by the tree width of the input graph:

Claim 1. There is an algorithm that, given a graph G = (V, E), a set S ⊆ V ,
and �, r ∈ N, decides if S is (�, r)-scattered in time

f
(
tw(G), �, r

)
· |V |

for some computable function f .

Proof: We prove the claim by applying Courcelle’s Theorem. We may view a
pair (G, S), where G is a graph and S a subset of the vertex set of G, as a
structure of vocabulary {E, X}, where E is a binary relation symbol inter-
preted by the edge relation of G and X is a unary relation symbol interpreted
by S. The following sentence states that X is (�, r)-scattered:
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ψ�,r := ∃x1 . . .∃x�

( ∧
i∈[�]

Xxi ∧
∧

1≤i<j≤�

d(xi, xj) > r
)
.

Thus we have (G, S) |= ψ�,r if and only if S is (�, r)-scattered. The claim
follows from Courcelle’s Theorem (and Corollary 11.11). �

Scattered(G, S, 	, r)
// G = (V, E) graph, S ⊆ V , 	, r ≥ 1
1. if S = ∅ then reject

2. Compute a maximal T ⊆ S of vertices of pairwise distance > r
3. if |T | ≥ 	 then

4. accept

5. else if S is (	, r)-scattered in N G
2r(T ) then

6. accept

7. else

8. reject.

Algorithm 12.7.

Now we are ready to prove the lemma. Consider Algorithm 12.7. In line 2
it computes a maximal subset T of S of vertices of pairwise distance > r, that
is,

• dG(v, w) > r for all v, w ∈ T ,
• there is no T ′ ⊆ S such that T ⊂ T ′ and dG(v, w) > r for all v, w ∈ T ′.

Such a set T can be computed in linear time by a simple greedy strategy: Add
a vertex v ∈ S \T to T , remove the r-neighborhood NG

r (v) from G and S, and
repeat this until S \ T is empty.

Of course, if |T | ≥ �, then T and hence S is (�, r)-scattered, and the
algorithm correctly accepts in line 4. In the following, let us assume that
|T | < �.

Observe that S ⊆ NG
r (T ) by the maximality of T . Furthermore, S is (�, r)-

scattered in G if and only if it is (�, r)-scattered in NG
2r(T ). To see this, note

that every path in G of length at most r between two vertices of NG
r (T ) is

contained in NG
2r(T ). Hence if S is (�, r)-scattered in NG

2r(T ), the algorithms
correctly accepts in line 6, otherwise it correctly rejects in line 8. This proves
that the algorithm is correct.

To prove that it has the desired running time, we have to show that the
test in line 5 can be carried out in time f(�, r) · |V | for some computable
function f . By claim 1, it suffices to prove that the tree width of NG

2r(T ) is
effectively bounded in terms of � and r. Thus we are done once we have proved
the following claim:

Claim 2. There is a computable function f : N × N → N such that for every
graph G ∈ C, where G = (V, E), and every subset T ⊆ V with |T | < � we have
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tw
(
NG

2r(T )
)
≤ f(�, r).

Proof: Let h : N → N be a computable function that bounds the local tree
width of the structures in C. Then for every v ∈ V we have

tw
(
N G

2r(v)
)
≤ h(2r).

But this does not give us a bound on the tree width of the union

NG
2r(T ) =

⋃
v∈T

NG
2r(v)

(at least not immediately).
To obtain such a bound, we define a graph (T, R) by

R :=
{
{v, w} | v, w ∈ T, dG(v, w) ≤ 4r + 1

}
.

As |T | < �, the diameter of every connected component C of this graph is at
most �− 2, hence for every component C and every vertex v ∈ C we have

NG
2r(C) ⊆ NG

(4r+1)·(�−2)+2r(v).

Thus tw
(
NG

2r(C)
)
≤ h

(
(4r + 1) · (� − 2) + 2r

)
. Since for distinct connected

components C, C′ of (T, R) the sets NG
2r(C) and NG

2r(C
′) are disjoint, and

there is no edge in G between these sets, this implies

tw
(
NG

2r(T )
)
≤ h

(
(4r + 1) · (�− 2) + 2r

)
. �

This completes the proof of the lemma. 
�

Proof of Theorem 12.22: Let C be a class of structures of effectively bounded
local tree width. Let ϕ be a first-order sentence and τϕ its vocabulary. Since
the class of τϕ-reducts of the structures in C is of effectively bounded local
tree width, too, we assume that C already consists of τϕ-structures. Again
the term O(‖A‖) in the running time of the claim of Theorem 12.22 is only
needed to compute the τϕ-reduct of the input structure.

By Gaifman’s Theorem (Fact 12.27) we can assume that

ϕ = ∃x1 . . .∃x�

( ∧
1≤i<j≤�

d(xi, xj) > 2r ∧
∧

i∈[�]

ψ(xi)
)
,

with �, r ∈ N and r-local ψ. Let A ∈ C. Note that �, r ≤ |ϕ|. We compute

S := {a ∈ A | A |= ψ(a)}.

By the r-locality of ψ, we have S = {a ∈ A | NA
r (a) |= ψ(a)}. Thus, by

Courcelle’s Theorem and since the tree width of NA
r (a) is effectively bounded

in terms of r, for every a ∈ A it can be decided in time f1(|ϕ|) · |A| if a ∈ S for
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some computable f1. Since
∑

a∈A |NA
r (a)| ≤ |A|2, the set S can be computed

in time O(f1(|ϕ|) · |A|2).
Observe that

A |= ϕ ⇐⇒ S is (�, 2r)-scattered.

By Lemma 12.28, the right-hand side of this equivalence can be decided in
time f2(|ϕ|) · |A| for some computable f2. 
�

12.3 Minor Closed Classes

Further interesting graph classes for which the first-order model-checking
problem becomes fixed-parameter tractable are minor closed classes of graphs
(cf. Sect. 11.7). Recall that the minor closed classes are precisely the classes
that can be characterized by finitely many excluded minors (Theorem 11.61)
and that every minor closed class of graphs is decidable in cubic time (Theo-
rem 11.62). Let us call a class of graphs nontrivial if it is not the class of all
graphs.

Examples of graph classes that are minor closed are the class of planar
graphs and, more generally, for every fixed surface the class of all graphs that
can be embedded into this surface. Also, for every w ∈ N, the class of all
graphs of tree width at most w is minor closed. An example of a class that
is minor closed, but does not have bounded local tree width is the class of
all apex graphs. A graph G = (V.E) is an apex graph if there is a vertex
v ∈ V such that the graph G \{v} obtained from G by deleting v and all edges
incident with v is planar.

Theorem 12.29. Let C be a nontrivial class of graphs that is minor closed.
Then p-MC(C, FO) is fixed-parameter tractable.

The proof of this theorem is beyond the scope of this book. It is based on
a structure theorem for classes of graphs with excluded minors, which says
that the graphs in such a class have a tree decomposition whose bags have
“almost bounded local tree width.”

Let us say that a class C of graphs has an excluded minor if there is some
graph H such that H is not a minor of any graph in C. Observe that if C is
a class of graphs that has an excluded minor, then the class of all minors of
graphs in C is a nontrivial minor closed class of graphs. Thus we obtain the
following corollary:

Corollary 12.30. Let C be a polynomial time decidable class of graphs that
has an excluded minor. Then p-MC(C, FO) is fixed-parameter tractable.

Similarly to Theorem 12.22, Theorem 12.29 implies that many concrete
parameterized problems such as p-Independent-Set, p-Dominating-Set,
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p-Clique-Dominating-Set, p-Subgraph-Isomorphism, and p-Vertex-
Deletion are fixed-parameter tractable when restricted to input graphs from
a nontrivial minor closed class of graphs.

Theorem 12.29 and Corollary 12.30 can easily be extended to classes of ar-
bitrary structures whose Gaifman graphs form a minor closed class or have an
excluded minor. For example, this implies that p-Kernel is fixed-parameter
tractable when restricted to a polynomial time decidable class of directed
graphs whose underlying undirected graphs have an excluded minor.

12.4 Improved Planar Graph Algorithms

In this section, we will introduce another approach to the design of fpt-
algorithms for planar graph problems. It is not as general as the approach
based on local tree width and first-order definability, but it still covers nu-
merous interesting problems such as p-Planar-Independent-Set and p-
Planar-Dominating-Set. Furthermore, it leads to algorithms with a much
better parameter dependence; the running time of the algorithms obtained
through this approach is

2O(
√

k) · n2.

Sometimes, the running time can be further improved, for example, by com-
bining the algorithm with a kernelization. As everywhere else in this book,
our emphasis will be on the general algorithmic method and not on ob-
taining the best possible algorithms for specific planar graph problems. Be-
sides p-Planar-Independent-Set and p-Planar-Dominating-Set, we
will consider p-Planar-Vertex-Cover. Note that even though p-Vertex-

Cover is fixed-parameter tractable on all graphs, a 2O(
√

k) · n2-algorithm
for p-Planar-Vertex-Cover might be an improvement over the 2O(k) · n-
algorithms for the vertex cover problem on arbitrary graphs. Essentially, the
new method is a refinement of the (simple version of the) tree width reduction
method that we used to prove the fixed-parameter tractability of p-Planar-
Dominating-Set. The improved algorithms are based on the following ver-
sion of the Excluded Grid Theorem 11.60 for planar graphs:

Fact 12.31. Every planar graph of tree width greater than 6s−6 has a (s×s)
grid as a minor.

A proof of this fact can be found in [186].

Lemma 12.32. Let k ≥ 1, and let G be a planar graph that has either
(1) a dominating set of k elements, or
(2) a vertex cover of k elements, or
(3) no independent set of k elements.
Then tw(G) = O(

√
k).
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Proof: We will only give the proof for the dominating set problem; the proofs
for vertex cover and independent set are similar. Observe first that an � × �
grid has no dominating set of less than �2/5 elements. To see this, note that
every vertex of a grid dominates at most 5 vertices. Thus to dominate all �2

vertices of the grid, we need at least �2/5 vertices in the dominating set. Now
the statement of the lemma would immediately follow from Fact 12.31 if the
property of having a dominating set of at most k elements was preserved under
taking minors, but unfortunately it is not. Note, however, that the property
of having a dominating set of at most k elements is preserved under edge
contractions.

Let G = (V, E) be a planar graph that has a dominating set of at most
k elements. We claim that G has tree width at most 18

√
k + 12. Suppose for

contradiction that tw(G) > 18
√

k + 12. Then by Fact 12.31, G has a (3
√

k +
3)×(3

√
k+3) grid as a minor. Since the property of having a dominating set of

size at most k is preserved under edge contractions, without loss of generality
we may assume that G has a (3

√
k + 3) × (3

√
k + 3) grid as a subgraph. A

vertex of a grid is internal if it is not on the boundary cycle. A tedious, but
straightforward argument shows that no vertex of G dominates more than
nine internal vertices of the grid (otherwise, G would have the complete graph
K5 as a minor). Since a (3

√
k +3)× (3

√
k +3) grid has more than 9k internal

vertices, G can thus not have a dominating set of k elements. 
�

Theorem 12.33. The problems p-Planar-Dominating-Set, p-Planar-
Independent-Set and p-Planar-Vertex-Cover can be solved in time

2O(
√

k) · n2,

where k denotes the parameter and n the number of vertices of the input graph.

Proof: We only give the proof for p-Planar-Dominating-Set. Let c ∈ N

such that every planar graph with a dominating set of k elements has tree
width at most c ·

√
k. Given a graph G of size n and a natural number k,

we first check in linear time if G is planar. If it is not, we reject. Otherwise,

we use the algorithm of Proposition 11.14 to compute in time 2O(
√

k) · n2 a
tree decomposition of G of width at most 4c ·

√
k + 1. If the algorithm finds

no such tree decomposition, then the tree width of G is larger than c ·
√

k
and hence G has no dominating set of k elements. Otherwise, the algorithm

decides whether G has a dominating set of size k in time 2O(
√

k) ·n by dynamic
programming on the tree decomposition. 
�

Let us remark that for all three problems, there are also algorithms with

a running time of 2O(
√

k) · n.

Kernelization

Recall Buss’ Kernelization for vertex cover (see Proposition 9.4). Given an
instance (G, k) of vertex cover, it produces in time O(k · ||G||) an equivalent
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instance (G′, k′) with k′ ≤ k and ||G′|| ≤ 2(k′)2. Furthermore, G′ is a sub-
graph of G (see Remark 9.5) and hence planar if G is planar. If we combine
the algorithm of Theorem 12.33 for p-Planar-Vertex-Cover with Buss’
Kernelization, we obtain an algorithm solving p-Planar-Vertex-Cover in
time

2O(
√

k) + O(k · n),

where n denotes the number of vertices of the input graph. We can take
a similar approach for p-Planar-Dominating-Set. Unless FPT = W[2],
there exists no polynomial kernelization for p-Dominating-Set on general
graphs, but it can be shown that there is a kernelization for the problem on
planar graphs that leads to a problem kernel of linear size. The algorithm is
based on two reduction rules. Let G = (V, E) be a graph and v ∈ V . Let S(v)
denote the set of all neighbors of v, that is,

S(v) := {w ∈ V | {v, w} ∈ E}.

We partition S(v) into three sets of vertices, which we call the black, gray, and
white vertices. A vertex w is black (with respect to v) if S(w)\(S(v)∪{v}) �= ∅,
that is, if w has a neighbor that is neither v nor a neighbor of v. A vertex
is gray (with respect to v) if is not black, but has a black neighbor. A vertex
is white (with respect to v) if it is neither black nor gray. The first reduction
rule is the following:

(R1) If there is a vertex v ∈ V such that there is at least one white vertex
with respect to v and there are at least two vertices that are gray or white,
then delete all gray vertices and all but one white vertices.

Figure 12.8 illustrates the definition of the black, gray, and white vertices and
of the rule (R1). It is easy to see that the rule is correct, that is, if G′ is the
graph obtained from G by applying (R1), then G′ has a dominating set of at
most k elements if and only if G has.

v v

Fig. 12.8. Reduction rule (R1)

The second rule (R2) is similar in spirit, but more complicated. Instead
of the neighborhood of a single vertex it considers the neighborhood of a pair
of vertices. We omit the precise statement of the rule. The following lemma
collects the main results about these reduction rules:
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Lemma 12.34. Let G = (V, E) be a planar graph with n vertices.
(1) If one of the rules (R1) or (R2) is applied to G, then the resulting (planar)

graph G′ has a dominating set of cardinality at most k if and only if G
has.

(2) If neither of the two rules can be applied and G has a dominating set of
cardinality at most k, then n = O(k).

(3) Both rules can be applied in polynomial time.

For a proof of the lemma, we refer the reader to [4, 7]. The lemma yields
the following kernelization theorem:

Theorem 12.35. p-Planar-Dominating-Set has a linear size kerneliza-
tion, that is, there is a kernelization algorithm for p-Planar-Dominating-
Set that, given an instance (G, k), computes in polynomial time an equivalent
instance (G′, k) with ||G′|| = O(k).

Notes

Two general strategies for solving problems on planar graphs are based on the
fact that planar graphs have small separators (due to Lipton and Tarjan [155,
156]) and on a layer wise decomposition similar to the one that we use in here
(this techniques goes back to Baker [19]). The fact that planar embeddings
can be found in linear time (Fact 12.7) is due to Hopcroft and Tarjan [128].
The planarity test described in [197] is due to Shih and Hsu [191].

The idea of proving fixed-parameter tractability of planar graph problems
by the bounded search tree method, as we did for p-Planar-Independent-
Set, goes back to Downey an Fellows [81, 83]. The planar graph problem
that has received most attention is p-Planar-Dominating-Set [4, 5, 6, 7,
81, 106, 143]. The algorithm underlying Theorem 12.33 is due to Fomin and
Thilikos [106, 107]. Fact 12.31, the improved version of the excluded grid the-
orem for planar graphs, is from [182, 186]. Alber et al. [8] discuss a different

general approach for solving planar graph problems; it leads to 2O(
√

k) · n-
algorithms for p-Planar-Dominating-Set, p-Planar-Independent-Set,
and p-Planar-Vertex-Cover (and other problems). The linear kerneliza-
tion for p-Planar-Dominating-Set appears in [4, 7].

The fpt-algorithm for p-Planar-Subgraph-Isomorphism is due to Epp-
stein [90]. In the same article, Eppstein also introduces the notion of bounded
local tree width (under the name diameter tree width property). In [91], he
characterizes the minor closed classes of graphs of bounded local tree width as
those classes that have an apex graph as an excluded minor. Demaine and Ha-
jiaghayi [68] prove that for minor closed classes of bounded local tree width,
the local tree width is actually bounded by a linear function. In [69, 105], the
algorithmic ideas underlying Theorem 12.33 are extended to larger classes of
graphs and problems.
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Gaifman’s Theorem is proved in [113]. Theorem 12.22 is from [111], and
Theorem 12.29 from [99]. The proof of Theorem 12.29 is based on a structure
theorem for graphs with excluded minors stating that the graphs in such a
class have a tree decomposition whose bags have “almost bounded local tree
width” and algorithmic ideas due to [121]. The structure theorem is based on
Robertson and Seymour’s graph minor theory [181].
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Homomorphisms and Embeddings

The homomorphism problem for relational structures is a fundamental al-
gorithmic problem playing an important role in different areas of computer
science. For example, constraint satisfaction problems in artificial intelligence
and the containment problem for conjunctive queries in database theory can
be viewed as homomorphism problems.

We briefly covered the homomorphism problem in Chap. 7, where we
proved that its parameterization by the size of the left-hand side structure
is W[1]-complete. In the first two sections of this chapter we study restric-
tions of the homomorphism problem obtained by requiring the left-hand side
structure to be from a certain class of structures. We give a complete classifi-
cation of the complexity of such restrictions, both in the sense of polynomial
time solvability and fixed-parameter tractability. Once again, tree width plays
a central role. As a by-product, we obtain a new characterization of the ques-

tion FPT
?
= W[1] entirely in terms of classical complexity.

In the third section we study the related embedding problem. We introduce
a powerful new technique for the design of fpt-algorithms, which is known as
color coding. In its basic form, color coding yields randomized fpt-algorithms.
These can be derandomized by sophisticated hashing techniques. We apply
these techniques to prove that the embedding problem, restricted to left-hand
side structures of bounded tree width, is fixed-parameter tractable.

13.1 Tractable Restrictions of the Homomorphism
Problem

Recall that a homomorphism from a structure A to a structure B is a mapping
that preserves membership in all relations (see p. 73). For every class C of
relational structures, we study the following restriction of the homomorphism
problem
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Hom(C)
Instance: A structure A ∈ C and a structure B.
Problem: Decide whether there is a homomorphism from A to B.

and its parameterization:

p-Hom(C)
Instance: A structure A ∈ C and a structure B.

Parameter: ||A||.
Problem: Decide whether there is a homomorphism from A to B.

If C is the class of all complete graphs, then Hom(C) is equivalent to the clique
problem Clique with respect to polynomial time reductions, and p-Hom(C)
is equivalent to p-Clique with respect to fpt-reductions. This shows that
for every class C of structures that contains all complete graphs, Hom(C) is
NP-hard and p-Hom(C) is W[1]-hard.

Recall our notation for problems with restricted classes of inputs (see p. 9
in Chap. 1): Formally, Hom(C) is the class of all encodings of pairs (A,B)
of structures such that A ∈ C and there is a homomorphism from A to B.
Thus Hom(C) is not necessarily in NP, because it may not be decidable in NP
whether the input structure A is contained in C. Similarly, if the class C is
undecidable, then the problem p-Hom(C) is not in W[1]. However, deciding if
the input structureA is in the class C and deciding if there is a homomorphism
from A to B are separate issues. In particular, even if C is undecidable there
may be a polynomial time algorithm that, given an instance (A,B) of Hom
with A ∈ C, correctly decides if there is a homomorphism from A to B. The
drawback is that if we do not know if A ∈ C we do not know if the answer
given by this algorithm is correct.

Exercise 13.1. Let C be a class of structures.
(a) Prove that the membership problem for C is polynomial time reducible

to Hom(C).
(b) Prove that the following three statements are equivalent:

i. C is decidable.
ii. Hom(C) is decidable.
iii. p-Hom(C) ∈W[1]. �

Exercise 13.2. Let C be a decidable class of graphs such that for every k ∈ N

there is a graph G ∈ C that has a k-clique.
(a) Prove that p-Hom(C) is W[1]-complete.
(b) Is Hom(C) necessarily NP-hard? �

In this and the following section we address the question for which classes C
the problems Hom(C) and p-Hom(C) are tractable.
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Example 13.3. Recall that a labeled (unranked) tree is a tree whose vertices
are labeled with symbols from some alphabet Σ. We represent such a tree as
a structure T = (T, ET , (P T

a )a∈Σ). The class of all labeled trees is denoted
by TREEl.

We claim that Hom(TREEl) is solvable in polynomial time. To prove this,
we describe a simple dynamic programming algorithm that solves the problem.
Let (T ,B) be an instance of the problem, where T = (T, ET , (P T

a )a∈Σ) ∈
TREEl and B = (B, EB, (PB

a )a∈Σ).
Recall that for every node t ∈ T , by Tt we denote the subtree of T rooted at

t. Our algorithm proceeds as follows: Starting at the leaves of T , it inductively
computes for every t ∈ T the set H(t) of all b ∈ B such that there is a
homomorphism h from Tt to B with h(t) = b.

To see how H(t) is computed, let t ∈ T with label a ∈ Σ, that is, t ∈ P T
a .

Then H(t) is the set of all b ∈ B such that:
• b ∈ PB

a .
• For all children u of t there exists a c ∈ H(u) such that (b, c) ∈ EB.
Obviously, if t is a leaf the second condition is vacuous. Using the two condi-
tions, the sets H(t) for all t ∈ T can be computed in polynomial time. There
is a homomorphism from T to B if and only if H(r) �= ∅, where r denotes the
root of T . �

It is straightforward to generalize the previous example from trees to struc-
tures of bounded tree width. We leave this as an exercise to the reader (see
Exercise 13.4). Let us point out that this generalization is also an immediate
consequence of Theorem 13.12 proved below. Recall that a class C of struc-
tures has bounded tree width if there is some w ∈ N such that tw(A) ≤ w for
all A ∈ C.

Exercise 13.4. Let C be a polynomial time decidable class of structures of
bounded tree width. Prove that Hom(C) is in polynomial time.

Hint: Given an instance (A,B) of Hom(C), let (T , (āt)t∈T ) be an ordered
tree decomposition of A (see p. 263). Devise an algorithm that for every
t ∈ T computes the set of all tuples b̄ of elements of B such that there is a
homomorphism from A to B that maps āt to b̄. �

Clearly, there are also classes of unbounded tree width that have a tractable
homomorphism problem. For example, consider the class BIP of all bipartite
graphs. Hom(BIP) is almost trivial, because if G is a bipartite graph with at
least one edge and H is an arbitrary graph, then there is a homomorphism
from G to H if and only if H has at least one edge.

Nevertheless, tree width is the key structural property that leads to
tractable homomorphism problems. The crucial idea is to look at tree width
modulo homomorphic equivalence.

Definition 13.5. Two relational structures A and B are homomorphically
equivalent if there are homomorphisms from A to B and from B to A. �
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Observe that for all structuresA,A′,B, ifA is homomorphically equivalent
to A′ then there is a homomorphism from A to B if and only if there is a
homomorphism fromA′ to B. In other words, (A,B) and (A′,B) are equivalent
instances of the homomorphism problem. Note, however, that these instances
may have completely different sizes, as the following example shows.

Example 13.6. All bipartite graphs with at least one edge are homomor-
phically equivalent. In particular, all bipartite graphs with at least one edge
are homomorphically equivalent to the graph with two vertices and one edge
between them. �

Exercise 13.7. Prove that it is NP-complete to decide if a given graph is
homomorphically equivalent to a triangle.

Hint: Show that a graph G is 3-colorable if and only if the disjoint union
of G with a triangle is homomorphically equivalent to a triangle. �

Homomorphic equivalence is closely related to the concept of a core of a
relational structure.

Definition 13.8. (1) A structure is a core if it is not homomorphically equiv-
alent to a proper substructure of itself.

(2) A structure B is a core of a structure A if
• B is a substructure of A;
• B is homomorphically equivalent to A;
• B is a core. �

Note that the condition in (1) can be slightly weakened: A structure A is a
core if and only if there is no homomorphism from A to a proper substructure
of A.

A homomorphism from a structure A to itself is called an endomorphism
of A. Let h be a homomorphism from a τ -structure A to a τ -structure B. The
image of A under h is the τ -structure h(A) with universe h(A) and

Rh(A) := {h(ā) | ā ∈ RA}

for every R ∈ τ .

Lemma 13.9. Let A and B be homomorphically equivalent structures, and let
A′ and B′ be cores of A and B, respectively. Then A′ and B′ are isomorphic.

In particular, all cores of a structure are isomorphic.

Proof: Note that, by the transitivity of homomorphic equivalence, A′ and B′

are homomorphically equivalent. Let g be a homomorphism from A′ to B′

and h a homomorphism from B′ to A′. Then h ◦ g is an endomorphism of A′.
Since A′ is a core, it follows that h ◦ g is onto and thus one-to-one. Hence g is
one-to-one.
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Then the image g(A′) is a substructure of B′ isomorphic to A′ and thus
homomorphically equivalent to B′. Since B′ is a core, it follows that g(A′) =
B′. Hence g is an isomorphism. 
�

In view of Lemma 13.9, we usually speak of the core of a structure, keeping
in mind that it is only unique up to isomorphism.

Observe that tree width is neither preserved under homomorphic images
nor under homomorphic equivalence. For example, for all even k ≥ 1 there is a
homomorphism h from a path Pk2 of length k2 (of tree width 1) to a complete
graphKk (of tree width k−1) such that h(Pk2) = Kk. Furthermore, the (k×k)
grid Gk×k has tree width k. As a bipartite graph, Gk×k is homomorphically
equivalent to P2 (of tree width 1).

Definition 13.10. (1) Let w ∈ N. A structure A has tree width at most w
modulo homomorphic equivalence if A is homomorphically equivalent to
a structure of tree width at most w.

(2) A class C of structures has bounded tree width modulo homomorphic equiv-
alence if there is a w ∈ N such that every structure A ∈ C has tree width
at most w modulo homomorphic equivalence. �

Lemma 13.11. Let w ∈ N. Then a structure A has tree width at most w
modulo homomorphic equivalence if and only if the core of A has tree width
at most w.

Proof: For the forward direction, suppose that A has tree width at most w
modulo homomorphic equivalence, and let B be a structure of tree width at
most w that is homomorphically equivalent to A. Let A′ and B′ be cores of
A and B, respectively. By Lemma 13.9, A′ and B′ are isomorphic. Since B′ is
a substructure of B, we have tw(B′) ≤ tw(B). Hence

tw(A′) = tw(B′) ≤ tw(B) ≤ w.

The backward direction is immediate. 
�
We are now ready to state the main result of this section:

Theorem 13.12. Let C be a class of structures of bounded tree width modulo
homomorphic equivalence. Then there is a polynomial time algorithm that,
given an instance (A,B) of Hom(C) with A ∈ C, correctly decides if there is
a homomorphism from A to B.

The proof of the theorem is based on a game. A partial homomorphism
from a structure A to a structure B is a mapping π : A′ → B defined on a
subset A′ ⊆ A such that π is a homomorphism from the induced substructure
of A with universe A′ to B.

Definition 13.13. Let A and B be τ -structures and p ≥ 1. The existential p-
pebble game on (A,B) is played by two players called Spoiler and Duplicator.
Each player has a set of pebbles labeled 1, . . . , p.
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The game is played in successive rounds as follows: In round 0 of the game,
Spoiler places his pebbles on elements of A and Duplicator answers by placing
her pebbles on elements of B. In each following round, Spoiler picks up some
of his pebbles and places them on new elements of A. Duplicator answers by
picking up her pebbles with the same labels as those picked up by Spoiler
and placing them on elements of B. The players are allowed to place several
pebbles on the same element.

Let r ≥ 0. For i ∈ [p], let ai ∈ A be the element on which Spoiler’s
pebble with label i is placed after round r and bi ∈ B the element on which
Duplicator’s pebble with label i is placed. The game ends after round r if the
assignment

πr(ai) := bi for i ∈ [p]

either does not define a mapping πr (because ai = aj and bi �= bj for some
i, j ∈ [p]) or defines a mapping πr that is not a partial homomorphism; in
this case Spoiler wins the game. Otherwise, the game continues with round
(r + 1). If the game continues forever, Duplicator wins. �

It should be clear how to define a winning strategy for either Spoiler
or Duplicator in the existential p-pebble game on (A,B). Furthermore, as
Lemma 13.14 shows, the game is determined, that is, either Spoiler or Dupli-
cator has a winning strategy.

It will be convenient to have some additional terminology. For every r ≥ 0,
an r-round winning strategy for Spoiler is a winning strategy for Spoiler with
the additional property that each play of the game in which Spoiler plays
according to this strategy ends before the (r + 1)st round.

Note that a position of the existential p-pebble game on (A,B) can be
described by a pair (ā, b̄) of p-tuples ā = (a1, . . . , ap) ∈ Ap, b̄ = (b1, . . . , bp) ∈
Bp. Suppose that after round r the game is in position (ā, b̄). Suppose that in
round (r + 1), Spoiler picks up his pebbles labeled i1, . . . , iq ∈ [p] and places
them on elements a∗

i1
, . . . , a∗

iq
∈ A with a∗

ij
�= aij

for all j ∈ [q], and Duplicator

answers by picking up her pebbles labeled i1, . . . , iq ∈ [p] and placing them
on elements b∗i1 , . . . , b

∗
iq
∈ B. Let ā′ = (a′

1, . . . , a
′
p) be the tuple defined by

a′
i :=

{
a∗

i , if i ∈ {i1, . . . , iq},
ai, if i ∈ [p] \ {i1, . . . , iq},

and let b̄′ be defined analogously. Then we say that in round (r + 1) Spoiler
moves to ā′, and Duplicator answers by moving to b̄′.

The existential p-pebble game on (A,B) starting from position (ā, b̄) ∈
Ap×Bp is the variant of the game where instead of choosing the first position
of the game in round 0, the players start the game in round 1 with their
respective pebbles already being placed on a1, . . . , ap and b1, . . . , bp. Winning
strategies and r-round winning strategies for this modification of the game
are defined in a straightforward manner.
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Lemma 13.14. Let p ≥ 1. Then the following problem can be decided in
polynomial time:

Game(p)
Instance: Structures A and B.
Problem: Decide whether Duplicator has a winning strategy

for the existential p-pebble game on (A,B).

Moreover, if (A,B) /∈ Game(p), then there is an |A|p · |B|p-round winning
strategy for Spoiler.

Proof: Let A and B be structures. The idea is to compute by induction on
r ≥ 0 the set Wr of all positions (ā, b̄) of the existential p-pebble game on
(A,B) such that Spoiler has an r-round winning strategy for the game starting
from position (ā, b̄).

Winning in 0 rounds starting from position (ā, b̄) simply means that Spoiler
has already won before the first round, that is, ai �→ bi for i ∈ [p] does not
define a partial homomorphism. Thus

W0 :=
{(

ā, b̄
)
∈ Ap ×Bp

∣∣∣ ai �→ bi for i ∈ [p] does not define

a partial homomorphism
}
.

(13.1)

To compute Wr+1 from Wr, we observe that Spoiler has an (r + 1)-round
winning strategy from a position (ā, b̄) if and only if in the first round he can
force a position (ā′, b̄′) from which he has an r-round winning strategy. Thus

Wr+1 :=
{(

ā, b̄
)
∈ Ap ×Bp

∣∣∣ (13.2)

∃ā′ = (a′
1, . . . , a

′
p) ∈ Ap ∀b̄′ = (b′1, . . . , b

′
p) ∈ Bp :

If b′i = bi for all i ∈ [p] with a′
i = ai, then (ā′, b̄′) ∈ Wr

}
.

Intuitively, ā′ ranges over all possible moves Spoiler in the first round, and b̄′

ranges over all possible answers of Duplicator. The condition b′i = bi for all
i ∈ [p] with a′

i = ai makes sure that Duplicator only moves pebbles that are
also moved by Spoiler. Note that we admit ā′ = ā, in which case the condition
simply says that (ā, b̄) ∈Wr. This accounts for plays of the game lasting fewer
than r + 1 rounds.

Let
W :=

⋃
r≥0

Wr.

Since for all r ≥ 0 we have Wr ⊆ Wr+1, there must be an r∗ < |Ap| · |Bp|
such that Wr∗ = Wr∗+1 = W . Clearly, for all

(
ā, b̄

)
∈ W , Spoiler has a

winning strategy for the game starting from position (ā, b̄). We claim that for
all

(
ā, b̄

)
∈ (Ap × Bp) \W , Duplicator has a winning strategy. To see this,
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let (ā, b̄) ∈ (Ap × Bp) \W = (Ap × Bp) \Wr∗+1. Then by (13.1), ai �→ bi

for i ∈ [p] defines a partial homomorphism from A to B. Thus Spoiler does
not win the game starting from position (ā, b̄) in 0 rounds (that is, before the
first round is played). By (13.2), for all ā′ = (a′

1, . . . , a
′
p) ∈ Ap there exists

a b̄′ = (b′1, . . . , b
′
p) ∈ Bp such that b′i = bi for all i ∈ [p] with a′

i = ai and

(ā′, b̄′) ∈ (Ap ×Bp) \Wr∗ = (Ap ×Bp) \W . Thus for every possible move of
Spoiler in the first round, Duplicator has an answer such that the new position
is still in (Ap ×Bp) \W . This gives Duplicator a winning strategy.

(13.1) and (13.2) provide an easy way to compute Wr∗ in polynomial time
(remember that p is fixed). Finally, to decide if Duplicator has a winning
strategy for the existential p-pebble game on (A,B), we compute the set W
and check if for all ā ∈ Ap there is a b̄ ∈ Bp such that (ā, b̄) �∈W . 
�

The connection between the existential pebble game and the homomor-
phism problem is established by the following lemma:

Lemma 13.15. Let A and B be structures. Let w ≥ 1 and suppose that A
has tree width at most w modulo homomorphic equivalence. Then there is a
homomorphism from A to B if and only if Duplicator has a winning strategy
for the existential (w + 1)-pebble game on (A,B).

Proof: For the forward direction, let h be a homomorphism from A to B.
Duplicator’s strategy in the game is to play according to h, that is, whenever
Spoiler places a pebble on an element a ∈ A, then Duplicator places the cor-
responding pebble on h(a). Clearly, this is a winning strategy for Duplicator.

Let us turn to the backward direction: Let A′ be homomorphically equiva-
lent to A with tw(A′) ≤ w. Let (T , (āt)t∈T ) be an ordered tree decomposition
of A′ of width (w + 1). Suppose that T = (T, F ), r is the root of T , and
āt = (at

1, . . . , a
t
w+1) for all t ∈ T . Without loss of generality, we may assume

that

for all edges (s, t) ∈ F and a ∈ {as
1, . . . , a

s
w+1} ∩ {at

1, . . . , a
t
w+1}

there is an i ∈ [w + 1] such that a = as
i = at

i.
(13.3)

We can always achieve this by reordering the tuples.
For all t ∈ T we define a tuple b̄t = (bt

1, . . . , b̄
t
w+1) ∈ Bw+1 as follows:

• If t is the root of T , then b̄t is the answer of Duplicator according to her
winning strategy if in round 0, Spoiler moves to āt.

• If t has a parent s, then b̄t is the answer of Duplicator according to her
winning strategy if in position (ās, b̄s) Spoiler moves to āt.

Then for all a ∈ A′ there exists a unique b ∈ B such that whenever a = at
i

for some t ∈ T and i ∈ [w + 1], then b = bt
i. This follows from (13.3) and

the fact that for all a ∈ A′ the set of all t ∈ T such that a ∈ {at
1, . . . , a

t
w+1}

is nonempty and connected in T (by Definition 11.23(1)). Letting h(a) := b
thus defines a mapping h : A′ → B. Furthermore, since for all t ∈ T the
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mapping defined by at
i �→ bt

i for i ∈ [w +1] is a partial homomorphism and by
Definition 11.23(2), the mapping h is a homomorphism from A′ to B.

Thus there exists a homomorphism from A′ to B, and since A′ and A
are homomorphically equivalent, there also exists a homomorphism from A
to B. 
�

Proof of Theorem 13.12: Let C be a class of structures and w ∈ N such
that each structure A ∈ C has tree width at most w modulo homomorphic
equivalence.

Given an instance (A,B) of Hom(C), our algorithm checks if Duplicator
has a winning strategy for the (w+1)-pebble game on (A,B). This is possible
in polynomial time by Lemma 13.14. If A ∈ C, then A is homomorphically
equivalent to a structure of tree width at most w, and hence by Lemma 13.15
the answer given by the algorithm is correct. 
�

Corollary 13.16. Let C be a polynomial time decidable class of structures
of bounded tree width modulo homomorphic equivalence. Then Hom(C) is in
polynomial time.

Corollary 13.17. Let C be a decidable class of structures of bounded tree
width modulo homomorphic equivalence. Then p-Hom(C) is fixed-parameter
tractable.

As opposed to all our earlier algorithms on structures of bounded tree
width, including the straightforward homomorphism algorithm for classes of
structures of bounded tree width suggested in Exercise 13.4, the algorithm
underlying Theorem 13.12 has the remarkable property that it never com-
putes a tree decomposition. Actually, the algorithm does not even determine
a structure of bounded tree width that is homomorphically equivalent to the
input structure. All the algorithm does is compute a winning strategy for the
existential pebble game. Tree width is only used to prove that the algorithm
is correct.

The name “existential p-pebble game” reflects the fact that the game is re-
lated to the existential p-variable fragment of first-order logic, as the following
exercises illustrates. Let ∃FO denote the set of all first-order formulas in which
no negation symbols and universal quantifiers occur. Remember that implica-
tions “→” and bi-implications “↔” are abbreviations that involve negations.
Thus neither implications nor bi-implications are allowed in ∃FO-formulas.
For p ≥ 1, let ∃FOp denote the set of all ∃FO-formulas in which at most p
distinct variables occur.

Exercise 13.18. Let A be a structures and n, p ∈ N. Prove that there is an
∃FOp-sentence ϕn

A such that for every structure B with |B| ≤ n:

B |= ϕn
A ⇐⇒ Duplicator has a winning strategy

for the existential p-pebble game on (A,B).

Hint: Apply Lemma 13.14. �
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Exercise 13.19. LetA and B be structures and p ≥ 1. Prove that Duplicator
has a winning strategy for the existential p-pebble game on (A,B) if and only
if every ∃FOp-sentence that is satisfied by A is also satisfied by B. �

Exercise 13.20. Prove that the following problem is W[1]-hard:

p-Game
Instance: Structures A and B, and k ∈ N.

Parameter: k.
Problem: Decide whether Duplicator has a winning strategy

for the existential k-pebble game on (A,B).
�

13.2 The Complexity of the Homomorphism Problem

Theorem 13.21. Let τ be a vocabulary and C a recursively enumerable class
of τ-structures that is not of bounded tree width modulo homomorphic equiv-
alence. Then p-Hom(C) is W[1]-hard.

Before we prove this theorem, let us discuss some of its consequences. Recall
that for undecidable classes C the problem p-Hom(C) is undecidable. For
decidable C we get the following dichotomy result:

Corollary 13.22. Let τ be a vocabulary and C a decidable class of τ-
structures. Then p-Hom(C) is either fixed-parameter tractable or W[1]-com-
plete.

Furthermore, if FPT �= W[1], then p-Hom(C) is fixed parameter tractable
if and only if C is of bounded tree width modulo homomorphic equivalence.

We get the following characterization of the tractable unparameterized
problems Hom(C):

Corollary 13.23. Let τ be a vocabulary and C a class of τ-structures. As-
sume that FPT �= W[1]. Then Hom(C) is in polynomial time if and only
if C is in polynomial time and of bounded tree width modulo homomorphic
equivalence.

Note that here the assumption FPT �= W[1] from parameterized com-
plexity is used to prove a statement entirely in the realm of classical com-
plexity. The reader may wonder if we cannot weaken the assumption to,
say, PTIME �= NP. Surprisingly, we cannot—the following theorem shows
that the statement of the corollary is actually equivalent to the assump-
tion FPT �= W[1]. It thus gives a characterization of the question whether
FPT �= W[1] entirely in terms of classical complexity:

Theorem 13.24. The following statements are equivalent:
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(1) FPT = W[1].
(2) There is a polynomial time decidable class C of graphs that is not of

bounded tree width modulo homomorphic equivalence such that Hom(C)
is in polynomial time.

Proof: (2)⇒ (1) by Corollary 13.23.
To prove that (1) ⇒ (2), suppose that FPT = W[1]. Then p-Clique ∈

FPT. Let f be a computable function such that p-Clique is solvable in time
f(k) · nO(1). Without loss of generality we may assume that f(k) ≥ k for all
k ≥ 1 and that f is time constructible.

For k ≥ 1, let Gk be the graph with vertex set [f(k)] and edges {i, j} for
1 ≤ i < j ≤ k. Thus Gk is a clique of cardinality k padded with f(k) − k
isolated vertices. The core of Gk is a clique of cardinality k and thus has tree
width k−1. Let C be the class of all Gk, for k ≥ 1. Since f is time constructible,
C is decidable in polynomial time.

We shall now describe a polynomial time algorithm for Hom(C). Let G ∈
C, say, G = Gk, and let H be an arbitrary graph. There is a homomorphism
from G to H if and only if H contains a k-clique. Deciding whether H contains
a k-clique requires time f(k) · ||H||O(1) ≤ ||G|| · ||H||O(1) if we use the fpt-
algorithm for p-Clique. 
�

Another remarkable consequence of Theorem 13.12 and Theorem 13.21 is
that polynomial time decidability and fixed-parameter tractability coincide
for problems Hom(C) for polynomial time decidable classes C.

Corollary 13.25. Let τ be a vocabulary and C a polynomial time decidable
class of τ-structures. Assume that FPT �= W[1]. Then p-Hom(C) is fixed-
parameter tractable if and only if Hom(C) is in polynomial time.

Exercise 13.26. Let τ be a vocabulary and C a recursively enumerable class
of τ -structures. Assume that FPT �= W[1]. Prove that the following three
statements are equivalent:
(a) There is a polynomial time algorithm that, given an instance (A,B) of

Hom(C) with A ∈ C, correctly decides if there is a homomorphism from
A to B.

(b) There is an fpt-algorithm that, given an instance (A,B) of Hom(C) with
A ∈ C, correctly decides if there is a homomorphism from A to B.

(c) C is of bounded tree width modulo homomorphic equivalence. �

Proof of Theorem 13.21

Recall graph minors and the Excluded Grid Theorem from Sect. 11.7. It will
be convenient here to describe minors by mappings similar to homomorphisms
and embeddings.
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Definition 13.27. Let G = (V G , EG) andH = (V H, EH) be graphs. A minor
map from H to G is a mapping

μ : V H → Pow(V G)

with the following properties:
(MM1) For all v ∈ V H the set μ(v) is nonempty and connected in G.
(MM2) For all v, w ∈ V H with v �= w the sets μ(v) and μ(w) are disjoint.
(MM3) For all edges {v, w} ∈ EH there are v′ ∈ μ(v), w′ ∈ μ(w) such that
{v′, w′} ∈ EG . �

Slightly abusing terminology, we call a minor map μ from H to G onto if⋃
v∈V H μ(v) = V G .

It is easy to see that there is a minor map from H to G if and only if H is
a minor of G. Moreover, if H is a minor of a connected graph G then we can
always find a minor map from H onto G.

Let A be a connected τ -structure. (A structure is connected if its Gaifman
graph is connected.) Furthermore, let k ≥ 2, � :=

(
k
2

)
, and μ : [k] × [�] →

Pow(A) a minor map from the (k × �) grid onto the Gaifman graph of A.
Let us fix some bijection β between [�] and the set of all unordered pairs of
elements of [k]. For p ∈ [�], we sloppily write i ∈ p instead of i ∈ β(p). It
will be convenient to jump back and forth between viewing the columns of
the (k × �) grid as being indexed by elements of [�] or by unordered pairs of
elements of [k].

Let G = (V, E) be a graph. We shall define a τ -structure B = B(A, μ,G)
such that there is a homomorphism from A to B if and only if G contains a
k-clique.

The universe of B is

B :=
{
(v, e, i, p, a) ∈ V × E × [k]× [�]×A

∣∣∣ (v ∈ e⇐⇒ i ∈ p
)
, a ∈ μ(i, p)

}
.

We define the projection Π : B → A by letting

Π(v, e, i, p, a) := a

for all (v, e, i, p, a) ∈ B. Recall that the minor map μ is onto. Thus every
a ∈ A is contained in μ(i, p) for some (i, p) ∈ [k] × [�]. Note that for every
a ∈ μ(i, p), the set Π−1(a) consists of all tuples (v, e, i, p, a), where v ∈ V and
e ∈ E such that (v ∈ e ⇐⇒ i ∈ p). As usually, we extend Π and Π−1 to
tuples of elements by defining them component wise.

We define the relations of B in such a way that Π is a homomorphism from
B toA: For every R ∈ τ , say, of arity r, and for all tuples ā = (a1, . . . , ar) ∈ RA

we add to RB all tuples b̄ = (b1, . . . , br) ∈ Π−1(ā) satisfying the following two
constraints for all b = (v, e, i, p, a), b′ = (v′, e′, i′, p′, a′) ∈ {b1, . . . , br}:
(C1) If i = i′ then v = v′.
(C2) If p = p′ then e = e′.
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Lemma 13.28. The projection Π is a homomorphism from B to A.

Proof: Follows immediately from the definition of B. 
�

Lemma 13.29. If G contains a k-clique, then there is a homomorphism from
A to B.

Proof: Let v1, . . . , vk be the vertex set of a k-clique in G. Recall that β is a
bijection between [�] and the set of unordered pairs of elements of [k]. For
p ∈ [�] with β(p) = {j, j′}, let ep ∈ E be the edge between vj and vj′ .

We define h : A→ V × E × [k]× [�]×A by letting

h(a) := (vi, ep, i, p, a)

for i ∈ [k], p ∈ [�], and a ∈ μ(i, p).
The mapping is total because the minor map μ is onto. It follows imme-

diately from the definition of ep that (vi ∈ ep ⇐⇒ i ∈ p). This implies that
h(A) ⊆ B, that is, h is a mapping from A to B.

To prove that h is a homomorphism, let R ∈ τ be r-ary and ā =
(a1, . . . , ar) ∈ RA. Let i1, . . . , ir ∈ [k] and p1, . . . , pr ∈ [�] be such that
aj ∈ μ(ij , pj) for all j ∈ [r]. Then

h(ā) =
(
(vi1 , ep1 , i1, p1, a1), . . . , (vir

, epr
, ir, pr, ar)

)
.

Conditions (C1) and (C2) are trivially satisfied, thus h(ā) ∈ RB. Therefore, h
is a homomorphism from A to B. 
�

Lemma 13.30. Suppose that A is a core. If there is a homomorphism from
A to B, then G contains a k-clique.

Proof: Let h be a homomorphism from A to B. Then f := Π ◦ h is an endo-
morphism of A. Thus by Lemma 13.9, f is an automorphism, because A is a
core. Without loss of generality we assume that f is the identity. If this is not
the case, we consider the homomorphism h ◦ f−1 instead of h.

By the definition of Π, this means that for all i ∈ [k], p ∈ [�], and a ∈
μ(i, p), there exist va ∈ V and ea ∈ E such that

h(a) = (va, ea, i, p, a).

Since h(a) ∈ B, we have (va ∈ ea ⇐⇒ i ∈ p).

Claim 1. For all i ∈ [k], p ∈ [�], and a, a′ ∈ μ(i, p) we have

va = va′ , and ea = ea′ .

Proof: Since μ(i, p) is connected in A, it suffices to prove the claim for a, a′
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such that there is an edge between a and a′ in the Gaifman graph of A.
So let R ∈ τ , say, of arity r, and ā = (a1, . . . , ar) ∈ RA such that

a, a′ ∈ {a1, . . . , ar}. Since h is a homomorphism we have h(ā) ∈ RB. Thus
by conditions (C1) and (C2), we must have va = va′ and ea = ea′ . This
proves claim 1. �

Claim 2. For i, i′ ∈ [k], p ∈ [�] and a ∈ μ(i, p), a′ ∈ μ(i′, p) we have

ea = ea′ .

Proof: By a simple inductive argument in which claim 1 is the base case, it

suffices to prove claim 2 for i′ = i + 1.
Since μ is a minor map from the (k × �) grid to the Gaifman graph of A

and there is an edge between (i, p) and (i′, p) in the grid, there is an edge
between μ(i, p) and μ(i′, p) in the Gaifman graph of A. Thus there must be
some relation R ∈ τ and tuple ā ∈ RA such that both μ(i, p) and μ(i′, p)
contain an element of ā.

Let R ∈ τ be r-ary and ā = (a1, . . . , ar) ∈ RA. Without loss of generality,
suppose that a1 ∈ μ(i, p) and a2 ∈ μ(i′, p). Since h is a homomorphism we
have h(ā) ∈ RB. Thus by condition (C2) we have ea1 = ea2 . By claim 1, we
have ea = ea1 and ea′ = ea2 . This completes the proof of claim 2. �

Claim 3. For i ∈ [k], p, p′ ∈ [�] and a ∈ μ(i, p), a′ ∈ μ(i, p′) we have

va = va′ .

Proof: Analogously to the proof of claim 2 using condition (C1) instead of

(C2). �

The last two claims imply that there are vertices v1, . . . , vk ∈ V and edges
e1, . . . , e� ∈ E such that for all i ∈ [k], p ∈ [�], and a ∈ μ(i, p) we have
h(a) = (vi, ep, i, p, a). Since h(a) ∈ B for all a ∈ A, this implies that

vi ∈ ep ⇐⇒ i ∈ p.

Thus v1, . . . , vk form a k-clique. 
�

Proof of Theorem 13.21: Let C be a recursively enumerable class of τ -
structures that is not of bounded tree width modulo homomorphic equiva-
lence.

We shall give an fpt-reduction from the parameterized clique problem to
p-Hom(C). Given a graph G and an integer k ≥ 1, we have to compute in
time f(k) · ||G||O(1), for some computable function f , a structure A ∈ C and a
structure B such that there is a homomorphism from A to B if and only if G
has a k-clique. Moreover, the size of A has to be effectively bounded in terms
of k.
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Let G = (V, E) be a graph and k ≥ 1. Let � :=
(
k
2

)
. By the Excluded Grid

Theorem 11.60, there is a w such that every graph of tree width larger than
w contains the (k × �) grid as a minor. By our hypothesis that C is not of
bounded tree width modulo homomorphic equivalence, there is a structure
A ∈ C that is not homomorphically equivalent to any structure of tree width
at most w. Let A be such a structure, and let A′ be the core of A. Then
tw(A′) > w, and hence the Gaifman graph of A′ contains the (k × �) grid as
a minor. Let μ : [k] × [�] → A′ be a minor map from the (k × �) grid to the
Gaifman graph of A′.

Note that, given k, we can effectively find such an A ∈ C, its core A′, and
the minor map μ: We start enumerating C, and for each A ∈ C we compute
the core A′ and try to find a mapping μ : [k]× [�]→ A′ that is a minor map
from the (k × �) grid to the Gaifman graph of A′.

So suppose now that A ∈ C, A′ is the core of A, and μ : [k]× [�]→ A′ is a
minor map from the (k × �) grid to the Gaifman graph of A′. Let A′′ be the
connected component of A′ that contains the image of μ. (A connected com-
ponent of a structure is an induced substructure whose universe is a connected
component of the Gaifman graph of the structure.) A′′ is also a core. Without
loss of generality we can assume that μ is a minor map from the (k × �) grid
onto A′′. We let B′ := B(A′′, μ,G). By Lemmas 13.29 and 13.30, there is a
homomorphism from A′′ to B′ if and only if G contains a k-clique. Let B be
the disjoint union of B′ with A′ \A′′. Since A′ is a core, every homomorphism
from A′ to B maps A′′ to B′. Thus there is a homomorphism from A′ to B
if and only if G contains a k-clique. Since A′ is the core of A, it follows that
there is a homomorphism from A to B if and only if G has a k-clique.

We have already noted that A only depends on k and can be effectively
found. Computing the core A′ and the minor map μ may require time expo-
nential in the size of A, but this is still bounded in terms of k. Observe that
the cardinality of an r-ary relation RB is at most

|Π−1(Ar)| ≤
(
|V G | · |EG | · |A|

)r
.

Since the vocabulary τ is fixed, this is polynomial in ||A|| and ||G||. It follows
that the size of B is polynomially bounded in terms of ||A|| and ||G||, and it
is easy to see that B can also be computed in polynomial time. This shows
that the reduction (G, k) �→ (A,B) is an fpt-reduction. 
�

Theorem 13.21 only applies to classes C of structures of a fixed vocabulary.
The following exercises deal with classes of structures of varying vocabulary.

Exercise 13.31. For all n ∈ N, let Rn be an n-ary relation symbol, and let
An be the {Rn}-structure with universe [n] and

RAn
n :=

{
(1, . . . , n)

}
.

Let C := {An | n ∈ N}.
Prove that C is not of bounded tree width modulo homomorphic equiva-

lence and that Hom(C) is in polynomial time. �
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A class C of structures is of bounded arity if there is an r ∈ N such that
the vocabulary of all structures in C is at most r-ary.

Exercise 13.32. Let C be a recursively enumerable class of structures of
bounded arity that is not of bounded tree width modulo homomorphic equiv-
alence. Prove that p-Hom(C) is W[1]-hard. �

Exercise 13.33. Let C be a recursively enumerable class of graphs of un-
bounded tree width, and let D be the class of all structures whose Gaifman
graph is in C. Prove that p-Hom(D) is W[1]-hard. �

13.3 Color Coding and the Embedding Problem

Recall that an embedding is a one-to-one homomorphism. In this section, we
study the following restrictions of the parameterized embedding problem for
classes C of structures:

p-Emb(C)
Instance: A structure A ∈ C and a structure B.

Parameter: ||A||.
Problem: Decide whether there is an embedding from A to B.

Let us remark that the unparameterized problem Emb(C) is NP-hard for
most classes of structures. For example, if C is the class of all paths then the
Hamiltonian path problem is polynomial time reducible to Emb(C) and hence
Emb(C) is NP-complete.

In this section, we shall prove that for all decidable classes C of bounded
tree width the parameterized embedding problem p-Emb(C) is fixed-parame-
ter tractable. To prove this, we introduce a beautiful technique for designing
fpt-algorithms that is called color coding. In its original form, color coding is a
technique for designing randomized fpt-algorithms; these can be derandomized
using a technique known as perfect hashing.

Color Coding

We use a standard model of randomized algorithms, say, probabilistic Turing
machines (see, for example, [20]). A randomized fpt-algorithm is simply an
fpt-algorithm on a probabilistic Turing machine.

Definition 13.34. Let (Q, κ) be a parameterized problem over the alphabet
Σ. A Monte Carlo fpt-algorithm for (Q, κ) is a randomized fpt-algorithm A

(fpt with respect to κ) such that for all x ∈ Σ∗:
• If x ∈ Q, then Pr(A accepts x) ≥ 1/2.
• If x �∈ Q, then Pr(A accepts x) = 0. �
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Theorem 13.35. Let C be a polynomial time decidable class of structures of
bounded tree width. Then there is a Monte Carlo fpt-algorithm for p-Emb(C).

More precisely, the running time of this algorithm on a given instance
(A,B) is

2O(k) · nO(1),

where k := |A| and n := ||A||+ ||B||.

Let us first explain the basic idea of color coding by sketching a sim-
ple Monte Carlo fpt-algorithm for p-Emb(C) that is slightly slower than de-
manded and then present a more refined algorithm in detail. Let w ≥ 1 such
that all structures in C have tree width at most w.

Let A ∈ C and B be structures and k := |A| and n := ||A||+ ||B||.
Since we can solve the homomorphism problem Hom(C) in polynomial

time, we know how to decide in polynomial time if there is a homomorphism
from A to B, but that does not help us immediately, because a homomorphism
is not necessarily one-to-one. We resort to a simple trick to force homomor-
phisms to be one-to-one.

We color the elements of A using k colors in such a way that each vertex
gets a different color. Let A∗ be the resulting structure. Then we randomly
color the elements of B with the same k colors that we used for A. Let B∗

be the resulting structure. Observe that each homomorphism from A∗ to B∗

must be one-to-one, since we cannot map differently colored elements of A∗

to the same element of B∗. In other words, every homomorphism from A∗ to
B∗ is an embedding. Of course, such an embedding also yields an embedding
from A into B. Thus if there is no embedding from A into B, then there is no
homomorphism from A∗ to B∗. On the other hand, if there is an embedding h
fromA into B, then with a small positive probability p(k), which only depends
on the number k of elements of A, for every a ∈ A the element h(a) of B∗ has
the same color as a. If this is the case, then the mapping h is a homomorphism
from A∗ to B∗. To summarize:

• If there is an embedding from A to B, then the probability that there is a
homomorphism from A∗ to B∗ is at least p(k).

• If there is no embedding from A to B, then there is no homomorphism
from A∗ to B∗.

Since tw(A∗) = tw(A) ≤ w, we can decide in polynomial time if there is a
homomorphism from A∗ to B∗. Thus we obtain a randomized polynomial time
algorithm that is almost a Monte Carlo algorithm for p-Emb(C), except that
the probability p(k) of acceptance is too small. By repeating the algorithm
�1/p(k)� times with independent colorings of B, we can boost the acceptance
probability so that it is at least (1 − 1/e) ≥ 1/2. This gives us the desired
Monte Carlo fpt-algorithm.

The probability p(k) that a copy of A in B gets the “right colors” is 1/kk.
Hence the running time of our algorithm is
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kk · nO(1).

With a little more effort, we can improve the running time to 2O(k) ·nO(1).
Instead of requiring a copy of A in B to have exactly the same color scheme
as A∗, we only require all elements to have distinct colors. The probability
that this happens is 1/ek (as opposed to 1/kk for the exact color scheme).

Before we start with the formal proof of the stronger statement of Theo-
rem 13.35, let us clarify our terminology. A k-coloring of a set B is a mapping
λ : B → [k]. A subset A ⊆ B is colorful (with respect to λ) if the restric-
tion of λ to A is one-to-one. A random k-coloring of a set B is a mapping
λ : B → [k] obtained by independently choosing for each b ∈ B the image
λ(b) ∈ [k] uniformly at random.

Lemma 13.36. Let B be a set, A ⊆ B, and k := |A|. Furthermore, let λ be
a random k-coloring of B. Then

Pr(A is colorful ) ≥ e−k.

Proof: Observe that

Pr(A is colorful ) =
k!

kk
.

Then the statement of the claim follows from Stirling’s formula:(
k

e

)k

·
√

2π · k ≤ k! ≤
(

k

e

)k

·
√

2π · k · e(1/12k). 
�

A copy of a structure A in a structure B is a substructure of B that is
isomorphic to A. A copy A′ of A in B is colorful with respect to a coloring
λ : B → [|A|] of B if A′ is colorful with respect to λ.

Lemma 13.37. For every w ≥ 1, the following problem can be solved in time

2O(k) · nw+1,

where k := |A|, w := tw(A), and n := ||A||+ ||B||:

Instance: Structures A and B and a coloring λ : B → [|A|].
Problem: Decide whether there is a copy of A in B that is

colorful with respect to λ.

Proof: Given an instance (A,B, λ) of the problem, we first compute an ordered
tree decomposition (T , (āt)t∈T ) of A of width w′ ≤ 4 · tw(A) + 1. (We apply
Proposition 11.14 to the Gaifman graph of A.)

Let k := |A|. For t ∈ T , suppose that āt = (at
1, . . . , a

t
w′+1). Let
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At := {a ∈ A | a = au
i for some u ∈ Tt and i ∈ [w′ + 1]},

and let At be the induced substructure of A with universe At. Hence At is
the substructure of A “covered” by the subtree Tt.

By dynamic programming on the tree decomposition, we compute for every
t ∈ T and every C ⊆ [k] of cardinality |At| the set of all tuples (b1, . . . , bw′+1) ∈
Bw′+1 such that there is a homomorphism h from At to B with λ(h(At)) = C
and h(at

i) = bi for all i ∈ [w′ + 1].
It is easy to see that this can be done within the required time bounds. 
�

Proof of Theorem 13.35: Consider the algorithm CC-Emb (Algorithm 13.1).
Clearly, if there is no embedding of A into B then CC-Emb(A,B) rejects.

CC-Emb(A,B)
1. k ← |A|
2. repeat

˚
ek

ˇ
times

3. randomly choose a k-coloring λ of B
4. if B contains a copy of A that is colorful w.r.t λ then

5. accept

6. reject

Algorithm 13.1.

If there is an embedding h, consider the copy h(A) of A in B. By
Lemma 13.36, the probability that h(A) is not colorful with respect to a
randomly chosen k-coloring λ is at most 1 − e−k. Thus the probability that
h(A) is not colorful for any λ chosen by the algorithm is at most

(1− e−k)�e
k� ≤ e−e−k·ek

= e−1 <
1

2
.

Thus

Pr(CC-Emb accepts (A,B)) ≥ 1

2
.

If we use Lemma 13.37 to implement the test in line 4, the algorithm has the
desired running time. 
�

Exercise 13.38. Prove that the following parameterized edge-disjoint trian-
gle problem can be solved by a Monte Carlo fpt-algorithm:

p-Edge-Disjoint-Triangle
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G contains k edge-disjoint triangles.

�
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Exercise 13.39. Prove that the following parameterized set splitting problem
can be solved by a Monte Carlo fpt-algorithm:

p-Set-Splitting
Instance: A hypergraph H = (V, E) and k ∈ N.

Parameter: k.
Problem: Decide whether there is a partition of V into two sets

V1, V2 such that at least k edges e ∈ E have a non-
empty intersection with both V1 and V2. �

Derandomization by Perfect Hashing

Definition 13.40. Let M, N be sets and k ∈ N. A k-perfect family of hash
functions from M to N is a family Λ of functions from M to N such that for
every subset K ⊆M of cardinality k there is a λ ∈ Λ such that the restriction
of λ to K is one-to-one. �

To explain the idea of the derandomization of our color coding algorithm,
let A and B be structures. Let k := |A|. Let Λ be a k-perfect family of hash
functions from B to [k]. Instead of the random k-colorings λ in the color
coding algorithm, we use the functions λ ∈ Λ. Since Λ is k-perfect, for every
subset A′ ⊆ B of k elements there is a λ ∈ Λ such that A′ is colorful with
respect to λ.

Hash-Emb(A,B)
1. k ← |A|
2. compute a k-perfect family Λ of hash functions from B to [k]
3. for all λ ∈ Λ do

4. if B contains a copy of A that is colorful w.r.t λ then

5. accept

6. reject

Algorithm 13.2.

Consider the algorithm Hash-Emb (Algorithm 13.2). Clearly, the algo-
rithm is correct. To turn this algorithm into an fpt-algorithm, we need an
efficient construction of a k-perfect family Λ of hash functions.

Theorem 13.41. For all n, k ∈ N there is a k-perfect family Λn,k of hash
functions from [n] to [k] of cardinality

2O(k) · log2 n.
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Furthermore, given n and k, the family Λn,k can be computed in time 2O(k) ·
n · log2 n.

Corollary 13.42. Let C be a polynomial time decidable class of structures of
bounded tree width. Then the problem p-Emb(C) is fixed-parameter tractable.

More precisely, there is an fpt-algorithm for the problem whose running
time on a given instance (A,B) is

2O(k) · nO(1),

where k := |A| and n := ||A||+ ||B||.

Proof: Algorithm 13.2 achieves the desired bound if it uses the family Λn,k of
perfect hash functions constructed in Theorem 13.41. 
�

For later reference, we state another corollary:

Corollary 13.43. The following two problems are fixed-parameter tractable:

p-Path
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G contains a path of length k.

p-Cycle
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G contains a cycle of length k.

The proof of Theorem 13.41 uses the following two number-theoretic lem-
mas:

Lemma 13.44. There is an n0 ∈ N such that for all n ∈ N with n ≥ n0 and
for all k ∈ [n] the following holds: For every set K ⊆ [n] with |K| = k there is
a prime number p < k2 · log n such that for all x, y ∈ K with x < y we have

(y − x) �≡ 0 mod p.

Proof: The proof of this lemma is based on the prime number theorem, by
which for every x ∈ R we have∑

p<x prime

ln p = x + o(x).

Let n0 be sufficiently large such that for all x ≥ log n0, we have
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p<x prime

log p ≥
∑

p<x prime

ln p >
x

2
. (13.4)

Let n ∈ N with n ≥ n0, k ∈ [n], and K ⊆ [n] with |K| = k. Then

log
∏

x,y∈K
x<y

(y − x) ≤
(

k

2

)
log n ≤ 1

2
· k2 · log n.

By (13.4) we have

log
∏

p<k2·log n prime

p >
1

2
· k2 · log n.

Thus there is some prime p < k2 ·log n such that p does not divide the product∏
x,y∈K
x<y

(y − x) and hence none of the terms (y − x) for x, y ∈ K with x < y.


�

Lemma 13.45. Let k, � ∈ N such that k ≤ �, and let p be a prime number.
Let K ⊆ N0 with |K| = k such that for all x, y ∈ K with x < y we have

(y − x) �≡ 0 mod p.

Let

S :=
{
(a, x, y) ∈ [p− 1]×K ×K

∣∣ x < y,

(a · x mod p) ≡ (a · y mod p) mod �
}
.

Then |S| < k2

�
· (p− 1).

Proof: Note first that

|S| =
∑

x,y∈K
x<y

|
{
a ∈ [p− 1]

∣∣ (a · x mod p) ≡ (a · y mod p) mod �
}
|. (13.5)

For all x, y, a we have (a · x mod p) ≡ (a · y mod p) mod � if and only if

a · (y − x) ≡ b mod p

for some b ∈ {i · � | −(p − 1)/� ≤ i ≤ (p − 1)/�}. Since a �≡ 0 mod p and
(y − x) �≡ 0 mod p, we can rule out b = 0. For each of the at most 2(p− 1)/�
remaining values of b there is exactly one a ∈ [p− 1] such that a · (y − x) ≡ b
mod p, because (y−x) has a multiplicative inverse in Zp. Thus for all x, y ∈ K
such that x < y there are at most 2(p − 1)/� numbers a ∈ [p − 1] such that
(a · x mod p) ≡ (a · y mod p) mod �. Plugging this into (13.5), we obtain
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|S| ≤
(

k

2

)
· 2(p− 1)

�
=

k2

�
· (p− 1)− k

�
· (p− 1). 
�

Proof of Theorem 13.41: In the following, we fix k, n ∈ N such that n ≥ k
and n ≥ n0 for the n0 in the statement of Lemma 13.44.

Each hash function λ ∈ Λn,k will be the composition of three functions

λ1 :[n]→ [0, k2 − 1],

λ2 :[0, k2 − 1]→ [0, 6k − 1],

λ3 :[0, 6k − 1]→ [k],

taken from classes Λ1, Λ2, Λ3, respectively, of k-perfect hash functions. For the
definition of Λ2, we use an auxiliary class Θ of hash functions that are not
necessarily perfect. We shall describe the classes separately. Figure 13.3 gives
a schematic overview.

1 · · · n

0 · · · k2 − 1

1 · · · k

0 · · · s2
1 − 1 · · ·

Pk−1
j=1 s2

j · · · 6k − 1

1 · · · k

Λ1

Θ

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

Λ2

Λ3

Fig. 13.3. The hash scheme

We let Λ1 be the class of all functions λ1
p,a : [n]→ [0, k2 − 1] defined by

λ1
p,a(x) := (a · x mod p) mod k2,

where p < k2 · log n is a prime number and a ∈ [p− 1].

Claim 1. Λ1 is a k-perfect family of hash functions from [n] to [0, k2 − 1].

Proof: Let K ⊆ [n] such that |K| = k. Choose p < k2 · log n according to
Lemma 13.44. Let

S :=
{
(a, x, y) ∈ [p− 1]×K ×K

∣∣ x < y, λ1
p,a(x) = λ1

p,a(y)
}
.
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By Lemma 13.45 we have |S| < p − 1. Thus there must be some a ∈ [p − 1]
such that for all x, y ∈ K with x < y we have λ1

p,a(x) �= λ1
p,a(y), that is, the

restriction of λ1
p,a to K is one-to-one. This proves claim 1. �

Claim 2. |Λ1| ≤ k4 · log2 n.

Proof: Obvious, because Λ1 contains at most one function λb,a for all b, a ∈
[k2 · log n]. �

To define the class Λ2, we first define an auxiliary class Θ of functions
from [0, k2 − 1] to [0, k − 1]. The idea is to define the functions in Λ2 in two
steps. Let K ⊆ [0, k2 − 1] and suppose we want to find a one-to-one mapping
from K into [0, 6k−1]. In the first step, we use a function ϑ ∈ Θ to map K to
[0, k−1] in such a way that there are few collisions. Then for each i ∈ [0, k−1]
we look at the set Ki of all x ∈ K with ϑ(x) = i. If there are few collisions, all
sets Ki will be small. Let si := |Ki|. In the second step, we give a one-to-one
mapping from Ki into an interval of length s2

i that is of the the same type as

the hash functions in Λ1. The sum
∑k

i=1 s2
i will be smaller than 6k− 1, so all

the mappings for the Ki can be combined to a mapping with range [0, 6k−1].

We let p(k) be the least prime number greater than k2. By Bertrand’s
postulate we have p(k) < 2k2. We let Θ be the class of all functions ϑa :
[0, k2 − 1]→ [0, k − 1] defined by

ϑa(x) := (a · x mod p(k)) mod k,

where a ∈ [p(k)− 1].
Θ is not a k-perfect family of hash functions, but we can prove the following

weaker statement:

Claim 3. Let K ⊆ [0, k2 − 1] such that |K| = k. For a ∈ [p(k) − 1] and
i ∈ [0, k − 1], let s(a, i) := |{x ∈ K | ϑa(x) = i}|. Then there exists an
a ∈ [p(k)− 1] such that ∑

i∈[0,k−1]

s(a, i)2 < 3k. �

Before we prove the claim, note that if ϑa is “perfect for K,” that is, the
restriction of ϑa to K is one-to-one, then s(a, i) = 1 for all i ∈ [0, k − 1] and
hence

∑
i∈[0,k−1] s(a, i)2 = k. While we cannot achieve this for every K, the

lemma shows that we can guarantee a bound that is still linear in k.

Proof of claim 3:. Let

S :=
{
(a, x, y) ∈ [p(k)− 1]×K ×K

∣∣ x < y, ϑa(x) = ϑa(y)
}
.

By Lemma 13.45 we have |S| < k · (p(k)− 1).
Now we observe that
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a∈[p(k)−1]

∑
i∈[0,k−1]

s(a, i)2

=
∑

a∈[p(k)−1]

∣∣{(x, y) ∈ K2
∣∣ ϑa(x) = ϑa(y)

}∣∣
=

∑
a∈[p(k)−1]

(
2 ·

∣∣{(x, y) ∈ K2
∣∣ x < y, ϑa(x) = ϑa(y)

}∣∣ +
∣∣K∣∣)

= 2|S|+ (p(k)− 1) · k
< 3k · (p(k)− 1).

Thus there is some a ∈ [p(k) − 1] such that
∑

i∈[0,k−1] s(a, i)2 < 3k. This
completes the proof of claim 2. �

Note that the functions in Λ1 and Θ have simple succinct descriptions:
A function λ1

p,a ∈ Λ1 can be described by the pair (p, a) ∈ [k2 · log n]2 and
a function ϑa ∈ Θ by the number a ∈ [p(k) − 1]. The functions in the class
Λ2 that we now introduce also have succinct descriptions, but these are more
complicated. A Λ2-description is a tuple

(a; s0, . . . , sk−1; b1, . . . , b�; L1, . . . , L�),

where a ∈ [p(k)− 1], s0, . . . , sk−1 ∈ [0, k] such that

(i)
∑

i∈[0,k−1] si = k,

(ii)
∑

i∈[0,k−1] s
2
i < 3k,

� := �log k�, b1, . . . , b� ∈ [p(k)− 1], and L1, . . . , L� ⊆ [0, k − 1] such that:

(iii) L1, . . . , L� are pairwise disjoint (but may be empty),

(iv)
∣∣Li ∪ . . . ∪ L�

∣∣ ≤ k · 2−i+1 for all i ∈ [�],

(v) L1 ∪ . . . ∪ L� = [0, k − 1].

Associated with every Λ2-description D = (a; s1, . . . , sk; b1, . . . , b�; L1, . . . , L�)
is a function λ2

D : [0, k2 − 1] → [0, 6k − 1] defined as follows: For every x ∈
[0, k2 − 1], let i := ϑa(x) and j ∈ [�] such that i ∈ Lj .

• If si = 0, let λ2
D(x) := 0.

• If si > 0, let

λ2
D(x) :=

((
bj · x mod p(k)

)
mod 2s2

i

)
+

i−1∑
m=1

2s2
m. (13.6)

Claim 4. Λ2 is a k-perfect class of hash functions from [0, k2−1] to [0, 6k−1].

Proof: Let K ⊆ [0, k2 − 1] with |K| = k. We shall construct a Λ2-description

D = (a; s0, . . . , sk−1; b1, . . . , b�; L1, . . . , L�)
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such that the restriction of λ2
D to K is one-to-one.

Let a ∈ [p(k)− 1] and, for i ∈ [0, k − 1],

Ki := {x ∈ K | ϑa(x) = i}, and si := |Ki|,

such that
∑

i∈[0,k−1] s
2
i < 3k. Such an a exists by claim 2. Note that

s0, . . . , sk−1 satisfy (i) and (ii).
For i ∈ [0, k − 1] with si > 0, let

Si :=
{
(b, x, y) ∈ [p(k)− 1]×Ki ×Ki

∣∣ x < y,

(b · x mod p(k)) ≡ (b · y mod p(k)) mod 2s2
i

}
.

Since |Ki| = si, by Lemma 13.45, we have |Si| < (p(k)−1)/2. Call b ∈ [p(k)−1]
good for i if

(b · x mod p(k)) �≡ (b · y mod p(k)) mod 2s2
i

for all x, y ∈ Ki with x < y. Then the probability that a randomly chosen
b ∈ [p(k)− 1] is good for i is greater than (1/2). Let L ⊆ [0, k − 1]. Then the
expected number of i ∈ L such that a randomly chosen b ∈ [p(k)− 1] is good
for i is greater than |L|/2. Therefore, there exists a b(L) ∈ [p(k)−1] such that
b is good for more than half of the i ∈ L.

We are now ready to construct the numbers b1, . . . , b� ∈ [p(k) − 1] and
the sets L1, . . . , L� ⊆ [0, k − 1] of the description D. We let b1 := b([0, k − 1])
and L1 the set of all j ∈ [0, k − 1] such that b1 is good for j. For i ≥ 1, we

let Ri := [0, k − 1] \
⋃i

j=1 Lj and bi+1 := b(Ri). We let Li+1 be the set of all
j ∈ Ri such that bi+1 is good for j.

Then, clearly, L1, . . . , L� satisfy (iii). A straightforward induction shows
that for all i ∈ � we have

|L1 ∪ . . . ∪ Li| >
i∑

j=1

k

2j
= k · (1 − 2−i).

This implies that L1, . . . , L� satisfy (iv). To see that they satisfy (v), note that

|L1 ∪ . . . ∪ L�| > k · (1 − 2−�) ≥ k ·
(

1− 1

k

)
= k − 1.

Thus D = (a; s0, . . . , sk−1; b1, . . . , b�; L1, . . . , L�) is a Λ2-description.
It remains to prove that the restriction of λ2

D to K is one-to-one. Let
x, x′ ∈ K with x < x′ and i := ϑa(x), i′ := ϑa(x′). Then x ∈ Ki and x′ ∈ Ki′

and therefore si, si′ �= 0.
Note that

λ2
D(x) ∈

[ i−1∑
m=1

2s2
m,

i∑
m=1

2s2
m − 1

]
, and λ2

D(x′) ∈
[ i′−1∑

m=1

2s2
m,

i′∑
m=1

2s2
m − 1

]
.



13.3 Color Coding and the Embedding Problem 353

Thus if i �= i′, then λ2
D(x) �= λ2

D(x′). In the following, we assume that i = i′.
Then x, x′ ∈ Ki. Let j ∈ [�] such that i ∈ Lj . By our choice of bj and Lj, the
multiplier bj is good for i. Thus((

bj · x mod p(k)
)

mod 2s2
i

)
�=

((
bj · x′ mod p(k)

)
mod 2s2

i

)
.

It follows that

λ2
D(x) =

((
bj · x mod p(k)

)
mod 2s2

i

)
+

i−1∑
m=1

2s2
m

�=
((

bj · x′ mod p(k)
)

mod 2s2
i

)
+

i−1∑
m=1

2s2
m

= λ2
D(x′).

This completes the proof of claim 4. �

Claim 5. |Λ2| ≤ 2O(k).

Proof: We give an upper bound for the number of Λ2-descriptions D =
(a; s0, . . . , sk−1; b1, . . . , b�; L1, . . . , L�):
• The number of a ∈ [p(k)− 1] is at most p(k)− 1 < 2k2.
• Each tuple (s0, . . . , sk−1) ∈ [0, k] with

∑
i∈[0,k−1] si = k can be described

by a subset S0 ⊆ [k] (containing the indices i where si = 0) and a subset

S1 ⊆ [k] (containing the sums
∑i

j=0 si for i ∈ [k − 1]). Thus the number

of (s0, . . . , sk−1) satisfying (i) is at most 22k.

• The number of tuples (b1, . . . , b�) ∈ [p(k)−1]� is at most 2k2� = 21+2	log k
2 .
• The number of tuples (L1, . . . , L�) of subsets of [0, k−1] satisfying (iii)–(v)

is at most
�∏

i=1

2k·2−i+1

= 2
P�

i=1 k·2−i+1 ≤ 22k.

Thus
|Λ2| ≤ 2k2 · 22k · 21+2	log k
2 · 22k = 2O(k).

This completes the proof of claim 4. �

It remains to define the class Λ3 of functions from [0, 6k − 1] to [k]. For
each K ⊆ [0, 6k−1] of k elements we let λ3

K : [0, 6k−1]→ [k] be the function
defined by

λ3
K(x) :=

{
1, if K ∩ [0, x] = ∅,∣∣K ∩ [0, x]

∣∣, otherwise.

We let Λ3 be the class of all such functions λ3
K .

Claim 6. Λ3 is a k-perfect class of hash functions from [0, 6k − 1] to [k].

Proof: Let K ⊆ [0, 6k−1] of cardinality k. Then the restriction of the function
λ3

K to K is one-to-one. �
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Claim 7. |Λ3| ≤ 2O(k). �

Now we let Λn,k be the class of all functions λ3 ◦ λ2 ◦ λ1, where λi ∈ Λi.
Then by claims 1, 4, and 6, Λn,k is a k-perfect class of hash functions from
[n] to [k]. By claims 2, 5, and 7: |Λn,k| ≤ 2O(k) · log2 n.

To compute the family Λn,k, we compute p(k) and � := �log k�. Then we
enumerate all tuples

D :=
(
p, a1, a2, s0, . . . , sk−1, b1, . . . , b�, L1, . . . , L�, K

)
with p ∈ [1,

⌈
k2 · log n

⌉
], a1 ∈ [p− 1], a2 ∈ [p(k)− 1], s0, . . . , sk−1 ∈ [0, . . . , k]

such that
∑k−1

i=0 si = k, b1, . . . , b� ∈ [p(k) − 1], L1, . . . , L� ⊆ [0, k − 1] such
that conditions (iii) and (iv) hold, and K ⊆ [0, . . . , 6k− 1] such that |K| = k.
There are at most 2O(k) · log2 n such tuples D. For each of them we check if
p is a prime and if (a2; s0, . . . , sk−1; b1, . . . , b�; L1, . . . , L�) is a Λ2-description.
If these two conditions are satisfied, the tuple D describes a function λ ∈ Λ.
We can evaluate this function for all i ∈ [n] and store the results in a table.1

The necessary arithmetic can easily be carried out in time O(n) because all
numbers involved are of length O(log n). 
�

Notes

Exercise 13.4 is due to Freuder [109]. At least for graphs, the result was also
known in the graph algorithms community and underlies, for example, [172].
Theorem 13.12 was only proved quite recently by Dalmau, Kolaitis, and Vardi
[64]. The existential pebble game was introduced in [149] and has since then
found many different applications in database theory, artificial intelligence,
and complexity (for example, [18, 149, 150]).

Theorem 13.21 and its consequences were shown in [120], building on [123],
where Exercise 13.33 was proved.

It was proved by Plehn and Voigt [172] that the embedding problem for
graphs of bounded tree width is fixed-parameter tractable. The color coding
technique that we use here to prove this result is due to Alon et al. [12].
It yields slightly more efficient algorithms than [172]. The fixed-parameter
tractability of p-Set-Splitting (Exercise 13.39) from [67] , and the fixed-
parameter tractability of p-Edge-Disjoint-Triangle (Exercise 13.38) is
from [159]. By a combination of color coding and dynamic programming,

1For our purposes, it is easiest to store the functions explicitly in tables, but,
of course, this is not necessary. Instead, we can also just store the descriptions D
and then evaluate the functions if needed. Each evaluation just requires constantly
many arithmetic operations and time O(log k) if the sums

Pi−1
m=1 2s2

m (cf. (13.6))
and an appropriate data structure for the sets Lj are precomputed and stored with
the description.
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Fellows et al. [96] obtained fpt-algorithms for a number of related packing
and matching problems.

The derandomization of the color coding algorithms based on perfect hash-
ing is also from [12]. The perfect hashing scheme of Theorem 13.41 is from
[189, 192], refining an earlier scheme by Fredman et al. [108]. A further refine-
ment has been obtained in [12]; the cardinality of the k-perfect family of hash
functions obtained there is 2O(k) · log n. The overall structure of this family
is very similar to the one presented here. Only the first level, that is, the k-
perfect family Λ1 of perfect hash functions from [n] to [0, k2] is replaced by
a family constructed from a small sample space of almost k-wise independent
random variables (see [10, 163]).

Open Problems

It is not known if there are any classes C of unbounded tree width such that
the parameterized embedding problem p-Emb(C) is fixed-parameter tractable.
We conjecture that this is not the case, or more precisely, that p-Emb(C) is
W[1]-complete for every decidable class C of structures of unbounded tree
width.

At present, this problem is wide open. As a matter of fact, it is not even
known if the following problem, which is equivalent to p-Emb(C) for the class
of all complete bipartite graphs, is W[1]-complete. Let Kk,� denote the com-
plete bipartite graph with k vertices on one side and � vertices on the other
side:

p-Complete-Bipartite-Subgraph
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether Kk,k is isomorphic to a subgraph

of G.
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Parameterized Counting Problems

Some of the deepest and most fascinating results of (classical) complexity
theory are concerned with counting problems. A parameterized complexity
theory of counting problems has only been developed fairly recently and is
still in its early stages. This chapter is an introduction into the state of the
art of this theory.

14.1 Fixed-Parameter Tractable Counting Problems

We view counting problems simply as functions F : Σ∗ → N0, where Σ is a
finite alphabet. Arguably, this includes problems that intuitively we would
not call counting problems, but there is no harm in including them.

Definition 14.1. A parameterized counting problem is a pair (F, κ), where
F : Σ∗ → N0 for some finite alphabet Σ, and κ is a parameterization of Σ∗. �

We use a similar notation for parameterized counting problems as we do
for decision problems, indicating with a “#” symbol that the problem is a
counting problem. For example, the counting version of the parameterized
vertex cover problem is:

p-#Vertex-Cover
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Compute the number of vertex covers of G of car-

dinality k.

Definition 14.2. A parameterized counting problem (F, κ) is fixed-parameter
tractable if there is an fpt-algorithm with respect to κ that computes F . �

A fundamental fixed-parameter tractable problem is the hitting set prob-
lem parameterized by the cardinality of the hitting set and the maximum edge
size of the input hypergraph. Let us consider its counting version:
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p-card-#Hitting-Set
Instance: A hypergraph H = (V, E) and k ∈ N.

Parameter: k + d, where d := max{|e| | e ∈ E}.
Problem: Compute the number of hitting sets of H of cardi-

nality k.

Theorem 14.3. p-card-#Hitting-Set is fixed-parameter tractable. More
precisely, there is an algorithm solving p-card-#Hitting-Set in time

O(d2k · ‖H‖)

Proof: Without loss of generality, we always assume the d ≥ 2. We consider
the following generalization of the hitting set problem:

p-card-#Generalized-Hitting-Set
Instance: A hypergraph H = (V, E), a natural number k ∈

N, and a set F ⊆ V of forbidden vertices.
Parameter: k + d, where d := max{|e| | e ∈ E}.

Problem: Compute the number of hitting sets S of H with
S ⊆ V \ F and |S| = k .

To solve the problem, we apply a straightforward recursive algorithm similar
to the basic decision algorithm for p-card-Hitting-Set (see Theorem 1.14).
We take an edge e of the input hypergraph H. We know that each hitting set
S of H with S ⊆ V \ F and |S| = k has a nonempty intersection S0 with
e \ F of cardinality at most k. We branch on such subsets: For each S0, we
let H′ = (V ′, E′) be the hypergraph obtained from H by deleting all vertices
in S0 and all edges that contain a vertex in S0. We let F ′ := F ∪ (e \ S0) and
k′ := k−|S0|. Then the number of hitting sets S of H with S ⊆ V \F , |S| = k,
and S∩e = S0 is precisely the number of hitting sets S′ ofH′ with S′ ⊆ V ′\F ′

and |S′| = k′. The algorithm is displayed in detail as Algorithm 14.1.
To analyze the running time of the algorithm, let T (k, n, d) denote the

maximum running time of CountGHS(H, k′, F ) for H = (V, E) with ||H|| ≤
n, max{|e| | e ∈ E} ≤ d, and k′ ≤ k. We get the following recurrence:

T (0, n, d) = O(1)

T (k, n, d) =
∑

1≤i≤min{k,d}

(
d

i

)
· T (k − i, n, d) + O(n)

(for n, k ∈ N). Here the ith term in the sum accounts for all subsets S0 ⊆ e
with |S0| = i in lines 6–10 of the algorithm. Let c ∈ N be a constant such that
the terms O(1) and O(n) in the recurrence are bounded by c · n. We claim
that for all d ≥ 2 and k ≥ 0,
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CountGHS(H, k, F )
// H = (V, E) hypergraph, k ≥ 0, F ⊆ V
1. if k > |V \ F | then return 0
2. else if E = ∅ then return

`
|V \F |

k

´
//(where

`
�
0

´
= 1)

3. else

4. choose e ∈ E
5. h ← 0
6. for all S0 ⊆ e \ F with 0 < |S0| ≤ k do

7. V ′ ← V \ S0; E′ ← {e ∈ E | e ⊆ V ′}; H′ ← (V ′, E′)
8. F ′ ← F ∪ (e \ S0)
9. k′ ← k − |S0|

10. h ← h + CountGHS(H′, k′, F ′)
11. return h

Algorithm 14.1. Counting generalized hitting sets

T (k, n, d) ≤ c · d2k · n. (14.1)

We prove this claim by induction on k. For k = 0, it is immediate by the
definition of c. For k > 0, we have

T (k, n, d) ≤
∑

1≤i≤min{k,d}

(
d

i

)
· c · d2(k−i) · n + c · n

≤ c · d2k · n ·
∑

1≤i≤min{k,d}

(
d

i

)
d−2i + c · n

≤ c · d2k · n ·
∑
i∈[d]

d−i + c · n (because

(
d

i

)
≤ di)

≤ c · d2k · n (because
∑
i∈[d]

d−i ≤ 3/4 and d2k ≥ 4).

This proves (14.1) and hence the theorem. 
�

Corollary 14.4. (1) p-#Vertex-Cover is fixed-parameter tractable.
(2) The problem p-deg-#Dominating-Set is fixed-parameter tractable, where

p-deg-#Dominating-Set
Instance: A graph G = (V, E) and k ∈ N.

Parameter: k + deg(G).
Problem: Compute the number of dominating sets of G of

cardinality k.

Exercise 14.5. Prove that the following problem p-deg-#Independent-Set
is fixed-parameter tractable.
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p-deg-#Independent-Set
Instance: A graph G = (V, E) and k ∈ N.

Parameter: k + deg(G).
Problem: Compute the number of independent sets of G of

cardinality k.
�

Of course, our logic-based decision problems have their counting analogues.
For every first-order formula ϕ(X) with a free relation variable X , say, of arity
s, the counting version of the parameterized problem Fagin-defined by ϕ is:

p-#WDϕ

Instance: A structure A and k ∈ N.
Parameter: k.

Problem: Compute the number of relations S ⊆ As of cardi-
nality |S| = k such that A |= ϕ(S).

Corollary 7.31 is the decision version of the result contained in the following
exercise.

Exercise 14.6. Prove that for every Π1-formula that is positive in X the
problem p-#WDϕ is fixed-parameter tractable. �

The examples we have seen so far show that the elementary fpt-algorithms
based on the technique of “bounded search trees” can usually be extended
from the decision to the counting problems. What about the other techniques
for designing fpt-algorithms that we have seen in this book?

We will see below that the automata-based algorithms and dynamic pro-
gramming algorithms on tree decompositions can usually be extended from
decision to counting problems, even though this is not always trivial. Kernel-
ization is usually not compatible with counting. The results of Sect. 14.4 show
that the color coding method cannot be extended to counting problems. How-
ever, in Sect. 14.5 we will see that color coding does at least yield approximate
counting algorithms.

For the remainder of this section, we turn to dynamic programming algo-
rithms on tree decompositions. Let us first consider the problem of counting
homomorphisms. For every class C of structures, we consider the problem

#Hom(C)
Instance: A structure A ∈ C and a structure B.
Problem: Compute the number of homomorphisms from A to B.

and its parameterization p-#Hom(C) by the cardinality of the left-hand side
structure.
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Theorem 14.7. Let C be a polynomial time decidable class of structures of
bounded tree width. Then #Hom(C) is solvable in polynomial time.

Proof: Let w ∈ N be an upper bound for the tree width of all structures in
C. Given an instance (A,B) of the problem, we first compute an ordered tree
decomposition (T , (āt)t∈T ) of A of width at most w. For simplicity, we assume
that the length of all tuples āt is (w + 1).

For t ∈ T , suppose that āt = (at
1, . . . , a

t
w+1). Let

At := {a ∈ A | a = au
i for some u ∈ Tt and i ∈ [w + 1]},

and let At be the induced substructure of A with universe At. Hence At is
the substructure of A “covered” by the subtree Tt.

By dynamic programming on the tree decomposition, we compute for every
t ∈ T and every tuple (b1, . . . , bw+1) ∈ Bw+1 the number of homomorphisms
h from At to B with h(at

i) = bi for all i ∈ [w + 1].
It is easy to see that this can be done in polynomial time (for fixed w). 
�
For classes C of structures and classes Φ of formulas we define the counting

version of the model-checking problem for Φ on C in the natural way:

p-#MC(C, Φ)
Instance: A structure A ∈ C and a formula ϕ ∈ Φ.

Parameter: |ϕ|.
Problem: Compute |ϕ(A)|.

As usual, if C is the class of all structures, we denote the problem by
p-#MC(Φ).

The following theorem shows that the main results of Chaps. 11 and 12
extend to counting problems.

Theorem 14.8. (1) For every polynomial time decidable class C of struc-
tures of bounded tree width, the problem p-#MC(C, MSO) is fixed-param-
eter tractable.

(2) For every polynomial time decidable class C of structures of bounded local
tree width, the problem p-#MC(C, FO) is fixed-parameter tractable.

The proof of (1) is a fairly straightforward generalization of the proof of the
corresponding result for the decision problem. The proof of (2) is more com-
plicated and involves a lot of tedious combinatorics. We omit the proofs here.

14.2 Intractable Parameterized Counting Problems

Let us briefly review some classical counting complexity theory: The basic
class of intractable counting problems, corresponding to the class NP of de-
cision problems, is #P. A counting problem F : Σ∗ → N0 is defined to be in
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#P if there is a polynomial time nondeterministic Turing machine M such
that F (x) is the number of accepting runs of M on input x ∈ Σ∗. It is
easy to show that many of the standard NP-completeness results translate
to #P-completeness results under polynomial time parsimonious reductions.
A parsimonious reduction from a counting problem F to a counting problem
F ′ maps an instance x of F to an instance x′ of F ′ such that F (x) = F ′(x′).
For example, the problem #Sat(3-CNF) of counting the number of satisfying
assignments of a given 3-CNF-formula is #P-complete under polynomial time
parsimonious reductions.

In general, counting problems are much harder to solve than the corre-
sponding decision problems. For example, a fundamental result due to Valiant
says that counting the number of perfect matchings of a bipartite graph is
#P-complete, whereas deciding whether a perfect matching exists is solvable
in polynomial time. As most of the more advanced completeness results in
counting complexity, Valiant’s completeness result only holds under polyno-
mial time Turing reductions and not under parsimonious reductions. A further
well-known result illustrating the power of counting is Toda’s theorem stating
that all decision problems in the polynomial hierarchy are contained in the
closure of #P under polynomial time Turing reductions.

The following example shows that Valiant’s theorem immediately gives us
an example of a hard parameterized counting problem whose decision version
is fixed-parameter tractable.

Example 14.9. We parameterize the matching problem by the “trivial” pa-
rameterization κone (cf. Example 1.8):

Instance: A bipartite graph G.
Parameter: 1.

Problem: Decide whether G has a perfect matching.

This problem is solvable in polynomial time and thus is fixed-parameter
tractable. Its counting version (“Count the perfect matchings of G.”), however,
cannot be fixed-parameter tractable unless every function in #P is computable
in polynomial time. This is because the problem is already #P-complete for
the fixed parameter value 1. �

As for decision problems, we are mainly interested in parameterized count-
ing problems (F, κ) whose slices

Fk : x �→
{

F (x), if κ(x) = k,

0, otherwise,

for k ∈ N, are computable in polynomial time. Examples of such problems
are the natural counting versions of problems considered earlier in this book,
such as p-#WSat(A) for classes A of propositional formulas (“Compute the
number of satisfying assignments of weight k of a formula α ∈ A, where k is
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the parameter”), p-#Clique (“Compute the number of cliques of cardinality
k in a graph, where k is the parameter”), p-#Path (“Compute the number
of paths of length k in a graph, where k is the parameter”), and p-#Cycle
(“Compute the number of cycles of length k in a graph, where k is the pa-
rameter”). Note that the last three problems are restrictions of the counting
version of the parameterized embedding problem.

To develop a theory of intractable parameterized counting problems, we
need suitable reductions:

Definition 14.10. Let (F, κ) and (F ′, κ′) be parameterized counting prob-
lems over the alphabets Σ and Σ′, respectively.
(1) An fpt parsimonious reduction from (F, κ) to (F ′, κ′) is a mapping R :

Σ∗ → (Σ′)∗ such that:
a) For all x ∈ Σ∗ we have F (x) = F ′(R(x)).
b) R is computable by an fpt-algorithm (with respect to κ).
c) There is a computable function g : N → N such that κ′(R(x)) ≤

g(κ(x)) for all x ∈ Σ∗.
(2) An fpt Turing reduction from (F, κ) to (F ′, κ′) is an algorithm A with an

oracle to F ′ such that:
a) A computes F .
b) A is an fpt-algorithm with respect to κ.
c) There is a computable function g : N → N such that for all oracle

queries “F ′(y) =?” posed by A on input x we have κ′(y) ≤ g(κ(x)). �

For parameterized counting problems (F, κ) and (F ′, κ′), we write (F, κ) ≤fpt

(F ′, κ′) if there is an fpt parsimonious reduction from (F, κ) to (F ′, κ′)
and (F, κ) ≤fpt-T (F ′, κ′) if there is an fpt Turing reduction from (F, κ) to
(F ′, κ′). The closure of a class C of parameterized counting problems un-
der fpt parsimonious reductions, that is the class of all parameterized count-
ing problems (F, κ) for which there exists a problem (F ′, κ′) ∈ C such that

(F, κ) ≤fpt (F ′, κ′) is denoted by
[
C
]fpt

. Hence we use the notations ≤fpt and
[ · ]fpt both for fpt many-one reductions between decision problems and for fpt
parsimonious reductions between counting problems. No confusion will arise,
because these notations are always used together with problems or classes of
problems.

In some sense, we may view parsimonious reductions as many-one reduc-
tions satisfying an additional property. Let us make the correspondence be-
tween decision problems, counting problems, and reductions more precise: If F
is a counting problem over some alphabet Σ, then the decision problem corre-
sponding to F is the problem Q, where Q := {x ∈ Σ∗ | F (x) > 0}. Conversely,
we call F a counting problem corresponding to Q. A bit sloppily, occasionally
we also speak of “the” counting problem corresponding to a decision problem,
because for most decision problems there is one natural corresponding count-
ing problem. If F and F ′ are counting problems over alphabets Σ, Σ′, and Q
and Q′ are the corresponding decision problems, then we say that a many-one
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reduction R : Σ∗ → (Σ′)∗ from Q to Q′ is a parsimonious reduction from F
to F ′ if F (x) = F ′(R(x)) for all x ∈ Σ∗.

Using fpt parsimonious reductions instead of fpt many-one reductions, we
can now define counting versions of our parameterized complexity classes (at
least of those classes defined through complete problems). Recall the definition
of the counting version p-#WDϕ of parameterized Fagin-defined problems
from p. 360. For every class Φ of first-order formulas we let p-#WD-Φ be the
class of all problems p-#WDϕ where ϕ ∈ Φ.

We introduce the classes of the #W-hierarchy:

Definition 14.11. For every t ≥ 1, the class #W[t] is the closure of
p-#WD-Πt under fpt parsimonious reductions, that is,

#W[t] :=
[
p-#WD-Πt

]fpt
. �

The notation #W[t] may be slightly misleading when compared with the
notation #P of classical complexity theory (which is not #NP), but since
there is no obvious #FPT, we think that it is appropriate. Note that we write
FPT to denote both the class of fixed-parameter tractable decision problems
and the class of fixed-parameter tractable counting problems; the intended
meaning will always be clear from the context.

The fundamental characterization of the W-hierarchy in terms of proposi-
tional logic carries over to the counting problems.

Theorem 14.12. For every t ≥ 1,

#W[t] =
[{

p-#WSat(Γt,d)
∣∣ d ≥ 1

}]fpt

.

Proof: Let t ≥ 1. To prove the inclusion “⊆” of the left-hand side in the
right-hand side, we have to show that for every Πt-formula ϕ(X) there is
a d ≥ 1 such that p-#WDϕ ≤fpt p-#WSat(Γt,d). We simply observe that
the fpt many-one reduction from p-WDϕ to p-WSat(Γt,d) in the proof of
Lemma 7.2 is a parsimonious reduction from p-#WDϕ to p-#WSat(Γt,d).
We leave it to the reader to verify this.

For the converse inclusion “⊇” we give a simple direct reduction (instead
of simulating the complicated normalization steps of Chap. 7). For simplicity,
let us assume that t is even. Let γ ∈ Γt,d. Say,

γ =
∧

i1∈I1

∨
i2∈I2

. . .
∨

it∈It

(λ1
i1,...,it

∧ . . . ∧ λd
i1,...,it

),

where the λj
i1,...,it

are literals over var(γ) = {Y1, . . . , Yn}. We shall define a
Πt-formula ϕ(X) (only depending on t and d, but not on γ) and a structure A
(depending on γ) such that there is a cardinality-preserving bijection between
the satisfying assignments of γ and the sets S ⊆ A such that A |= ϕ(S).
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The vocabulary of A and ϕ consists of (t + 1)-ary relation symbols POSj

and NEGj , for j ∈ [d], and unary relation symbols P1, . . . , Pt, R. The structure
A is defined as follows:

• The universe is A := I1 ∪ . . . ∪ It ∪ [n].
• For all i ∈ [t],

PA
i := Ii.

• RA := [n].
• For j ∈ [d],

POSA
j :=

{
(i1, . . . , it, �) ∈ I1 × . . .× It × [n]

∣∣ λj
i1,...,it

= Y�

}
,

NEGA
j :=

{
(i1, . . . , it, �) ∈ I1 × . . .× It × [n]

∣∣ λj
i1,...,it

= ¬Y�

}
.

Thus the structure A encodes the propositional formula γ. Variables corre-
spond to the elements of the subset [n] of the universe A. Hence assignments
correspond to subsets of [n].

We let

ϕ(X) := ∀x(Xx→ Rx)

∧ (∀y1 ∈ P1)(∃y2 ∈ P2) · · · (∀yt−1 ∈ Pt−1)(∃yt ∈ Pt)∃x1 . . .∃xd∧
j∈[d]

(
(POSj y1 . . . ytxj ∧Xxj) ∨ (NEGj y1 . . . ytxj ∧ ¬Xxj)

)
.

Clearly, ϕ is equivalent to a Πt-formula. It is not hard to see that all sets S
such that A |= ϕ(S) are subsets of [n], and for all S ⊆ [n],

A |= ϕ(S) ⇐⇒ {Yi | i ∈ S} is a satisfying assignment for γ.

This gives a cardinality preserving bijection between the satisfying sets S ⊆ A
with A |= ϕ(S) and the satisfying assignments for γ, and thus yields the
desired fpt parsimonious reduction. 
�

Some care needs to be taken with the counting version of model-checking
problems, as the following example shows:

Example 14.13. In this example, we will prove that p-#Dominating-Set
is fpt Turing reducible to p-#MC(Σ1). Let

ϕ(x1, . . . , xk) := ∀y
( ∧

i,j∈[k]
i<j

xi �= xj ∧
∨

i∈[k]

(y = xi ∨ Eyxi)
)
.

Then a graph G = (V, E) has a dominating set of cardinality k if and only if

ϕk(G) =
{
(v1, . . . , vk) ∈ V k

∣∣ G |= ϕ(v1, . . . , vk)
}
�= ∅.

This yields an fpt reduction from p-Dominating-Set to p-MC(Π1); by
Lemma 5.15 the problem p-MC(Π1) is equivalent to p-MC(Σ2).
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Now let us look at the counting problems. The number of dominating sets
of cardinality k in a graph G is precisely

1

k!
· |ϕk(G)|,

which yields an fpt Turing reduction from p-#Dominating-Set to the prob-
lem p-#MC(Π1). However, we can also express the number of dominating
sets of cardinality k in a graph G with n vertices as

1

k!
·
(
nk −

∣∣¬ϕk(G)
∣∣),

which yields an fpt Turing reduction from p-#Dominating-Set to the prob-
lem p-#MC(Σ1).

A similar argument shows that the counting version of the A[2]-complete
problem p-Clique-Dominating-Set is reducible to p-#MC(Σ1). �

Thus the example shows that p-#MC(Σ1) is more powerful than expected:
The problem p-#MC(Σ1) is supposed to define the first level of the #A-
hierarchy, but it actually encompasses problems that we would expect to be
on the second level. To explain this, recall that the decision version of the
model-checking problem asks if certain objects described by the free variables
of the input formula exist. Existentially quantifying some of the free variables
does not affect this existence question, and therefore for every class Φ of
formulas we have p-MC(Φ) = p-MC(∃Φ) (this is Lemma 5.15). It follows
that for all t ≥ 1 we have

A[t] =
[
p-MC(Σt)

]fpt
=

[
p-MC(Πt−1)

]fpt
,

where Π0 denote the class of quantifier-free first-order formulas. However, if
we want to count the number of solutions for a model-checking problem, that
is, the tuples in a structure satisfying a formula, then it makes a big difference
if a variable occurs freely or is existentially quantified. Therefore, the natural
definition of the #A-hierarchy, the counting version of the A-hierarchy, is the
following:

Definition 14.14. For all t ≥ 1, we let #A[t] be the class of all parameter-
ized counting problems reducible to p-#MC(Πt−1) by an fpt parsimonious
reduction, that is,

#A[t] :=
[
p-#MC(Πt−1)

]fpt
. �

We can also define a counting analogue of the class W[P]:

Definition 14.15. A parameterized counting problem (F, κ) over the alpha-
bet Σ is in #W[P] if there is a κ-restricted nondeterministic Turing machine
M such that for every x ∈ Σ∗, the value F (x) is the number of accepting runs
of M on input x. �
Exercise 14.16. Prove that p-#WSat(CIRC) is #W[P]-complete under fpt
parsimonious reductions. �
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14.3 #W[1]-Complete Problems

From now on, we focus on parameterized counting problems in the class
#W[1]. In this section, we shall transfer some of the most fundamental parts
of the theory of the class W[1] to its counting analogue:

Theorem 14.17. #W[1] = #A[1].

Theorem 14.18. p-#Clique and p-#WSat(2-CNF−) are #W[1]-complete
under fpt parsimonious reductions.

Further #W[1]-completeness results are deferred to the exercises at the
end of this section. We prove the two theorems in a sequence of lemmas,
more or less following the proofs of the corresponding results for the decision
problems. Mostly, the new ingredients in the proofs here are based on (variants
of) the following simple observation: Let ϕ(x̄) and ψ(x̄, ȳ) be formulas and A
a structure. If for all tuples ā in A we have

A |= ϕ(ā) ⇐⇒ A |= ∃ȳψ(ā, ȳ),

and for all tuples ā in A there exists at most one tuple b̄ in A such that
A |= ψ(ā, b̄), then |ϕ(A)| = |ψ(A)|.

Recall that Π+
0 denotes the class of all Π0-formulas in which no negation

symbols occur. The following lemma is the counting version of Lemma 6.11.

Lemma 14.19. p-#MC(Π0) ≤fpt p-#MC(Π+
0 ).

Proof: Review the proof of Lemma 6.11. Even though we worked with Σ1-
formulas there, we can easily turn the reduction given in the proof into an
fpt-reduction from p-MC(Π0) to p-MC(Π+

0 ). We just have to make sure that
when we introduce the new variables ȳ, z̄ in (6.2) on p. 112, we take fresh
tuples of variables, say, ȳλ := (yλ

1 , . . . , yλ
r ) and z̄λ := (zλ

1 , . . . , zλ
r ), for every

negated literal λ = ¬Rx1 . . . xr.
The reduction is not yet parsimonious, because, in general, we have no

control over the new variables ȳλ and z̄λ. The following example illustrates
this.

Example 14.20. Let ϕ(x1, x2) := ¬Rx1 ∨ Px2. The only negated literal is
λ := ¬Rx1. Our reduction yields the formula

ϕ′(x1, x2, y
λ
1 , zλ

1 ) = (Rfyλ
1 ∧ x1 < yλ

1 ) ∨
(Rsy

λ
1 zλ

1 ∧ yλ
1 < x1 ∧ x1 < zλ

1 ) ∨
(Rlz

λ
1 ∧ zλ

1 < x1) ∨ Px2.

Now let A be an {R, P}-structure and suppose that RA = A (thus the literal
¬Rx1 is never satisfied). Then

|ϕ(A)| = |A| · |PA|, and |ϕ′(A)| = |A|3 · |PA|. �
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To avoid this problem, we have to make sure that for every tuple ā ∈ ϕ(A)
and every negative literal λ there is precisely one tuple b̄λ interpreting ȳλ and
one tuple c̄λ interpreting z̄λ such that āb̄λc̄λ . . ., possibly expanded by tuples
b̄μc̄μ for other negative literals μ, satisfies ϕ′. To achieve this, we take the
conjunction of the formula ϕ′ with formulas uniqueλ(x̄, ȳλ, z̄λ) for all negative
literals λ. If λ = ¬Rx1 . . . xr , the formula is defined as follows:

uniqueλ(x̄, ȳλ, z̄λ) :=(Rx̄ ∧ x̄ =r ȳλ ∧ x̄ =r z̄λ)

∨ (Rf ȳλ ∧ ȳλ =r z̄λ ∧ x̄ <r ȳλ)

∨ (Rsȳ
λz̄λ ∧ ȳλ <r x̄ ∧ x̄ <r z̄λ)

∨ (Rlz̄
λ ∧ ȳλ =r z̄λ ∧ z̄λ <r x̄),

where x̄ =r ȳ abbreviates
∧r

i=1 x1 = yi. Let ϕ′′ be the resulting formula, that
is,

ϕ′′ := ϕ′ ∧
∧

λ negative literal in ϕ

uniqueλ(x̄, ȳλ, z̄λ).

As long as the relation RA is nonempty, this formula works fine: For each
tuple ā ∈ Ar there exist exactly one b̄ ∈ Ar and c̄ ∈ Ar such that

A′ |= uniqueλ(ā, b̄, c̄).

There is only a problem if RA = ∅. However, if RA = ∅ for some relation
symbol R, we replace the negative literal ¬Rx1 . . . xr simply by

∧
i∈[r] xi =

xi. The resulting formula depends on the input structure, but that is not a
problem. 
�

Lemma 14.21. p-#MC(Π+
0 ) ≤fpt p-#MC(Π+

0 [2]).

Proof: The proof is a minor modification of the proof of Lemma 6.13. 
�
Let CA be the class of conjunctions of atomic first-order formulas. One

easily verifies that the preceding proof preserves the property of a formula of
being a conjunctions of atoms:

Corollary 14.22. p-#MC(CA) ≤fpt p-#MC(CA[2]).

Lemma 14.23. p-#MC(Π0[2]) ≤fpt p-#MC(CA[3]).

In a first step we show:

Claim 1. Each Π0-formula is equivalent to a formula of the form ϕ1∨ . . .∨ϕ�,
where each ϕi is a conjunction of literals and ϕi ∧ ϕj is unsatisfiable for all
i �= j.

Proof: This is a simple consequence of the fact that each propositional for-
mula is equivalent to a formula in disjunctive normal form where the pairwise
conjunction of two terms is unsatisfiable. �
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Let A be a τ -structure for some binary vocabulary τ and ϕ(x1, . . . , xk)
a Π0-formula of vocabulary τ . By claim 1, without loss of generality we can
assume that ϕ = ϕ1 ∨ . . . ∨ ϕ�, where each ϕi is a conjunction of literals and
ϕi∧ϕj is unsatisfiable for all i �= j. Then for every tuple ā ∈ ϕ(A) there exists
exactly one index i(ā) such that

ā ∈ ϕi(ā)(A). (14.2)

Without loss of generality we may assume that all ϕi are conjunctions of the
same number m of literals. Suppose that, for i ∈ [�],

ϕi := λi1 ∧ . . . ∧ λim.

For simplicity, let us further assume that all literals λij have precisely two
variables. For all i ∈ [�], j ∈ [m] we let Rij be a new ternary relation symbol.
Furthermore, we let < and E be new binary relation symbols and

τ ′ := {Rij | i ∈ [�], j ∈ [m]} ∪ {<, E}.

We define a τ ′-structure A′ as follows:

A′ := [�] ∪ ([�]×A),

<A′

:=
{
(p, q) ∈ [�]2 | p < q

}
,

EA′

:= {((p, a), (p, b)) | p ∈ [�], a, b ∈ A},
RA′

ij := {(p, (p, a), (p, b)) | p ∈ [�], a, b ∈ A such that A |= λij(a, b)}
∪ {(p, (q, a), (q, b)) | p, q ∈ [�] with p �= q, a, b ∈ A}

(for all i ∈ [�], j ∈ [m]).

For all i ∈ [�], we let ϕ′
i be the formula obtained from ϕi by replacing each

literal λij(xr , xs) by the atom Rijyixrxs. We let

ϕ′(x1, . . . , xk, y1, . . . , y�) :=
∧

i∈[�−1]

yi < yi+1 ∧
∧

r,s∈[k]

Exrxs ∧
∧

i∈[�]

ϕ′
i.

Claim 2. |ϕ(A)| = |ϕ′(A′)|.
Proof: Observe that for all (a′

1, . . . , a
′
k, b′1, . . . , b

′
�) ∈ ϕ′(A′) we have

(i) b′p = p for all p ∈ [�].

(ii) There are p ∈ [�] and a1, . . . , ak ∈ A such that a′
r = (p, ar) for all r ∈ [k].

Suppose now that ā′ :=
(
(p, a1), . . . , (p, ak), 1, . . . , �

)
∈ ϕ′(A′). Let i ∈ [�] and

j ∈ [m] and suppose that the variables of λij are xr and xs. Then(
i, (p, ar), (p, as)

)
∈ RA′

ij ,

because A |= ϕ′
i(ā

′). By the definition of RA′

ij , it follows that A |= λpj(ar, as)
(taking i = p). This holds for all j ∈ [m]. Hence A |= ϕp(a1, . . . , ak). Thus
(a1, . . . , ak) ∈ ϕ(A) and p = i(a1, . . . , ak) (cf. (14.2)).
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Conversely, it is easy to show that for all (a1, . . . , ak) ∈ ϕ(A), with p :=
i(a1, . . . , ak) we have(

(p, a1), . . . , (p, ak), 1, . . . , �
)
∈ ϕ′(A′).

This establishes a bijection between ϕ(A) and ϕ′(A′). �

Since ϕ′ and A′ can be computed from ϕ and A, respectively, in polynomial
time, the mapping (A, ϕ) �→ (A′, ϕ′) is an fpt parsimonious reduction. 
�

Lemma 14.24. p-#MC(CA[2]) ≤fpt p-#Clique.

Proof: The first part of the proof of Lemma 6.14 yields a parsimonious reduc-
tion from p-#MC(CA[2]) to p-#Clique. 
�

Lemma 14.25. p-#Clique ≤fpt p-#WSat(2-CNF−).

Proof: The reduction mapping a graph G = (V, E) to the 2-CNF-formula∧
v,w∈V

v �=w,{v,w}�∈E

(¬Xv ∨ ¬Xw)

is parsimonious (assuming without loss of generality that there is no v ∈ V
such that {v, w} ∈ E for all w ∈ V \ {v}). 
�

Lemma 14.26. p-#WSat(d-CNF) ≤ p-#MC(Π0) for all d ≥ 1.

Proof: Recall Lemma 6.31. Let α(X1, . . . , Xn) be a d-CNF-formula and k ∈ N

be an instance of p-#WSat(d-CNF). LetA be the structure and ψ(x1, . . . , xk)
be the Π0-formula obtained by Lemma 6.31. Then for all m1, . . . , mk ∈ A,

{Xm1, . . . , Xmk
} satisfies α ⇐⇒ A |= ψ(m1, . . . , mk).

In general, this does not give us a parsimonious reduction, since with a tuple
(m1, . . . , mk) every permutation of (m1, . . . , mk) will satisfy ψ in A; further-
more some (m1, . . . , mk) with |{m1, . . . , mk}| < k may satisfy ψ in A. There-
fore, let < be a binary relation symbol not contained in the vocabulary τ of
A and ψ. Let A′ be a τ ∪ {<}-expansion of A in which <A′

is a linear order
of A. Let

ψ′(x1, . . . , xk) :=
∧

i∈[k−1]

xi < xi+1 ∧ ψ(x1, . . . , xk).

Then (α, k) �→ (A′, ψ′) is the desired fpt parsimonious reduction. 
�
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Proof of Theorems 14.17 and 14.18: Both theorems follow from Theo-
rem 14.12 and the following chain of reductions (holding for all d ≥ 2):

p-#MC(Π0) ≤fpt p-#MC(Π+
0 ) (by Lemma 14.19)

≤fpt p-#MC(Π+
0 [2]) (by Lemma 14.21)

≤fpt p-#MC(CA[3]) (by Lemma 14.23)

≤fpt p-#MC(CA[2]) (by Corollary 14.22)

≤fpt p-#Clique (by Lemma 14.24)

≤fpt p-#WSat(2-CNF−) (by Lemma 14.25)

≤fpt p-#WSat(d-CNF)

≤fpt p-#MC(Π0) (by Lemma 14.26). 
�

Exercise 14.27. Prove that the following problem is #W[1]-complete under
fpt parsimonious reductions:

p-Short-NSTM-Halt
Instance: A nondeterministic Turing machine M with a sin-

gle tape and k ∈ N.
Parameter: k.

Problem: Compute the number of accepting runs of M of
length k, given the empty string as input.

�

Exercise 14.28. Let t ≥ 1 and let (F, κ) be a parameterized counting prob-
lem over the alphabet Σ. Prove that (F, κ) ∈ #W[1] if and only if there is a
tail-nondeterministic κprogram P for an NRAM such that for every x ∈ Σ∗,
the value F (x) is the number of accepting runs of P on input x. �

Exercise 14.29. Let τ be a vocabulary and C a recursively enumerable class
of τ -structures of unbounded tree width. Prove that the problem p-#Hom(C)
is #W[1]-hard under fpt Turing reductions.

Hint: Mimic the proof of Theorem 13.21. Sharpen the statements of Lem-
mas 13.29 and 13.30 to: The number of homomorphisms h from A to B such
that Π ◦ h is the identity equals k! times the number of cliques in G.

Prove next that the number of homomorphisms h from A to B such that
Π ◦ h(A) = A equals the number of automorphisms of A times the number of
homomorphisms h from A to B such that Π ◦ h is the identity.

Use the inclusion–exclusion principle to compute the number of homo-
morphisms h from A to B such that Π ◦ h(A) = A from the numbers of
homomorphisms h′ from A to B such that Π ◦ h′(A) = A′ for all proper
subsets A′ ⊂ A.

Remark: Combined with Theorem 14.7, the hardness result shows that
the counting version of the homomorphism problem admits a similarly clear-
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cut complexity theoretic classification as the decision problem (see Corollar-
ies 13.22, 13.23, and 13.25). The difference is that the tractable classes are
only those of bounded tree width and not those of bounded tree width modulo
homomorphic equivalence. �

14.4 The Complexity of Counting Paths and Cycles

Recall that, by Corollary 13.43, the problems p-Path and p-Cycle are fixed-
parameter tractable. This is proved by the color coding method. In this sec-
tion, we shall prove that the counting versions of the two problems are #W[1]-
complete.

Theorem 14.30. p-#Path and p-#Cycle are #W[1]-complete under fpt
Turing reductions.

To avoid ambiguity, let us make precise what we actually count as one
path or cycle. Let k ∈ N. The most natural option is to say that a path of
length k in a graph G = (V, E) is a subgraph of G that is isomorphic to the
generic path

Pk :=
(
[k + 1],

{
{i, j}

∣∣ i, j ∈ [k + 1], j − i = 1
})

.

Thus, if v1, . . . , vk+1 ∈ V with ei := {vi, vi+1} ∈ E for all i ∈ [k], then(
{v1, . . . , vk+1}, {e1, . . . , ek}

)
is counted as one path (and not as two, as the

notation v1e1v2 . . . ekvk+1 and vk+1ekvk . . . e1v1 might suggest).
Similarly, a cycle of length k ≥ 3 in a graph G = (V, E) is a subgraph of G

that is isomorphic to

Ck :=
(
[k],

{
{i, j}

∣∣ i, j ∈ [k], j − i ≡ 1 mod k
})

.

For the hardness proof, we will actually work with directed cycles in directed
graphs. For the sake of completeness, let us define a directed cycle of length
k ≥ 1 in a directed graph G = (V, E) to be a subgraph of G that is isomorphic
to

Dk :=
(
[k],

{
(i, j)

∣∣ i, j ∈ [k], j − i ≡ 1 mod k
})

.

We let p-#Directed-Cycle be the problem of computing the number of
directed cycles of length k in a directed graph, parameterized by k.

The reader may have noted that we admit directed cycles of length 1. In
this section, directed graphs may have loops, that is, edges of the form (v, v).
This will be convenient in the proofs, but does not affect the results, because a
directed cycle of length k ≥ 2 does not contain any loops anyway. Undirected
graphs remain loop-free.

Lemma 14.31. p-#Path, p-#Cycle, and p-#Directed-Cycle are con-
tained in #W[1].
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Proof: It is easy to reduce the three problems to p-#MC(Π0). A little care
needs to be taken to make sure that the reductions are parsimonious.

For example, to prove that p-#Cycle ≤fpt p-#MC(Π0), let G be a graph
and k ≥ 3. The obvious way of defining cycles of length k is by the Π0-formula

χk(x1, . . . , xk) :=
∧

i,j∈[k],
i<j

xi �= xj ∧
∧

i∈[k−1]

Exixi+1 ∧ Exkx1.

However, each cycle of G of length k corresponds to 2k different tuples
(v1, . . . , vk) ∈ V k such that G |= χk(v1, . . . , vk), thus the reduction (G, k) �→
(G, χk) is not parsimonious.

We expand G to an {E, <}-structure G<, where <G< is an arbitrary linear
order on the vertex set G. We let

χ<
k (x1, . . . , xk) := χk ∧

∧
i∈[2,k]

x1 < xi ∧ x2 < xk.

Then each cycle of G of length k corresponds to exactly one tuple (v1, . . . , vk) ∈
V k such that G< |= χ<

k (v1, . . . , vk). Thus (G, k) �→ (G<, χ<
k ) is an fpt parsi-

monious reduction from p-#Cycle to p-#MC(Π0).
p-#Path ≤fpt p-#MC(Π0) and p-#Directed-Cycle ≤fpt p-#MC(Π0)

can be proved similarly. 
�
The following two lemmas show that it is sufficient to prove that p-

#Directed-Cycle is #W[1]-hard.

Lemma 14.32.

p-#Directed-Cycle ≤fpt p-#Cycle.

Proof: For a directed graph G and p ≥ 1, q ≥ 2, let Gu
p,q be the undirected

graph obtained from G by the following two steps:

(1) Replace each vertex v of G by an undirected path of length p such that
the (directed) edges with head v in G get the first vertex of this path as
their new head and the edges with tail v in G get the last vertex of this
path as their new tail.

(2) Replace each directed edge in this graph (corresponding to an edge of G)
by an undirected path of length q.

Figure 14.2 gives an example.
Observe that each cycle in Gu

p,q has length � · p + m · q for some integers
�, m ≥ 0 with � ≤ m. Further observe that each directed cycle of length k ≥ 1
in G lifts to an undirected cycle of length k · (p + q) in Gu

p,q (see Fig. 14.3).
Given k, we want to choose p and q in such a way that each cycle of length
k · (p + q) in Gu

p,q is the lifting of a directed cycle of length k in G. To achieve
this, we have to choose p and q in such a way that
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Fig. 14.2. A directed graph G and the corresponding Gu
2,3

Fig. 14.3. A directed cycle in G and the corresponding cycle in Gu
2,3

k · (p + q) �= � · p + m · q (14.3)

for all �, m ≥ 0 with � < m. If we choose p ≤ q, then (14.3) holds for m > 2k.
So we have to fulfill (14.3) for 0 ≤ � < m ≤ 2k. Hence, we have to avoid

(
2k+1

2

)
linear equalities. Clearly we can find natural numbers p ≥ 1, q ≥ 2 with p ≤ q
satisfying none of these equalities.

For such p and q, the number of directed cycles of length k in G equals the
number of undirected cycles of length k · (p + q) in Gu

p,q. Thus the mapping
defined by (G, k) �→ (Gu

p,q, k · (p + q)) is an fpt parsimonious reduction from
p-#Directed-Cycle to p-#Cycle. 
�

Lemma 14.33.
p-#Cycle ≤fpt-T p-#Path.

Proof: We first observe that p-#Cycle is fpt Turing reducible to the following
variant of the problem:

p-#Cycle-through-Edge
Instance: A graph G = (V, E), an edge e ∈ E, and k ∈ N.

Parameter: k.
Problem: Compute the number of cycles of G of length k that

contain edge e.
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An algorithm for p-#Cycle using an oracle to p-#Cycle-through-
Edge proceeds as follows: Given a graph G = (V, E) and a k ∈ N, it takes
an arbitrary edge e ∈ E. It computes the number z1 of cycles of length k
that contain edge e using the oracle to p-#Cycle-through-Edge. Then it
recursively computes the number z2 of cycles of the graph (V, E \ {e}) and
returns z1 + z2.

We now show how to reduce p-#Cycle-through-Edge to p-#Path. Let
G = (V, E) be a graph, e = {v, w} ∈ E, and k ∈ N. Without loss of generality
we can assume that k ≥ 3.

For all �, m ≥ 0, we let Ge(�, m) be the graph obtained from G by adding
vertices v1, . . . , v�, w1, . . . , wm and edges between vi and w for i ∈ [�] and
between wj and v for j ∈ [m]. Figure 14.4 illustrates the construction of
Ge(3, 2).

v

v1

v2

v3

w

w1

w2

e

Fig. 14.4. Construction of Ge(3, 2)

We observe that in paths of Ge(�, m) the vi and wj can only occur as end-
points, and that each path of length at least 3 can have at most one endpoint
among v1, . . . , v� and at most one endpoint among w1, . . . , wm (because each
path ending in vi must go through w and each path ending in wj must go
through v).

Furthermore, we observe that the number z of cycles of length k in G
containing the edge e is exactly the number of paths of length k + 1 from v1

to w1 in Ge(1, 1) We now show how to compute z from the numbers of paths
of length k +1 in the graphs Ge(�, m) for 0 ≤ �, m ≤ 1. This yields the desired
reduction.

We let

• x1 be the number of paths of length (k +1) from v1 to w1 in Ge(1, 1), that
is, x1 = z,

• x2 the number of paths of length (k + 1) in Ge(1, 1) that contain v1, but
not w1,

• x3 the number of paths of length (k + 1) in Ge(1, 1) that contain w1, but
not v1,

• x4 be the number of paths of length (k+1) in Ge(1, 1) that neither contain
v1 nor w1.
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For �, m ≥ 0 let y�m be the number of paths of length (k + 1) in Ge(�, m).
Then we have

� ·m · x1 + � · x2 + m · x3 + x4 = y�m.

For 0 ≤ �, m ≤ 1 we obtain the following system of linear equations:⎛⎜⎜⎝
0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1

⎞⎟⎟⎠ ·
⎛⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
y00

y01

y10

y11

⎞⎟⎟⎠ ,

whose matrix is nonsingular. Solving the system gives us the desired value
z = x1. 
�

Our goal for the remainder of this section is to prove that

p-#Clique ≤fpt-T p-#Directed-Cycle.

We have to introduce another intermediate problem. Let G = (V G , EG) and
H = (V H, EH) be directed graphs and h : V H → V G a homomorphism from
H to G.

We associate with h a polynomial θh(X) ∈ Z[X ] defined by

θh(X) :=
∏

b∈V G

(X)|h−1(b)|,

where the notation (X)i is used for the “falling factorial,” that is, (X)0 = 1
and (X)i+1 = (X)i(X − i) for all i ≥ 0. We call θh(X) the type of h. The
set of all types of homomorphisms from a k-element directed graph to some
directed graph is denoted by Θk. It is easy to see that Θk is the set of all
polynomials θ(X) of the form ∏

i∈[j]

(X)ki
,

where j ∈ [k] and k1, . . . , kj ∈ [k] such that k1 + · · ·+ kj = k.
Observe that a homomorphism from a directed graph H to a directed

graph G is one-to-one if and only if its type is X |H|.
Recall that Dk denotes the directed cycle of length k whose vertices are

1, . . . , k in cyclic order. We consider the following problem:

p-#Typed-Directed-Cycle
Instance: A directed graph G and a polynomial θ(X).

Parameter: k ∈ N.
Problem: Count the homomorphisms h : Dk → G of type θ(X).

Lemma 14.34.

p-#Typed-Directed-Cycle ≤fpt-T p-#Directed-Cycle.
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Proof: For a directed graph G = (V, E) and �, m ∈ N, let G�,m be the directed
graph obtained from G as follows:

• The vertex set of G�,m is
V × [�]× [m].

• There is an edge from (v, i, j) to (v′, i′, j′) in G�,m if either

i = � and i′ = 1 and there is an edge from v to v′ in G
or

v = v′ and i′ = i + 1.

Figure 14.5 gives an example.

Fig. 14.5. A directed graph G and the corresponding G3,2

Note that cycles of length k in G correspond to families of cycles of length
k · � in G. Conversely, cycles of length k · � in G�,m correspond to cyclic walks
of length k in G. Here by cyclic walks we mean “cycles with self-intersection,”
which are homomorphic images of cycles. Figure 14.6 gives an example. We
will make this correspondence precise below.

From now on, it will be easier to formally work with embeddings of Dk·�
into G�,m instead of directed cycles of length k · �. But since the number of
directed cycles of length k · � in a directed graph is the number of embeddings
of Dk·� into that graph divided by k · �, the problems of counting cycles and
embeddings are equivalent under fpt Turing reductions.

We define the projection of an embedding g : [k · �]→ V × [�]× [m] of Dk·�
into G�,m to be the mapping π(g) : [k]→ V defined by

π(g)(x) := v if g((x− 1) · � + 1) = (v, i, j) for some i ∈ [�], j ∈ [m].

Then π(g) is a homomorphism from Dk to G.
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Fig. 14.6. A cycle in G3,2 and its projection

Claim 1. For every homomorphism h from Dk to G there are

� · θh(m)� (14.4)

embeddings g of Dk·� into G�,m with projection π(g) = h.

Proof: Let h be a homomorphism from Dk to G = (V, E), and let g be an
embedding of Dk·� into G�,m with π(g) = h. For all i ∈ [k], let vi := h(i), and
for all i ∈ [k · �], let (wi, pi, qi) := g(i).

Then v1 = w1. The value p1 ∈ [�] is arbitrary, but once p1 is fixed, all wi

and pi for i > 1 are also fixed. The choice of p1 accounts for the factor � in
(14.4).

Let us analyze the number of choices we have for the qi: If there is no j < i
such that (wi, pi) = (wj , pj), then we have m choices. If there is one such j,
we have (m−1) choices, et cetera. Overall, for all (w, p) ∈ V × [�], the number
of occurrences of (w, p) in the sequence (wi, pi) for i ∈ [k · �] is |h−1(w)|. Thus
(w, p) contributes a factor of (m)|h−1(w)| to the number of possible choices of
the qi for i ∈ [k · �]. If (w, p) occurs among the (wi, pi), then so does (w, p′)
for all p′ ∈ [�]. Thus w contributes a factor of (m)�

|h−1(w)| to the number of
choices. Overall, we have ∏

w∈V

(m)�
|h−1(w)| = θh(m)�

possible choices of the qi for i ∈ [k · �]. This completes the proof of claim 1. �

Recall that Θk is the set of all types of homomorphisms from a k-element
directed graph to a directed graph. In particular, Θk contains all types of
homomorphisms from Dk to G. For every type θ ∈ Θk, let xθ be the number
of homomorphisms h : Dk → G with θh = θ. Furthermore, let b(�, m) be the
number of embeddings g : Dk·� → G�,m. Then
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b(�, m) =
∑

θ∈Θk

xθ · � · θ(m)�. (14.5)

Our goal is to compute xθ for a given θ ∈ Θk. As we want to reduce
p-#Typed-Directed-Cycle to p-#Directed-Cycle, we may use an ora-
cle to p-#Directed-Cycle. Using this oracle, we can compute the numbers
b(�, m) in (14.5). Hence the problem of determining xθ amounts to solving a
system of linear equations.

Let t := |Θk|. The types in Θk are polynomials of degree at most k. Thus
for distinct θ(X), θ′(X) ∈ Θk there are at most k distinct x ∈ N such that
θ(x) = θ′(x). Therefore, there is an m∗ ≤ k ·

(
t
2

)
+ k · t + 1 such that for all

distinct θ(X), θ′(X) ∈ Θk we have θ(m∗) �= θ′(m∗) and θ(m∗) �= 0. We fix
such an m∗ and consider the equations (14.5) for � ∈ [t], m = m∗.

For � ∈ [t], we let b� := b(�, m∗). We let

�b :=

⎛⎜⎝ b1

...
bt

⎞⎟⎠ , �x := (xθ)θ∈Θk
, A := (a�θ)�∈[t],

θ∈Θk

,

where a�θ := � · θ(m∗)�. Then (14.5) for � ∈ [t] and m = m∗ can be written as

A · �x = �b. (14.6)

Claim 2. The matrix A is nonsingular.

Proof: Instead of A, we consider the matrix A′ = (a′
�θ)�∈[t],θ∈Θk

, where a′
�θ :=

1
� a�θ. Then A is singular if and only if A′ is. Note that a′

�θ := θ(m∗)�. Thus
A′ is a Vandermonde matrix, that is, a matrix of the form⎛⎜⎜⎜⎝

a1
1 a1

2 · · · a1
t

a2
1 a2

2 · · · a2
t

...
...

. . .
...

at
1 at

2 · · · at
t

⎞⎟⎟⎟⎠ ,

with pairwise distinct a1, . . . , at �= 0. It is well-known that Vandermonde
matrices are nonsingular. Thus A′ and hence A are nonsingular. This proves
claim 2. �

Thus A has an inverse A−1, and (14.6) yields

�x = A−1�b.

This gives us the desired value(s) xθ.
In summary, our Turing reduction from p-#Typed-Directed-Cycle to

p-#Directed-Cycle is displayed as Algorithm 14.7. Since the set Θk, the
number m∗, and the matrix A only depend on the parameter k, this is a
parameterized Turing reduction. 
�
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TypedDirectedCycle(G, k, θI)

// G directed graph, k ∈ N, θI = θI(X) polynomial
1. Compute the set Θk and let t := |Θk|
2. if θI �∈ Θk then return 0
3. Compute an m∗ such that θ(m∗) �= θ′(m∗) and θ(m∗) �= 0 for

all distinct θ(X), θ′(X) ∈ Θk

4. for 	 = 1 to t do

5. Compute the graph G�,m∗

6. Compute the number b� of embeddings g of Dk·� into
G�,m∗ (using the oracle to p-#Directed-Cycle)

7. for all θ ∈ Θk do

8. a�θ ← 	 · θ(m∗)�

9. Solve the system A · �x = �b
10. return xθI

Algorithm 14.7.

For k, � ≥ 1, let Ω(k, �) denote the space of all mappings f : [k · �] → [k]
such that |f−1(i)| = � for all i ∈ [k].

Lemma 14.35. Let k ≥ 1, and let H = (V, E) be a directed graph with vertex
set V = [k] and edge set E �= [k]2. Then

lim
�→∞

Pr
f∈Ω(k,�)

(
f is a homomorphism from Dk·� to H

)
= 0,

where f is chosen uniformly at random from Ω(k, �).

Proof: Let us fix a pair (x∗, y∗) ∈ [k]2 such that (x∗, y∗) �∈ E. Let m ∈ N.
We call a tuple (i1, . . . , im) ∈ [k]m good if (ij , ij+1) �= (x∗, y∗) for all

i ∈ [m − 1] and bad otherwise. For (i1, . . . , im) ∈ [k]m chosen uniformly at
random we have

Pr
(i1,...,im)∈[k]m

(
(i1, . . . , im) good

)
≤ Pr

(i1,...,im)∈[k]m

(
∀j ∈

[
�m/2�

]
: (i2j−1, i2j) �= (x∗, y∗)

)
=

(
1− 1

k2

)�m/2�
.

Furthermore, for all (i1, . . . , im) ∈ [k]m and � ∈ N with � > m/k we have

Pr
f∈Ω(k,�)

(
∀j ∈ [m] : f(j) = ij

)
≤

(
�

k · �−m

)m

. (14.7)

To see this inequality, note that choosing a random function f ∈ Ω(k, �) can
be modeled by randomly picking k · � balls without repetitions out of a bin
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that initially contains � balls of each of the colors 1, . . . , k. The probability
that the ith ball is of color j is at most

�

k · �− (i− 1)
,

because at most � of the remaining k · � − (i − 1) balls are of color j. Now
(14.7) follows straightforwardly.

Thus

Pr
f∈Ω(k,�)

(f is a homomorphism from Dk·� to H)

≤
∑

(i1,...,im)∈[k]m good

Pr
f∈Ω(k,�)

(f(j) = ij for 1 ≤ j ≤ m)

≤
∑

(i1,...,im)∈[k]m good

(
�

k · �−m

)m

=

(
�

k · �−m

)m

· km · Pr
(i1,...,im)∈[k]m

(
(i1, . . . , im) good

)
≤

(
k · �

k · �−m

)m

·
(

1− 1

k2

)�m/2�
.

Let ε > 0. Then there exists an m(ε, k) such that for m ≥ m(ε, k) we have(
1− 1

k2

)�m/2�
≤ ε

2
.

Moreover, for every m there exists an �(m) such that for � ≥ �(m) we have(
k · �

k · �−m

)m

=

(
1

1− m
k·�

)m

≤ 1(
1− m

�

)m ≤ 2.

Thus for all � ≥ �(m(ε, k)) we have

Pr
f∈Ω(k,�)

(f is a homomorphism from Dk·� to H) ≤ ε. 
�

Lemma 14.36.

p-#Clique ≤fpt-T p-#Typed-Directed-Cycle.

Proof: Let k ≥ 1. For an undirected graph H = (V, E), let
−→H = (V,

−→
E ) be the

directed graph with the same vertex set as H and edge set

−→
E :=

{
(v, v)

∣∣ v ∈ V
}
∪
{
(v, w)

∣∣ {v, w} ∈ E
}
.
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Let H0, . . . ,Hm be a list of all undirected graphs with vertex set [k] such that
up to isomorphism each graph occurs exactly once in the list. Furthermore,
assume that H0 is the complete graph with vertex set [k].

For i ∈ [0, m], � ∈ N, let ai� be the number of homomorphisms of type

(X)k
� from Dk·� to

−→Hi (that is, homomorphisms for which each vertex of
−→Hi has exactly � preimages). Let

N

ai = (ai1, ai2, . . .) and, for every � ≥ 1,
�
ai = (ai1, ai2 . . . , ai�). We consider

N

ai and
�
ai as vectors in the vector spaces

QN and Q�, respectively.
For a set S of vectors in QN or Q�, we let 〈S〉 denote the linear span of S.

Claim 1.
N

a0 �∈
〈{N

ai

∣∣ i ∈ [m]
}〉

.

Proof: Recall that Ω(k, �) denotes the set of all mappings h : [k · �]→ [k] with
the property that |h−1(i)| = � for 1 ≤ i ≤ k.

We first observe that for all � ≥ 1,

a0� = |Ω(k, �)|.

By Lemma 14.35, for all i ∈ [m] we have

lim
�→∞

ai�

|Ω(k, �)| = 0.

Suppose for contradiction that

N

a0 =
∑

i∈[m]

λi
N

ai

for rationals λ1, . . . , λm ∈ Q. Choose � ∈ N sufficiently large such that for all
i ∈ [m]

ai�

a0�
=

ai�

|Ω(k, �)| <
1∑m

i=1 |λi|
.

Then

a0� =

m∑
i=1

λiai� ≤ a0�

m∑
i=1

|λi|
ai�

a0�
< a0�

m∑
i=1

|λi|
1∑m

j=1 |λj |
= a0�,

which is a contradiction. This proves claim 1. �

Claim 2. There is an � ∈ N such that

�
a0 �∈

〈{�
ai

∣∣ i ∈ [m]
}〉

.

Let �(k) be the smallest such �. Then the mapping k �→ �(k) is computable.

Proof: For d ∈ N ∪ {N}, let

Sd :=
〈{d

ai

∣∣ i ∈ [m]
}〉

.
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Observe that if for some � ≥ 1 and i1, . . . , ir ∈ [m] the vectors

�
ai1 , . . . ,

�
air

are linearly independent, then for all d ∈ {�′ ∈ N | �′ ≥ �} ∪ {N} the vectors

d
ai1 , . . . ,

d
air

are also linearly independent. Thus we can find an increasing sequence

I1 ⊆ I2 ⊆ . . . [m]

such that for all � ≥ 1,

B� :=
{�
ai

∣∣ i ∈ I�

}
is a basis of the space S�. Let �∗ ∈ N such that I� = I�∗ for all � ≥ �∗.

Suppose for contradiction that

�
a0 ∈ S�

for all � ∈ N. Then for all � ∈ N, the vector
�
a0 can be written as a unique linear

combination of the vectors in B�. For all � ≥ �∗, these linear combinations are

identical, and thus
N

a0 ∈ SN. This contradicts claim 1 and thus proves that for
some � ∈ N,

�
a0 �∈ S� =

〈{�
ai

∣∣ i ∈ [m]
}〉

.

The function k �→ �(k) is computable, since �(k) is the smallest number for
which the corresponding system of linear equations is not solvable. This com-
pletes the proof of claim 2. �

Now we are ready to prove the lemma. Let k ≥ 1 and define the graphs

Hi and the vectors
�
ai for i ∈ [0, m] and � ∈ N as above. Choose � = �(k)

according to claim 2.
Let G = (V, E) be a graph. For every i ∈ [0, m], let xi be the number

of subsets W ⊆ V such that the induced subgraph of G with vertex set W
is isomorphic to Hi. We want to determine the number x0. For all j ∈ [�],

let bj be the number of homomorphisms from Dk·j into
−→G of type (X)k

j ,

and let
�

b := (b1, . . . , b�). The numbers bj can be computed with an oracle to
p-#Typed-Directed-Cycle.

Observe that for all j ∈ [�] we have

bj =
∑

i∈[0,m]

xi · aij ,

and thus
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�

b =
∑

i∈[0,m]

xi ·
�
ai.

Since
�
a0 is linearly independent from

{
�
ai

∣∣∣ i ∈ [m]
}

, the coefficient x0 can be

computed by solving this system of linear equations. 
�

Proof of Theorem 14.30: Containment of p-#Path and p-#Cycle in #W[1]
is proved in Lemma 14.31.

Hardness follows from the following chain of reductions and the #W[1]-
completeness of p-#Clique.

p-#Clique ≤fpt-T p-#Typed-Directed-Cycle (Lemma 14.36)

≤fpt-T p-#Directed-Cycle (Lemma 14.34)

≤fpt-T p-#Cycle (Lemma 14.32)

≤fpt-T p-#Path. (Lemma 14.33) 
�

14.5 Approximate Counting

Since most interesting counting problems are #P-hard and thus most likely
do not admit efficient exact algorithms, researchers have intensely looked at
approximation algorithms for counting problems. It has turned out that the
most appropriate notion of approximation algorithm for counting problems
is that of a fully polynomial randomized approximation scheme (fpras). An
fpras for a counting problem F : Σ∗ → N is a randomized polynomial time
algorithm that takes as input an instance x ∈ Σ∗ of F and an � ∈ N and
computes a z ∈ Q such that

Pr
(
(1 − 1/�) · F (x) ≤ z ≤ (1 + 1/�) · F (x)

)
≥ 3

4

(where the probability is taken over the random decisions of the algorithm).
Recall Valiant’s theorem that the problem of counting perfect matchings in a
bipartite graph is #P-complete (whereas the corresponding decision problem
is in polynomial time). Another fundamental result of counting complexity
due to Jerrum, Sinclair, and Vigoda, states that there is an fpras for the
problem of counting perfect matchings.

Somewhat analogously (though with a much simpler proof), we show here
that the parameterized problems of counting paths and cycles admit the fpt-
analogue of an fpras.

Definition 14.37. Let (F, κ) be a parameterized counting problem over the
alphabet Σ. A fixed-parameter tractable randomized approximation scheme
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(fptras) for (Q, κ) is a randomized fpt-algorithm that, given an instance x ∈ Σ∗

and an � ∈ N, computes a z ∈ Q such that

Pr
(
(1− 1/�) · F (x) ≤ z ≤ (1 + 1/�) · F (x)

)
≥ 3

4
.

More precisely, the algorithm is required to be fpt with respect to the param-
eterization κ′ : Σ∗ × N→ N defined by κ′(x, �) := κ(x). �

Theorem 14.38. For every polynomial time decidable class C of structures
of bounded tree width, the problem p-#Emb(C) has an fptras.

Corollary 14.39. The problems p-#Path and p-#Cycle have fptrases

To prove Theorem 14.38, we use the method of color coding. Recall the
proof of Theorem 13.37 and the terminology used in this proof. Let us call
an embedding g of a structure A into a structure B colorful with respect to a
coloring λ : B → [k] if the restriction of λ to g(A) is one-to-one. The following
lemma is a generalization of Lemma 13.37:

Lemma 14.40. For every w ≥ 1, the following problem can be solved in time

2O(k) · nw+1,

where k := |A|, w := tw(A), and n := ||A||+ ||B|| :

Instance: Structures A and B and a coloring λ : B → [|A|].
Problem: Compute the number of colorful embeddings g from

A into B.

We leave the straightforward proof, which is a combination of the proofs
of Theorem 14.7 and Lemma 13.37, to the reader.

We need the following standard Chernoff bound. A proof can be found,
for example, in [11].

Fact 14.41. Let S be a sum of mutually independent indicator random vari-
ables and μ := E[S] its expected value. Then for every ε > 0,

Pr
(
|S − μ| > ε · μ

)
< 2 exp(−c(ε) · μ),

where c(ε) = min{(1 + ε) ln(1 + ε)− ε, ε2/2}.

Proof of Theorem 14.38: The idea of the algorithm is simple: Given an in-
stance (A,B) of p-#Emb(C), the algorithm repeats the following for r times
(r will be determined later): It randomly colors B with k := |A| colors and
computes the number of colorful embeddings of A into B (using the algorithm
of Lemma 14.40). For i ∈ [r], let zi be the number of colorful embeddings
found in the ith iteration. The algorithm returns the value
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z :=
kk

k! · r ·
∑
i∈[r]

zi.

All we have to do is get the numbers right: Let A and B and � ∈ N be the
input of our algorithm.

We let k := |A|, n := |B|, pk := k!/kk, ε := 1/�. Choose c := c(ε) according
to Fact 14.41. Let

r :=

⌈
k · ln(8n)

c · pk

⌉
.

Suppose our algorithm chooses the following sequence

λ1, . . . , λr

of random colorings λi : B → [k].
We first consider a fixed embedding g of A into B. For i ∈ [r], let Xg

i be
the indicator variable for the event “g is colorful with respect to λi.” Then

Pr(Xg
i = 1) = pk.

Thus for the expected value E [Sg] of the sum Sg :=
∑

i∈[r] X
g
i of the indicator

variables we get
μ := E [Sg] = pk · r.

Fact 14.41 yields

Pr
(
|Sg − μ| > ε · μ

)
< 2 exp(−c · μ).

Then

Pr(|Sg − μ| > εμ for some embedding g of A into B)

≤
∑

g embedding
of A into B

Pr (|Sg − μ| > εμ)

≤ nk · 2 exp(−c · pk · r)

≤ 2nk · exp

(
−c · pk · k · ln(8n)

c · pk

)
≤ 1

4
.

Thus with probability at least (3/4), for all embeddings g of A into B we have

μ · (1− ε) ≤ Sg ≤ μ · (1 + ε). (14.8)

Note that for each i ∈ [r], the number zi of colorful embeddings computed by
the algorithm in the ith iteration is precisely∑

g embedding
of A into B

Xg
i .
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Thus
r∑

i=1

zi =
∑

g embedding
of A into B

Sg.

Hence for the value z returned by our algorithm we obtain

z =
kk

k! · r ·
∑
i∈[r]

zi = (1/μ) ·
∑

g embedding
of A into B

Sg.

Thus by (14.8), with probability at least (3/4) we have∑
g embedding
of A into B

(1− ε) ≤ z ≤
∑

g embedding
of A into B

(1 + ε) .

Recall that ε = 1/� and let y denote the number of embeddings of A into B.
Then with probability at least (3/4)

y ·
(

1− 1

�

)
≤ z ≤ y ·

(
1 +

1

�

)
. 
�

Notes

The complexity of counting problems was first systematically studied by
Valiant [201, 202, 203]. The #P-completeness of counting the number of per-
fect matchings in a bipartite graph was proved in [202]. The fpras for the num-
ber of perfect matchings was only recently obtained by Jerrum et al. [141],
building on earlier work by Jerrum and Sinclair [140]. Toda’s theorem was
proved in [199]. For an introduction into counting complexity and the design
of fprases by the Markov Chain Monte Carlo method, which is underlying the
fpras for the number of perfect matchings and most other known fprases, we
refer the reader to [139].

Exercise 14.6 is from [102]. Theorem 14.8(1) is from [14, 62]; see [157] for
an interesting application of the theorem to the evaluation of knot diagrams.
Theorem 14.8(2) is due to Frick [110].

The investigation of intractable parameterized counting problems was ini-
tiated independently in [17, 102, 160]. The class #W[1] was introduced in
both [102] and [160], though based on different types of reductions. Our ver-
sion based on fpt parsimonious reductions is from [102]; the “parameterized
counting reductions” in [160] may be viewed as fpt Turing reductions with
only one oracle query. Theorem 14.18 and Exercise 14.27 are from [102, 160].
Exercise 14.29 is from [63].

Theorem 14.30 is from [102]. The notion of an fptras was introduced Arvind
and Raman in [17], and Theorem 14.38 was proved there.
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Open Problems

As a direct analogue of Valiant’s hardness result for computing the number
of perfect matchings, it would be nice to prove that the following problem is
#W[1]-complete:

p-#Matching
Instance: A bipartite graph G and k ∈ N.

Parameter: k.
Problem: Compute the number of matchings of G of cardi-

nality k.

A matching of cardinality k in a graph G = (V, E) is a set of k edges
e1, . . . , ek ∈ E such that ei and ej have no endpoint in common for all i, j ∈ [k]
with i �= j. The problem for arbitrary (not necessarily bipartite) graphs is also
open.

On the structural complexity side, it would be interesting to know whether
some analogue of Toda’s theorem holds. There are several variants that come
to mind, for example: Is the W-hierarchy contained in the closure of #W[1]
under fpt Turing reductions? Is the A-hierarchy contained in the closure of
the #W-hierarchy, or at least #W[P], under fpt Turing reductions?



15

Bounded Fixed-Parameter Tractability and
Limited Nondeterminism

In the definition of fixed-parameter tractability we allowed arbitrary com-
putable functions f to bound the dependence on the parameter of the running
time

f(κ(x)) · |x|O(1)

of an fpt-algorithm. This liberal definition was mainly justified by the hope
that “natural” problems in FPT will have “low” parameter dependence. While
this is true for many problems, in Theorem 10.18 we saw that there is no ele-
mentary function bounding the parameter dependence of p-MC(TREE, FO),
the parameterized model-checking of first-order logic on the class of trees.

There are viable alternatives to the notion of fixed-parameter tractability
obtained by simply putting upper bounds on the growth of the parameter

dependence f . Natural choices are f ∈ 2O(k) and f ∈ 2kO(1)

.
In this chapter, after introducing a general framework of “bounded fixed-

parameter tractability,” we develop large parts of the specific theory with

parameter dependence bounded by 2O(k). The 2kO(1)

-bounded theory, which
is quite similar, will be treated in the exercises.

By and large, the 2O(k)-bounded theory can be developed parallel to the
unbounded theory. The classes corresponding to FPT, W[P], and to the classes
W[t] are denoted by EPT, EW[P], and EW[t], respectively. In Sect. 15.1 we
introduce the appropriate notion of reduction, called ept-reduction, and prove
some useful technical lemmas. We introduce the class EW[P] in Sect. 15.2 and
relate it to limited nondeterminism.

Sections 15.3–15.5 are devoted to the EW-hierarchy. As the classes of the
W-hierarchy, these classes are defined via weighted Fagin-definable problems.
In Sect. 15.3 we characterize the classes via weighted satisfiability problems. In
Sect. 15.4 we will see that many completeness results obtained in the previous
chapters for the W-hierarchy can easily be transfered to the EW-hierarchy.
As an example, we prove that the parameterized hitting set problem, which is
W[2]-complete under fpt-reductions, is EW[2]-complete under ept-reductions.
A surprise occurs when we consider the parameterized VC-dimension problem
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p-VC-Dimension. While in Theorem 6.5 we saw that p-VC-Dimension is
W[1]-complete, the problem turns out to be EW[3]-complete. Thus we are in
the odd situation that in the theory so far, VC-dimension is “easier” than hit-
ting set, whereas in the 2O(k)-bounded theory, it is “harder.” Less surprisingly,
in Sect. 15.6 we will show that in the new framework p-MC(TREE, FO) and
p-MC(FO) have the same complexity (while p-MC(TREE, FO) ∈ FPT and
p-MC(FO) is AW[∗]-complete). Before that, in Sect. 15.5, we establish a nice
direct connection between the (classical) theory of limited nondeterminism
and the 2O(k)-bounded theory, more precisely, between the LOG-hierarchy
and the EW-hierarchy. In particular, we show that LOG[t] = PTIME if and
only if EW[t] = EPT.

15.1 The Bounded Framework

Definition 15.1. Let F be a nonempty class of unary functions from N to
N. A parameterized problem (Q, κ) over the alphabet Σ is F fixed-parameter
tractable if there is a function f ∈ F , a polynomial p, and an algorithm that,
given x ∈ Σ∗, decides if x ∈ Q in at most f(κ(x)) · p(|x|) steps.

We denote the class of all F fixed-parameter tractable problems by F -
FPT. �

We obtain the standard notion of fixed-parameter tractability if we take
as F the class C of all computable functions. Taking as F the class of all func-
tions we obtain the notion which in Downey and Fellows’ book [83] is called
uniform fixed-parameter tractability (there, strongly uniform fixed-parameter
tractability corresponds to our notion of fixed-parameter tractability). Also
observe that K-FPT for the class K of all constant functions is essentially
PTIME. (More precisely, K-FPT is the class of all parameterized problems
(Q, κ) such that Q ∈ PTIME.)

Further natural and interesting choices of classes F of functions are

2kO(1)

, 2O(k), and 2o(k).

In this chapter, we will study the “exponential” theories of 2O(k)-FPT and

2kO(1)

-FPT. The “subexponential” theory will be studied in the next chapter,
but for technical reasons it will be better to work with the effective version
2oeff(k) instead of 2o(k). We denote 2kO(1)

-FPT, 2O(k)-FPT, and 2oeff(k)-FPT
by EXPT, EPT, and SUBEPT, respectively.

From now on, we distinguish between the usual parameterized complex-
ity theory, referred to as unbounded parameterized complexity theory, and the
F -bounded theories for various classes F called bounded parameterized com-
plexity theories.

For functions f, g : N → N, we write f ≤ g if f(k) ≤ g(k) for all k ∈ N.
The following simple observation is useful:
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Lemma 15.2. Let F and F ′ be classes of functions from N to N. Assume
that for every f ∈ F there is an f ′ ∈ F ′ such that f ≤ f ′. Then

F-FPT ⊆ F ′-FPT.

In particular, we see that

SUBEPT ⊆ EPT ⊆ EXPT ⊆ FPT.

The algorithms presented in Chap. 1 show that the problems p-Sat, p-
Vertex-Cover, and p-d-Hitting-Set are in EPT. Theorem 10.18(1) im-
plies that p-MC(TREE, MSO) �∈ EXPT unless PTIME = NP, yet by Theo-
rem 10.16, p-MC(TREE, MSO) ∈ FPT.

Example 15.3. Let Q ⊆ Σ∗ be a decidable problem that is not decidable in

time 2nO(1)

. For κ : Σ∗ → N defined by κ(x) = max{1, |x|} the parameterized
problem (Q, κ) is in FPT \ EXPT. �

As in the unbounded theory, to compare the complexities of parameter-
ized problems that are not F -fixed-parameter tractable, we need a notion of
(many-one) reduction. The most fundamental property expected from a no-
tion of reduction for F -FPT is that F -FPT is closed under the corresponding
reductions, that is:

If (Q, κ) is reducible to (Q′, κ′) and (Q′, κ′) ∈ F-FPT,
then (Q, κ) ∈ F-FPT.

(15.1)

It is not always clear what the “right” notion of reduction for a specific
bounded theory is. However, for the 2O(k)-bounded theory there is a natural
notion that is defined analogous to the “unbounded” notion of fpt-reduction:

Definition 15.4. Let (Q, κ) and (Q′, κ′) be parameterized problems over the
alphabets Σ and Σ′, respectively. An ept-reduction from (Q, κ) to (Q′, κ′) is
a mapping R : Σ∗ → (Σ′)∗ such that:
(1) For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).
(2) There is a computable function f ∈ 2O(k) such that R(x) is computable in

time f(κ(x))·|x|O(1) (that is, R(x) is computable in time 2O(κ(x)) ·|x|O(1)).
(3) There is a d ∈ N such that κ′(R(x)) ≤ d · (κ(x) + log |x|). �

We write (Q, κ) ≤ept (Q′, κ′) if there is an ept-reduction from (Q, κ) to (Q′, κ′),
and use the usual derived notations such as <ept, ≡ept, and

[
(Q, ν)]ept.

Lemma 15.5. EPT is closed under ept-reductions.

We leave the straightforward proof to the reader. The crucial observation,
which also explains the bound in Definition 15.4(3), is that 2O(k+log n) =
2O(k) · nO(1).

Exercise 15.6. Prove that ≤ept is reflexive and transitive. �
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We saw in Proposition 2.6 that polynomial time reductions and fpt-
reductions are incomparable. Similarly, fpt-reductions and ept-reductions are
incomparable:

Proposition 15.7. There are parameterized problems (Q, κ) and (Q′, κ′)
such that

(Q, κ) <fpt (Q′, κ′) and (Q′, κ′) <ept (Q, κ).

Proof: The proof is very similar to the proof of Proposition 2.6. As in that
proof, choose problems Q, Q′ such that Q′ is polynomial time reducible to Q,
Q′ is not in PTIME, and Q is decidable, but not polynomial time reducible to
Q′. Define κ, κ′ by κ(x) := log(|x|+2) (this is the only difference to the proof
of Proposition 2.6) and κ′(x) := 1 for all x. It is easy to verify that (Q, κ) and
(Q′, κ′) have the desired properties. 
�

Very often, the fpt-reductions given in previous chapters are also ept-
reductions, because they are computable by an ept-algorithm, and the pa-
rameter increases by at most a constant factor.

Example 15.8. p-Clique ≡ept p-Independent-Set.
Here the standard reduction (G, k) �→ (G, k) (cf. Example 2.4), where G

denotes the complement of G, is an fpt-reduction, an ept-reduction, and a
ptime-reduction. �

Example 15.9. p-Independent-Set ≡ept p-WSat(Γ−
1,2).

Again it is easy to see that the standard reductions (given in Lemma 6.29
and Exercise 6.30) are ept-reductions. �

However, the next example shows that one has to be very careful when
applying the reductions of the previous chapters; sometimes very simple and
innocent looking fpt-reductions are not ept-reductions:

Example 15.10. The standard fpt-reduction of p-Clique to p-MC(Σ1)
based on the equivalence

(G, k) ∈ p-Clique ⇐⇒ G |= ∃x1 . . .∃xk

∧
1≤i<j≤k

Exixj (15.2)

is not an ept-reduction, since the formula on the right-hand side has length
O(k2). �

Exercise 15.11. Convince yourself that the reductions presented in Ex-
ample 2.7 are ept-reductions, thus showing that p-Dominating-Set ≡ept

p-Hitting-Set. �

Exercise 15.12. Show that p-Hitting-Set ≤ept p-Tournament-Domina-
ting-Set.

Hint: Show that the reduction presented in the proof of Theorem 7.17 is an
ept-reduction. Without proof you may use the fact that a tournament without
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a dominating set of cardinality k (cf. Lemma 7.18) can be constructed in time
2O(k). �

We say that a parameterized problem (Q, κ) has logarithmic parameters
if it is trivial for instances x with κ(x) > O(log |x|), more precisely:

Definition 15.13. A parameterized problem (Q, κ) has logarithmic parame-
ters if for some c ∈ N and all x, y with κ(x) > c · log |x| and κ(y) > c · log |y|

x ∈ Q ⇐⇒ y ∈ Q. �

Exercise 15.14. Show that p-Tournament-Dominating-Set and p-VC-
Dimension have logarithmic parameters. �

We show that polynomial time reductions and ept-reductions coincide on
problems with logarithmic parameters:

Proposition 15.15. Let the parameterized problems (Q, κ) and (Q′, κ′) have
logarithmic parameters. Then:

Q ≤ptime Q′ ⇐⇒ (Q, κ) ≤ept (Q′, κ′).

Proof: Assume that Q ⊆ Σ∗ and Q′ ⊆ (Σ′)∗. We prove the proposition with
two claims.

Claim 1. If (Q′, κ′) has logarithmic parameters and Q ≤ptime Q′, then
(Q, κ) ≤ept (Q′, κ′).

Proof: Let R be a polynomial time reduction from Q to Q′. In particular,
|R(x)| = |x|O(1) for x ∈ Σ∗. Choose c ∈ N such that for all x′, y′ ∈ (Σ′)∗

κ′(x′) > c·log |x′| and κ′(y′) > c·log |y′| =⇒ (x′ ∈ Q′ ⇐⇒ y′ ∈ Q′). (15.3)

If κ′(x′) ≤ c · log |x′| for all x′ ∈ (Σ′)∗, then R is an ept-reduction from Q to
Q′, since κ′(R(x)) ≤ c · log |R(x)| ≤ O(log |x|).

Otherwise, let x′
0 be such that κ′(x′

0) > c·log |x′
0|. We define S : Σ∗ → (Σ′)∗

by:

S(x) :=

{
x′

0, if κ′(R(x)) > c · log |R(x)|,
R(x), otherwise.

By (15.3), S is a reduction from Q to Q′. It is also an ept-reduction from
(Q, κ) to (Q′, κ′), as κ′(S(x)) ≤ max{κ′(x′

0), κ
′(R(x))} ≤ O(log |x|). �

Claim 2. If (Q, κ) has logarithmic parameters and (Q, κ) ≤ept (Q′, κ′), then
Q ≤ptime Q′.

Proof: Let R be an ept-reduction from (Q, κ) to (Q′, κ′). Choose c ∈ N such
that for all x, y ∈ (Σ)∗ with κ(x) > c · log |x| and κ(y) > c · log |y| we have
(x ∈ Q ⇐⇒ y ∈ Q). Let x0 be such that κ(x0) > c · log |x0| (if there is no
such x0 interpret the following argument in the obvious way).
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We define S : Σ∗ → (Σ′)∗ by:

S(x) :=

{
R(x0), if κ(x) > c · log |x|,
R(x), otherwise.

Again one easily verifies that S is a reduction from Q to Q′. Since R(x) is
computable in time 2O(κ(x)) · |x|O(1), and 2O(κ(x)) · |x|O(1) ≤ |x|O(1) for all
x ∈ Σ∗ with κ(x) ≤ c · log |x|, we see that S is computable in polynomial
time. �

Clearly, claims 1 and 2 imply the statement of our proposition. 
�

Corollary 15.16. Let (Q, κ) be a parameterized problem with logarithmic pa-
rameters. Then

Q ∈ PTIME ⇐⇒ (Q, κ) ∈ EPT.

In the following exercise, we start to develop the 2kO(1)

-bounded theory:

Exercise 15.17. (a) Define an appropriate notion of expt-reduction for an

intractability theory for the 2kO(1)

-bounded framework.

Hint: Modify conditions (2) and (3) in Definition 15.4 appropriately. In par-
ticular, replace (3) by:
(3’) There is a c ∈ N such that for all d ∈ N

κ′(R(x)) ≤ O(κ(x)c + (log |x|)1/d).

(b) Prove the “2kO(1)

-analogues” of Lemma 15.5, Exercise 15.6, Proposi-
tion 15.7, Example 15.8, Example 15.9, and Exercise 15.11.

(c) Prove that p-Clique ≡expt p-MC(Σ1). �

15.2 The Class EW[P] and Limited Nondeterminism

In this section we introduce the class EW[P], the analogue of W[P] for the
2O(k)-bounded theory. We show that the weighted circuit satisfiability problem
is complete for EW[P] and relate the class to limited nondeterminism.

Definition 15.18. (1) Let Σ be an alphabet and κ : Σ∗ → N a parameter-
ization. A nondeterministic Turing machine M with input alphabet Σ is
called (2O(k), κ)-restricted if there is a computable function f ∈ 2O(k), a
constant c ∈ N, and a polynomial p ∈ N0[X ] such that on every run with
input x ∈ Σ∗ the machine M performs at most f(k) · p(n) steps, at most
c · (k + log n) · log n of them being nondeterministic. Here n := |x| and
k := κ(x).

(2) EW[P] is the class of all parameterized problems (Q, κ) that can be decided
by a (2O(k), κ)-restricted nondeterministic Turing machine. �
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Recall that for fpt-reductions R the parameter of R(x) is bounded by

g(x) := h(κ(x)) for some computable function h,

whereas for ept-reductions R it is bounded by

g(x) := d · (κ(x) + log |x|) for some d ∈ N.

In κ-restricted Turing machines and in (2O(k), κ)-restricted Turing machines
the number of nondeterministic steps is bounded by g(x) · log |x| for the cor-
responding g. In this sense the notion of (2O(k), κ)-restricted Turing machine
naturally extends the notion of κ-restricted Turing machines.

By a tedious but straightforward proof one shows:

Lemma 15.19. EW[P] is closed under ept-reductions.

We prove the analogue of Theorem 3.9:

Theorem 15.20. p-WSat(CIRC) is EW[P]-complete under ept-reductions.

Proof: Clearly, p-WSat(CIRC) ∈ EW[P], since there exists a nondetermin-
istic Turing machine that on input (C, k), where C is a circuit and k ∈ N,
decides if C is k-satisfiable in ‖C‖O(1) steps and with at most k · log ‖C‖ non-
deterministic steps.

To prove that p-WSat(CIRC) is EW[P]-hard, assume that the problem
(Q, κ) is decided by the Turing machine M that on input x performs 2c·k · |x|s
steps, at most d · (k+log |x|) · log |x| being nondeterministic; here c, d ∈ N. We
set m := 2ck · |x|s and � := d ·(k+log |x|). We may assume that M has at most
binary branching. By a standard simulation of Turing machines by circuits
(cf. Fact 3.10), for every instance x we obtain a circuit Cx with � · log |x| input
nodes and with ‖Cx‖ ≤ 22c·k · |x|O(1) such that

x ∈ Q ⇐⇒ Cx is satisfiable.

We apply to Cx the k · log n-trick (see Corollary 3.13) to get a circuit Dx with
� · |x| input nodes in time O(‖Cx‖+ � · |x|2) such that

Cx is satisfiable ⇐⇒ Dx is �-satisfiable.

Altogether, we have

x ∈ Q ⇐⇒ Dx is d · (k + log |x|)-satisfiable.

This yields an ept-reduction of (Q, κ) to p-WSat(CIRC). 
�
To relate EW[P] to limited nondeterminism (see Theorem 15.23 below) we

consider the restriction of p-WSat(CIRC) to logarithmic parameters.

Lemma 15.21. p-WSat(CIRC) ≤ept p-Log-WSat(CIRC), where
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p-Log-WSat(CIRC)
Instance: A Boolean circuit C and k ≤ log ‖C‖.

Parameter: k.
Problem: Decide whether C is k-satisfiable.

Proof: Let (C, k) be an instance of p-WSat(CIRC). Let C′ be the circuit
obtained from C by adding a new output node, which is an and-node of in-
degree 2k, each input line coming from the output node of a copy of C. All
these copies share only the input nodes. The circuit C′ can be obtained in
time O(2k · ‖C‖), and its size is at least 2k. Thus k ≤ log ‖C′‖. Moreover,

C′ is k-satisfiable ⇐⇒ C is k-satisfiable.

So, the mapping (C, k) �→ (C′, k) is the desired reduction. 
�

Corollary 15.22. p-Log-WSat(CIRC) is EW[P]-complete under ept-reduc-
tions.

Theorem 15.23. EW[P] = EPT if and only if NP[log2 n] = PTIME.

Proof: First assume that EW[P] = EPT. Let Q be a (classical) problem de-
cided by a nondeterministic polynomial time machine M that on every run
on input x performs at most log2|x| nondeterministic steps. Then the param-
eterized problem (Q, κ) with κ(x) := log |x| is in EW[P] and hence in EPT.
Therefore Q ∈ PTIME by Corollary 15.16.

Now assume that NP[log2 n] = PTIME. Since the problem

Log-WSat(CIRC)
Instance: A Boolean circuit C and k ≤ log ‖C‖.
Problem: Decide whether C is k-satisfiable.

is in NP[log2 n], it is in PTIME. Thus, p-Log-WSat(CIRC) ∈ EPT by Corol-
lary 15.16; hence, EW[P] = EPT by the previous corollary. 
�

Exercise 15.24. Show that Log-WSat(CIRC) is NP[log2 n]-complete un-
der polynomial time reductions. �

Exercise 15.25. Show that p-Bounded-NTM-Halt (cf. Example 3.5) is
EW[P]-complete under ept-reductions. �

Exercise 15.26. Show that p-Generators (cf. Theorem 3.19) is EW[P]-
complete under ept-reductions.

Hint: Argue as in Theorem 3.19 using the fact that p-WSat(CIRC+) is
EW[P]-complete under ept-reductions, which will be shown in Exercise 15.33.

�

Exercise 15.27. Define an appropriate class 2kO(1)

-W[P] and prove the ana-
logue of Theorem 15.20. �
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15.3 The EW-Hierarchy

We defined the W-hierarchy by letting W[t] = [p-WD-Πt]
fpt. Recall that for

t, d ≥ 1, by Πt/d we denote the class of Πt-formulas ϕ(X) with at most d
occurrences of X . In Exercise 7.12, we proved that for all t, d with t + d ≥ 3
the class p-WD-Πt/d contains problems that are W[t]-complete under fpt-
reductions. In particular, this means that for all t ≥ 2 we have

W[t] = [p-WD-Πt/1]
fpt. (15.4)

For reasons that will become clear later, in defining the analogue of the W-
hierarchy for the 2O(k)-bounded parameterized complexity theory, we have to
be more restrictive than for the unbounded theory. We take the analogue of
(15.4) as the defining equation:

Definition 15.28. For every t ≥ 2, we let

EW[t] := [p-WD-Πt/1]
ept.

The classes EW[t], for t ≥ 2, form the EW-hierarchy. �

The question whether EW[t] = [p-WD-Πt]
ept is still open. Note that we

have only defined the hierarchy from the second level upwards. We will address
the problem of how to define EW[1] in Sect. 15.5. The following exercise
already indicates that the extension of the EW-hierarchy to EW[1] is not as
smooth as one may hope.

Exercise 15.29. Show that [p-WD-Π1/1]
ept ⊆ EPT. �

A collapse of the EW-hierarchy implies a collapse of the W-hierarchy, as
the following proposition shows:

Proposition 15.30. For all t ≥ 2,

EW[t] = EPT =⇒ W[t] = FPT.

Proof: If EW[t] = EPT, then p-WD-Πt/1 ⊆ EPT ⊆ FPT and hence W[t] =
FPT by (15.4). 
�

The main result of this section is the following theorem:

Theorem 15.31. Let t ≥ 2. Then:
(1) p-WSat(Γt,1) is EW[t]-complete under ept-reductions.
(2) If t is even, then p-WSat(Γ+

t,1) is EW[t]-complete under ept-reductions.

(3) If t is odd, then p-WSat(Γ−
t,1) is EW[t]-complete under ept-reductions.

We obtain this theorem with the following Lemmas 15.32 and 15.35.

Lemma 15.32. Let t ≥ 2 and d ∈ N. Then p-WSat(Γt,d) ≤ept p-WSat(Γ+
t,d)

for even t and p-WSat(Γt,d) ≤ept p-WSat(Γ−
t,d) for odd t.
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Proof: Lemma 7.6 contains the corresponding claims for ≤fpt. One easily ver-
ifies that the reductions in that proof are ept-reductions, too. 
�

Exercise 15.33. Show that p-WSat(CIRC) ≤ept p-WSat(CIRC+).

Hint: The proof of Lemma 7.6 implicitly contains a corresponding ept-
reduction. �

Exercise 15.34. For d ≥ 1, show that p-WSat(Γ1,d) ≤ept p-WSat(Γ−
1,d). �

Let X be a unary relation variable and, for n ≥ 1, fix an n-ary relation
symbol Rn. Furthermore, let t, d ≥ 1. The generic Πt/d-formula is, for even t,
the formula

∀y1∃y2 . . .∀yt−1(∃z1 ∈ X) . . . (∃zd ∈ X)R(t−1)+d y1 . . . yt−1z1 . . . zd, (15.5)

and, for odd t, the formula

∀y1∃y2 . . .∃yt−1(∀z1 ∈ X) . . . (∀zd ∈ X)R(t−1)+d y1 . . . yt−1z1 . . . zd. (15.6)

Lemma 15.35. For t, d ∈ N with t + d ≥ 3:
(1) Let ϕ(X) be a Πt/d-formula. There is a polynomial time algorithm asso-

ciating with every structure A a propositional formula α ∈ Γt,d such that
for all k ∈ N:

(A, k) ∈ p-WDϕ ⇐⇒ (α, k) ∈ p-WSat(Γt,d).

(2) Let ϕ(X) be the generic Πt/d-formula. Then, there is a polynomial time

algorithm associating with every propositional formula α ∈ Γ+
t,d (if t is

even) and α ∈ Γ−
t,d (if t is odd) a structure A with |A| = |α| such that for

all k ∈ N:

(α, k) ∈ p-WSat(Γt,d) ⇐⇒ (A, k) ∈ p-WDϕ

Proof: We present (cf. the proof of Lemma 7.2) the proof of (1) and (2) for
odd t ≥ 2 and then sketch a proof of (2) for even t.

To prove (1), let ϕ(X) ∈ Πt/d with s-ary X . Transforming the quantifier-
free part of ϕ into conjunctive normal form, we obtain an equivalent formula

ϕ′(X) = ∀ȳ1∃ȳ2 . . .∀ȳt

∧
i∈I

ψi,

where each ψi is a disjunction of literals. The formula ϕ′(X) is not necessarily
in Πt/d. However, we may assume that the variable X occurs at most d times
in each ψi. Let A be a structure. For ā ∈ A, let Yā be a propositional variable
with the intended meaning “ā is in the set X satisfying ϕ′(X).” We let α′ be
the Γ−

t,d-formula
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α′ :=
∧

ā1∈A|ȳ1|

∨
ā2∈A|ȳ2|

. . .
∧

āt∈A|ȳ1|

i∈I

δi,ā1,...,āt
,

where ār = ar1 . . . armr
(with mr := |ȳr|), and where δi,ā1,...,āt

is the dis-
junction obtained from ψi as follows: We replace literals (¬)Xyu1v1 . . . yusvs

by (¬)Yau1v1 ...ausvs
, omit literals λ if A �|= λ(ā1, . . . , āt), and delete the whole

δi,ā1,...,āt
if A |= λ(ā1, . . . , āt).

Then, |α′| ∈ O(|A||ȳ1|+...+|ȳt|), which is polynomial in ‖A‖ because ϕ′ is
fixed. For arbitrary B ⊆ As one easily verifies that

A |= ϕ′(B) ⇐⇒ {Yb̄ | b̄ ∈ B} satisfies α′. (15.7)

To ensure that every variable Yā occurs in the propositional formula, we set

α := α′ ∧
∧

ā∈As

(Yā ∨ ¬Yā).

If d = 1, then t ≥ 2 and therefore, we can view the conjunction added to α′

as a Γ2,1-formula. In any case, α is (equivalent to) a Γt,d-formula, and, since
by (15.7) the equivalence

(A, k) ∈ p-WDϕ′ ⇐⇒ (α, k) ∈ p-WSat(Γt,d)

holds, (A, k) �→ (α, k) is the desired reduction.

We turn to a proof of (2). Consider a formula α ∈ Γ−
t,d. Without loss of

generality (see Exercise 4.2) we may assume that α has the form

α =
∧

i1∈I

∨
i2∈I

· · ·
∨

it−1∈I

∧
it∈I

(¬Yi1...it1 ∨ . . . ∨ ¬Yi1...itd).

Let Y be the set of variables of α. We let A := I ∪ Y. The structure A has
two unary relations INDA := I and VARA := Y. Moreover, A contains the
((t− 1) + d)-ary relation

SA :={(i1, . . . , it−1, Y1, . . . , Yd) | i1, . . . , it−1 ∈ I, Y1, . . . , Yd ∈ Y,

and for all it ∈ I: {Yi1...it1, . . . , Yi1...itd} �⊆ {Y1, . . . , Yd}}.

Let

ϕ0(X) := ∀y1(IND y1 → ∃y2(IND y2 ∧ . . .∃yt−1(IND yt−1∧
(∀z1 ∈ X) . . . (∀zd ∈ X)(VAR z1 ∧ Sy1 . . . yt−1z1 . . . zd)) . . .)).

Then for all � ∈ N and Y1, . . . , Y� ∈ Y we have

{Y1, . . . , Y�} satisfies α ⇐⇒ A |= ϕ0({Y1, . . . , Y�}),

and therefore
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(α, k) ∈ p-WSat(Γ−
t,d) ⇐⇒ (A, k) ∈ p-WDϕ0 .

It is easy to see that ϕ0(X) is equivalent to a formula ϕ1(X) of the form

∀y1∃y2 . . .∃yt−1(∀z1 ∈ X) . . . (∀zd ∈ X)ψ(y1, . . . , yt−1, z1, . . . , zd)

with quantifier-free ψ. Setting A′ := (A, RA′

t−1+d) with

RA′

t−1+d := {ā ∈ A(t−1)+d | A |= ψ[ā]},

we see that for the generic Πt/d-formula

ϕ(X) = ∀y1∃y2 . . .∃yt−1(∀z1 ∈ X) . . . (∀zd ∈ X)R(t−1)+d y1 . . . yt−1z1 . . . zd

we have
(α, k) ∈ p-WSat(Γ−

t,d) ⇐⇒ (A′, k) ∈ p-WDϕ,

which proves our claim.
We sketch the changes that are necessary for even t. We can assume that

α ∈ Γ+
t,d has the form

α =
∧

i1∈I

∨
i2∈I

· · ·
∧

it−1∈I

∨
it∈I

(Yi1...it1 ∧ . . . ∧ Yi1...itd).

We set

ϕ0(X) := ∀y1(IND y1 → ∃y2(IND y2 ∧ . . .∀yt−1(IND yt−1 →
(∃z1 ∈ X) . . . (∃zd ∈ X)Sy1 . . . yt−1z1 . . . zd) . . .)).

If α has less than k variables, we choose A so that (A, k) is a “no”-instance
of p-WDϕ0 , otherwise we define A as above but setting

SA :={(i1, . . . , it−1, Y1, . . . , Yd) | i1, . . . , it−1 ∈ I, Y1, . . . , Yd ∈ Y, and

there is an it ∈ I with {Yi1...it1, . . . , Yi1...itd} ⊆ {Y1, . . . , Yd}}. 
�

Proof of Theorem 15.31: Immediate from Lemmas 15.32 and 15.35. 
�

By Lemma 15.32, Exercise 15.34, and Lemma 15.35, we obtain:

Corollary 15.36. (1) For t, d ∈ N with t + d ≥ 3 and the generic Πt/d-
formula ϕ(X),
• p-WSat(Γt,d) ≡ept p-WSat(Γ+

t,d) ≡ept p-WDϕ if t is even;

• p-WSat(Γt,d) ≡ept p-WSat(Γ−
t,d) ≡ept p-WDϕ if t is odd.

(2) Let t ≥ 2. If ϕ(X) ∈ Πt/1 is generic, then p-WDϕ is EW[t]-complete.

Let us also mention the following characterization of the EW-hierarchy by
model-checking problems. For a proof, we refer the reader to the literature.
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Theorem 15.37. For every t ≥ 2 and u ≥ 1, the problem p-MC(Σt,u) is
EW[t]-complete under ept-reductions.

We know that p-WSat(Γt,d) ≤fpt p-WSat(Γt,1) for t ≥ 2 and d ∈ N (see
Lemma 7.5). It is not known whether ≤fpt can be replaced by ≤ept. Similarly,
it is not known if the analogue of the Monotone and Antimonotone Collapse
Theorem holds, more precisely, it is not known if p-WSat(Γ+

t+1,d) ∈ EW[t]

for even t, and if p-WSat(Γ−
t+1,d) ∈ EW[t] for odd t. The following exercises

contain some notions and results that originated in these open questions.

Exercise 15.38. For t ∈ N define the class EW[t + 1/2] of parameterized
problems by:
• EW[t + 1/2] = [p-WSat(Γ+

t+1,1)]
ept if t is even;

• EW[t + 1/2] = [p-WSat(Γ−
t+1,1)]

ept if t is odd.
Observe that

EW[1.5] ⊆ EW[2] ⊆ EW[2.5] ⊆ EW[3] ⊆ . . . .

Prove the following robustness property of the classes EW[t + 1/2] (as re-
marked above, it is not known whether the classes EW[t] share this property):
• p-WSat(Γ+

t+1,d) ∈ EW[t + 1/2] for even t ∈ N and d ∈ N.

• p-WSat(Γ−
t+1,d) ∈ EW[t + 1/2] for odd t ∈ N and d ∈ N. �

Exercise 15.39. An independent set in a hypergraph H = (V, E) is a set
I ⊆ V such that e �⊆ I for all e ∈ E. Show that the parameterized independent
set problem for hypergraphs p-Hyp-IS is EW[1.5]-complete, where

p-Hyp-IS
Instance: A hypergraph H and k ∈ N.

Parameter: k.
Problem: Decide whether H has an independent set of cardi-

nality k.
�

Exercise 15.40. A disconnecting set in a hypergraph H = (V, E) is a set
D ⊆ V such that for all e ∈ E there is an e′ ∈ E with e∩ e′ ⊆ D (e and e′ are
disconnected when removing D). Show that the parameterized disconnecting
set problem for hypergraphs p-Hyp-Dis is EW[2.5]-complete, where

p-Hyp-Dis
Instance: A hypergraph H and k ∈ N.

Parameter: k.
Problem: Decide whether H has a disconnecting set of cardi-

nality k.
�
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Exercise 15.41. Define the analogue of the EW-hierarchy for the 2kO(1)

-
bounded theory and call its classes EXPW[2], EXPW[3],. . . .

(a) Show the following strengthening of Theorem 15.31:
For t ≥ 2 and d ∈ N we have:
• p-WSat(Γt,d) is EXPW[t]-complete under expt-reductions.
• If t is even, then p-WSat(Γ+

t,d) is EXPW[t]-complete under expt-
reductions.

• If t is odd, then p-WSat(Γ−
t,d) is EXPW[t]-complete under expt-

reductions.

(b) Generalize the results in Exercises 15.38–15.40 to the 2kO(1)

-bounded the-
ory. �

15.4 Complete Problems

In this section we show the EW[2]-completeness of p-Hitting-Set and of
p-Dominating-Set and the EW[3]-completeness of p-VC-Dimension.

Theorem 15.42. p-Hitting-Set is EW[2]-complete under ept-reductions.

Proof: Example 4.42 shows that p-Hitting-Set is p-WDhs for the Π2/1-
formula hs; hence, p-Hitting-Set ∈ EW[2]. The proof of Theorem 7.14 shows
that p-WSat(Γ+

2,1) ≤ept p-Hitting-Set. This yields the EW[2]-hardness by
Theorem 15.31. 
�

By Exercise 15.11 we get:

Corollary 15.43. p-Dominating-Set is EW[2]-complete under ept-reduc-
tions.

Exercise 15.44. p-Tournament-Dominating-Set is EW[2]-complete un-
der ept-reductions. �

Recall the parameterized VC-dimension problem (see p. 91 and p. 108 for
the necessary definitions):

p-VC-Dimension
Instance: A hypergraph H = (V, E) and k ∈ N.

Parameter: k.
Problem: Decide whether VC(H) ≥ k, that is, whether there is a

subset of V of cardinality k that is shattered by E.

In Theorem 6.5 we saw that p-VC-Dimension is W[1]-complete under
fpt-reductions. To prove membership in W[1], we reduced p-VC-Dimension
to p-MC(Σ1) by associating with every instance (H, k) of p-VC-Dimension
an equivalent instance (H′, ϕk) of p-MC(Σ1). However, an inspection of the
proof shows that |ϕk| ≥ 2k. Hence that reduction is not an ept-reduction. In
fact, we show:
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Theorem 15.45. p-VC-Dimension is EW[3]-complete under ept-reductions.

We show that p-VC-Dimension ∈ EW[3] with the next lemma and that
p-VC-Dimension is EW[3]-hard with Lemma 15.48.

Lemma 15.46. p-VC-Dimension ∈ EW[3].

Proof: We present an ept-reduction of p-VC-Dimension to p-WDϕ for some
ϕ(X) ∈ Π3/1. Let (H, k), where H = (V, E), be an instance of p-VC-

Dimension. We may assume that |E| ≥ 2k. Let A0 be the structure with
universe

V ∪ E ∪ [k] ∪ Pow([k])

and with unary relations VERTA0 := V , EDGEA0 := E, NUMA0 := [k], and
SETA0 := Pow([k]). Moreover, A0 has a binary incidence relation IA0 :

IA0 := {(v, e) | v ∈ V, e ∈ E, v ∈ e} ∪ {(i, s) | i ∈ [k], s ∈ Pow([k]), i ∈ s}.

In a first attempt for a reduction we introduce a Π3/1-formula ϕ0(X) with a
binary relation variable X . We intend X to be interpreted by a set {(i, vi) |
i ∈ [k]} such that {vi | i ∈ [k]} is shattered by E (for a “yes”-instance). We
let

ϕ0(X) := ∀z
(
SET z → ∃x

(
EDGEx∧

∀(y, w) ∈ X
(
NUM y ∧ VERTw ∧ (Iwx↔ Iyz)

)))
.

Clearly, ϕ0(X) is equivalent to a Π3/1-formula. Moreover, we have:

(1) If A0 |= ϕ0(S) then S ⊆ [k]× V .
(2) If A0 |= ϕ0({(1, v1), . . . , (k, vk)}), then v1, . . . , vk are pairwise distinct.
(3) If v1, . . . , vk are pairwise distinct, then A0 |= ϕ0({(1, v1) . . . , (k, vk)}) if

and only if {v1, . . . , vk} is shattered by E.

To prove (2), assume that A0 |= ϕ0({(1, v1), . . . , (k, vk)}) and let i �= j. Inter-
pret the variable z in ϕ0 by {i}. For the corresponding interpretation e of x
we have vi ∈ e and vj �∈ e and hence vi �= vj . Claim (3) follows immediately
from the definition of ϕ0.

So it remains to ensure that every set S with A0 |= ϕ0(S) of cardinality k
has the form {(1, v1) . . . , (k, vk)} for some v1, . . . , vk, or in other words that

if A0 |= ϕ0(S), |S| = k, and (i, v), (i, v′) ∈ S, then v = v′. (15.8)

We cannot simply add a subformula such as ∀(y, w) ∈ X∀(y′, w′) ∈ X(y =
y′ → w = w′) to ϕ0, because we are only allowed to use X (cf. Lemma 7.18)
once in a Π3/1-formula.

To resolve this problem, we define a new structure A := (A0, E
A
1 , EA

2 )
expanding A0 by two 4-ary relations EA

1 and EA
2 defined by:
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(i, v, i′, v′) ∈ EA
1 ⇐⇒ i = i′

(i, v, i′, v′) ∈ EA
2 ⇐⇒ v = v′.

For

ϕ1(X) := ∀y′∀w′
(
NUM y′ ∧ VERTw′ → ∃w′′(VERTw′′∧

∀(y, w) ∈ X(E1y
′w′yw→ E2y

′w′′yw)
))

we show:

(4) If S ⊆ [k] × V , |S| = k, and A |= ϕ1(S), then S has the form
{(1, v1), . . . , (k, vk)} for some v1, . . . , vk ∈ V .

In fact, assume that A |= ϕ1(S) and (i, v), (i, v′) ∈ S. We claim that v = v′.
Interpret the variables y′ and w′ of ϕ1(X) by the elements i and v′ of A,
respectively. Let v′′ ∈ V be the corresponding interpretation of the variable w′′

such that ∀(y, w) ∈ X(E1iv
′yw → E2iv

′′yw) holds in A. Now first interpret
(y, w) by (i, v). Then (i, v′, i, v) ∈ EA

1 and thus (i, v′′, i, v) ∈ EA
2 , which implies

that v′′ = v. Next, interpret (y, w) by (i, v′). By a similar argument, we see
that v′′ = v′ and hence v = v′. This completes the proof of (4).

We merge ϕ0(X) and ϕ1(X) into the formula

ϕ(X) := ∀z∀y′∀w′
(
(SET z ∧NUM y′ ∧VERTw′)→

∃x∃w′′(EDGEx ∧ VERTw′′ ∧ ∀(y, w) ∈ X(
NUM y ∧ VERTw ∧ (Iwx↔ Iyz) ∧ (E1y

′w′yw→ E2y
′w′′yw)

)))
.

Clearly, ϕ(X) is equivalent to a Π3/1-formula. If A |= ϕ(S), then A |= ϕ0(S)
and A |= ϕ1(S). Hence, by (1)–(4), we see that

(H, k) ∈ p-VC-Dimension ⇐⇒ (A, k) ∈ p-WDϕ.

Since A can be constructed in time polynomial in the size of H, we obtain the
desired reduction. 
�

The following observation will be useful to show the EW[3]-hardness of
VC-Dimension. For a set of propositional formulas A, we introduce the pa-
rameterized partitioned satisfiability problem:

p-PSat(A)
Instance: A formula α ∈ A and a partition X1, . . . ,Xk of the

set of variables of α.
Parameter: k.

Problem: Decide whether (α,X1, . . . ,Xk) is satisfiable, that
is, whether α has a satisfying assignment that sets
exactly one variable in each X� to true.
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Lemma 15.47. For odd t ≥ 2, p-WSat(Γ−
t,1) ≤ept p-PSat(Γ−

t,1).

Proof: Let (α, k) be an instance of p-WSat(Γ−
t,1) and let X be the set of

variables of α. For every X ∈ X , we introduce k new variables X1, . . . , Xk

and set X� := {X� | X ∈ X} for � ∈ [k]. Let α′ be the formula ob-
tained from α by replacing every literal ¬X by

∧
�∈[k] ¬X�. Let α′′ :=

α′ ∧
∧

X∈X
∧

1≤�<m≤k(¬X� ∨ ¬Xm). Then α′′ is equivalent to a formula β

in Γ−
t,1 and

α is k-satisfiable ⇐⇒ (β,X1, . . . ,Xk) is satisfiable. 
�

Lemma 15.48. p-VC-Dimension is EW[3]-hard.

Proof: We shall prove that p-PSat(Γ−
3,1) ≤ept p-VC-Dimension, this suffices

in view of Theorem 15.31 and Lemma 15.47.
It will be convenient to describe hypergraphs by their incidence matrices.

With every {0, 1}-matrix B = (bij)i∈[m],j∈[n] we associate the hypergraph
HB = (VB, EB) with vertex set VB = [n] and edge set EB = {e1, . . . , em},
where ei = {j ∈ [n] | bij = 1}. Hence the columns of B correspond to the
vertices and the rows to the hyperedges of HB .

Let C ⊆ [n] be a set of columns of B. We say that a subset D ⊆ C is
realized by a row i ∈ [m] if for all j ∈ C we have (bij = 1 ⇐⇒ j ∈ D). We
say that C is shattered (by B) if every subset D of C is realized by some row
of B. Note that this is the case if and only if C is shattered by EB.

Consider an instance (α, k,X1, . . . ,Xk) of p-PSat(Γ−
3,1) with

α =
∧
i∈I

∨
j∈J

∧
�∈L

¬Xij�.

We may assume that I = {0, . . . , |I| − 1} and that all Xh are ordered, so that
we can speak of the sth variable in Xh.

We choose the minimal p such that 2p > 2k + |I| · |J |. We introduce a
{0, 1}-matrix B such that for k′ := k + 2p we have

(α,X1, . . . ,Xk) is satisfiable ⇐⇒ (HB , k′) ∈ p-VC-Dimension. (15.9)

The matrix B = (bij) has three blocks of columns. The first block represents
the selection of an assignment and is subdivided into k parts; the hth one of
which has width |Xh|. The second block has width p and will mainly contain
the binary representations of natural numbers in I. The third block, the con-
trol part, also has width p. Recall that for s, n ∈ N0, we denote by bit(s, n) the
sth bit of the binary representation of n, the 0th bit being the least-significant
one.

Furthermore, for n ∈ [0, 2p − 1], let 〈n〉 = bit(p − 1, n) . . .bit(0, n) be the
binary representation of n with p digits. And for n ∈ [0, 2k − 1], let
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[[n]] = bit(0, n) . . .bit(0, n)︸ ︷︷ ︸
|X1| times

. . . bit(k − 1, n) . . .bit(k − 1, n)︸ ︷︷ ︸
|Xk| times

.

The matrix B consists of the following rows:

(1) [[e]] 〈i〉 〈s〉 for all 0 ≤ e < 2k, 0 ≤ i < 2p, and 1 ≤ s < 2p.
(2) [[e]] 〈i〉 〈0〉 for all 0 ≤ e < 2k and |I| ≤ i < 2p.
(3) [[e]] 〈i〉 〈0〉 for all 1 ≤ e < 2k and 0 ≤ i < |I|.
(4) w1 . . . wk 〈i〉 〈0〉 for all 0 ≤ i < |I| and j ∈ J ,

where every wh has length |Xh| and depends on (Xij�)�∈L: The sth posi-
tion of wh is 0 if and only if the sth variable of Xh is not in {Xij� | � ∈ L}.

We call the rows defined in (1), (2), (3), (4) rows of type (1), (2), (3), (4),
respectively.

Note that the matrix B and thus the instance (HB, k′) can be computed
from (α,X1, . . . ,Xk) in time 2O(k) · |α|O(1) and that k′ ∈ O(k + log |α|). Thus
to prove that the mapping (α,X1, . . . ,Xk) �→ (HB , k′) is an ept-reduction, it
only remains to prove (15.9).

Each set C of columns corresponds to an assignment VC to the variables
of α that sets precisely the variables corresponding to columns in C of the
first block to true. Let us call a set C of k′ columns of B that contains all
columns of the last two blocks of B and exactly one column of each of the k
parts of the first block nice. For a nice set C the assignment VC corresponds
to an assignment “to (α,X1, . . . ,Xk).”

Claim 1. Let C be a set of k′ columns that is shattered by B. Then C is nice.

Proof: Since k′ = k + 2p, it suffices to prove that C contains at most one
column of each of the k parts of the first block.

If we restrict all rows to the first block, then at most 2k + |I| · |J | < 2p

distinct rows occur (as the restriction of any row of type (2) or (3) coincides
with the restriction of some row of type (1)). Therefore, the set C contains
fewer than p columns of the first block. Since the length of the second block
is p, the set C contains at least one column j from the last block. Note that
a subset D ⊆ C that contains j can only be realized by a row of type (1).

Suppose for contradiction that C contains two columns j1, j2 of the same
part of the first block. Since rows of type (1) are constant within each part of
the first block, for every row i of type (1) we have (bij1 = 1 ⇐⇒ bij2 = 1).
Thus no row of B of type (1), and hence no row, can realize the subset {j1, j}
of C, which contradicts the assumption that C is shattered by B. �

Claim 2. Let C be a nice set of columns. Then C is shattered by B if and
only if VC satisfies α.

Proof: For s ∈ [k] let Xs ∈ X be the variable of α corresponding to the column
of the sth part of the first block contained in C; hence, VC = {X1, . . . , Xk}.

For the forward direction, suppose that C is shattered. To prove that VC

satisfies α, let i0 ∈ I. We shall prove that there is a j0 ∈ J such that VC
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satisfies
∧

�∈L ¬Xi0j0�. Let D be the subset of C that contains no columns
of the first and third block and precisely the columns of the second block
corresponding to the positions of 1’s in the binary representation of i0. Since
C is shattered, D must be realized. D cannot be realized by a row of type (1)
(as 1 ≤ s in such rows) nor by a row of type (2) (as |I| ≤ i in such rows) nor
by a row of type (3) (as 1 ≤ e in such rows). Thus there is a row r of B of
type (4), say

w1 . . . wk 〈i0〉 〈0〉,
that realizes D. Therefore all positions of the wqs corresponding to columns
in C must be 0. Since C contains a column of each part of the first block,
each wq contains a position that is 0. Suppose row r corresponds to j0 ∈ J .
Let q ∈ [k]. Since the position in wq corresponding to the variable Xq is 0,
we have Xq �∈ {Xi0j0� | � ∈ L} by the definition of rows of type (4). Thus
X1, . . . , Xk /∈ {Xi0j0� | � ∈ L}, and therefore VC satisfies

∧
�∈L ¬Xi0j0� and

hence α.
For the backward direction, suppose that VC satisfies α. Then for all i

there is a j such that X1, . . . , Xk /∈ {Xij� | � ∈ L}. The row of type (4)
corresponding to i, j realizes the subset D of C defined as above. All other
subsets are realized by rows of type (1)–(3). �

Both claims together yield (15.9), by the one-to-one correspondence be-
tween nice sets and assignments to (α,X1, . . . ,Xk). 
�

Exercise 15.49. Prove that for all t, d ∈ N with t + d ≥ 3, p-PSat(Γt,d) is
equivalent to p-WSat(Γt,d) under ept-reductions and under fpt-reductions.

Furthermore, if t is odd then the analogous result holds for Γ−
t,d and if t is

even it holds for Γ+
t,d. �

Exercise 15.50. (a) Prove the analogues of Theorem 15.42 and Corol-

lary 15.43 for the 2kO(1)

-bounded theory.

(b) Prove that p-VC-Dimension ∈ EXPW[3].

Remark: It is not known whether p-VC-Dimension is EXPW[3]-complete
under expt-reductions. �

15.5 The EW-Hierarchy and the LOG-Hierarchy

In Chap. 4, for every first-order formula ϕ(X) with one free relation variable
X of arity s, we introduced the following “log-version” of the problem WDϕ:

Log-WDϕ

Instance: A structure A and k ≤ log ‖A‖.
Problem: Decide whether there is a relation S ⊆ As with |S| =

k such that A |= ϕ(S).
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We introduced LOG[t], the tth class of the LOG-hierarchy, as the closure of
Log-WD-Πt/1 under polynomial time reductions:

LOG[t] = [Log-WD-Πt/1]
ptime

(for t ≥ 2).
In this section we show how completeness results for the EW-hierarchy

translate into completeness results for the LOG-hierarchy (and vice versa).

Recall that we already introduced “log-versions” Log-Clique, Log-
Dominating-Set, and Log-WSat(CIRC) of the clique problem, the domi-
nating set problem, and the weighted satisfiability problem for circuits, respec-
tively. Similarly, we define Log-Hitting-Set and Log-WSat(A) for every
class A of propositional formulas.

We parameterize these “log-problems” as the corresponding original ver-
sions, for example:

p-Log-WDϕ

Instance: A structure A and k ≤ log ‖A‖.
Parameter: k.

Problem: Decide whether there is a relation S ⊆ As with
|S| = k such that A |= ϕ(S).

Similarly, we define p-Log-WSat(A) for every class A of propositional for-
mulas, p-Log-Clique, p-Log-Dominating-Set, and p-Log-Hitting-Set.
Observe that all these problems have logarithmic parameters (in the sense of
Definition 15.13).

The following technical lemmas show that these logarithmic restrictions
have the same 2O(k)-parameterized complexity as the original problems. The
proofs rely on “padding arguments” that increase the size of the input instance
without changing the instances significantly such that the size is at least
exponential in the parameter.

Lemma 15.51. Let t ≥ 1, and let Γ be one of the classes Γ+
t,1, Γ−

t,1, or Γt,1.
Then

p-WSat(Γ) ≤ept p-Log-WSat(Γ).

Proof: Essentially the proof is the same as that for Lemma 15.21. We leave
the details to the reader. 
�

Lemma 15.52. Let t ≥ 1 and ϕ(X) be the generic Πt/1-formula. Then

p-WDϕ ≤ept p-Log-WDϕ.

Proof: We only give the proof for even t, for odd t it is similar. Consider the
generic Πt/1-formula
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ϕ(X) = ∀y1 ∃y2 . . .∀yt−1(∃x ∈ X)Rt y1 . . . yt−1x.

We write R for Rt. Let (A, k) be an instance of p-WDϕ and assume without
loss of generality that |A| ≥ k and k > log ‖A‖. Let A′ ⊇ A such that
|A′| ≥ 2k; we shall define an {R}-structure A′ with universe A′ such that the
instances (A′, k) and (A, k) are equivalent.

Our first idea might be to just let RA′

= RA, then the “essential” part
of the structure A′ is just A. The problem with this is that the value of the
formula ϕ(X) may change nevertheless. Since universal quantifiers now range
over a larger universe, the formula may become false where it was true before.
We adjust the relation in such a way that the new values for the universally
quantified variables can never make the formula false and adapt the values for
the existentially quantified variables accordingly. We let

RA′

:= RA ∪
{
(a1, . . . , at−1, b) ∈ (A′)t

∣∣ ai ∈ A′ \A for some odd i ≤ t− 1
}
.

We claim that the instances (A′, k) and (A, k) are equivalent instances of
p-WDϕ. Suppose first that there is an S ⊆ A′ such that |S| ≤ k and A′ |=
ϕ(S). Then, if we interpret all universal quantifiers by elements in A, all
witnesses for the existential quantifiers must always be from A, because RA′

contains no tuple that has an element from A′ \ A at an even place and
elements from A at all odd places. Thus A |= ϕ(S ∩A). Moreover, A |= ϕ(S′)
for all S′ ⊇ A∩S. Since |A| ≥ k, there is some S′ ⊆ A such that |S′| = k and
S′ ⊇ A ∩ S.

Conversely, suppose that A |= ϕ(S) for some S ⊆ A. Then A′ |= ϕ(S),
because if one of the universally quantified variables yi is interpreted by an
element ai ∈ A′ \A, then the tuple (a1, . . . , at−1, b) belongs to RA′

no matter
how all other variables are interpreted. On the other hand, if all universally
quantified yi are interpreted by elements in A, then the witnesses for the
existential quantifiers can be chosen as in A. 
�

Theorem 15.53. Let t ≥ 2 and ϕ(X) the generic Πt/1-formula. Then

Log-WDϕ is LOG[t]-complete under polynomial time reductions.

Proof: Let ψ(X) be an arbitrary Πt/1-formula. Then

p-Log-WDψ ≤ept p-WDψ ≤ept p-WDϕ ≤ept p-Log-WDϕ,

the first inequality being trivial, the second one holding by Corollary 15.36(2),
and the last one by the preceding lemma. Now, Proposition 15.15 yields
Log-WDψ ≤ptime Log-WDϕ, which shows our claim, as ψ(X) was an arbi-
trary Πt/1-formula. 
�

So far, we have seen that various parameterized problems have logarithmic
restrictions of the same 2O(k)-parameterized complexity. It will be convenient
to introduce a formal concept.
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Definition 15.54. Let (Q, κ) and (Q′, κ′) be parameterized problems. (Q′, κ′)
is an ept-equivalent logarithmic restriction of (Q, κ) if (1) and (2) hold:
(1) (Q′, κ′) has logarithmic parameters;
(2) (Q, κ) ≡ept (Q′, κ′). �

Example 15.55. (1) p-Log-WSat(CIRC) is an ept-equivalent logarithmic
restriction of p-WSat(CIRC) (see Lemma 15.21).

(2) Let t ≥ 1 and let Γ ∈ {Γ+
t,1, Γ

−
t,1Γt,1}. Then p-Log-WSat(Γ) is an ept-

equivalent logarithmic restriction of p-WSat(Γ) (see Lemma 15.51).
(3) Let t ≥ 1 and ϕ(X) be the generic Πt/1-formula. Then p-Log-WDϕ is an

ept-equivalent logarithmic restriction of p-WDϕ (see Lemma 15.52).
(4) p-Tournament-Dominating-Set is an ept-equivalent logarithmic re-

striction of itself.
(5) p-VC-Dimension is an ept-equivalent logarithmic restriction of itself. �

We can extend Proposition 15.15 to problems with ept-equivalent loga-
rithmic restrictions in the following way:

Lemma 15.56. Let (Q1, κ1) and (Q2, κ2) have ept-equivalent logarithmic re-
strictions (Q′

1, κ
′
1) and (Q′

2, κ
′
2), respectively. Then

(Q1, κ1) ≤ept (Q2, κ2) ⇐⇒ Q′
1 ≤ptime Q′

2.

Proof: Since (Qi, κi) ≡ept (Q′
i, κ

′
i) for i = 1, 2, we get the first equivalence in

(Q1, κ1) ≤ept (Q2, κ2) ⇐⇒ (Q′
1, κ

′
1) ≤ept (Q′

2, κ
′
2)

⇐⇒ Q′
1 ≤ptime Q′

2,

the last equivalence holding by Proposition 15.15. 
�
The corresponding version of Corollary 15.16 reads as follows:

Corollary 15.57. Let (Q′, κ′) be an ept-equivalent logarithmic restriction of
(Q, κ). Then

(Q, κ) ∈ EPT ⇐⇒ Q′ ∈ PTIME.

The following general statement shows how completeness results for the
EW-hierarchy and for the LOG-hierarchy correspond to each other.

Proposition 15.58. Let (Q0, κ0) have an ept-equivalent logarithmic restric-
tion (Q′

0, κ
′
0) and let

C0 := [(Q0, κ0)]
ept and C′

0 := [Q′
0]

ptime.

Then for all parameterized problems (Q, κ) with an ept-equivalent logarithmic
restriction (Q′, κ′):
• (Q, κ) ∈ C0 ⇐⇒ Q′ ∈ C′

0.
• (Q, κ) is C0-hard under ept-reductions if and only if Q′ is C′

0-hard under
ptime-reductions.
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Proof: The proofs of the corresponding implications for membership and hard-
ness are all similar. For example, let (Q, κ) be C0-hard under ept-reductions.
Then, (Q0, κ0) ≤ept (Q, κ) and hence Q′

0 ≤ptime Q′ by Lemma 15.56, which
shows that Q′ is C′

0-hard under ptime-reductions. 
�
As concrete applications we obtain:

Theorem 15.59. (1) Let t ≥ 2. The following problems are LOG[t]-complete
under polynomial time reductions:
a) Log-WSat(Γt,1),
b) Log-WSat(Γ+

t,1) if t is even, and Log-WSat(Γ−
t,1) if t is odd.

(2) Log-Dominating-Set, Log-Hitting-Set, and Tournament-Domi-
nating-Set are LOG[2]-complete under polynomial time reductions.

(3) VC-Dimension is LOG[3]-complete under polynomial time reductions.

Proof: For t ≥ 2 and the generic Πt/1-formula ϕ(X) we have

EW[t] = [p-WDϕ]ept and LOG[t] = [Log-WDϕ]ptime (15.10)

(by Corollary 15.36(2) and Theorem 15.53). In view of Example 15.55, our
completeness claims follow from the corresponding completeness results for
the EW-hierarchy by the preceding proposition. 
�

Our techniques also yield an equivalence between the strictness of the
EW-hierarchy and the LOG-hierarchy:

Theorem 15.60. (1) Let t ≥ 2. Then EW[t] = EPT if and only if LOG[t] =
PTIME.

(2) Let t′ > t ≥ 2. Then EW[t′] = EW[t] if and only if LOG[t′] = LOG[t].
(3) Let t ≥ 2. Then EW[P] = EW[t] if and only if NP[log2 n] = LOG[t].

Proof: Let t′ > t ≥ 2 and ϕ′ and ϕ be the generic Πt′/1-formula and the
generic Πt/1-formula, respectively. By (15.10), for (1) it suffices to show that

p-WDϕ ∈ EPT ⇐⇒ Log-WDϕ ∈ PTIME,

and for (2) that

p-WDϕ′ ≤ept p-WDϕ ⇐⇒ Log-WDϕ′ ≤ptime Log-WDϕ.

These statements hold by Corollary 15.57 and Lemma 15.56, respectively.
For (3), note that

EW[P] = [p-WSat(CIRC)]ept and NP[log2 n] = [Log-WSat(CIRC)]ptime

(see Theorem 15.20 and Exercise 15.24) and argue similarly. 
�

Exercise 15.61. Show that Log-Bounded-NTM-Halt and Log-Gener-
ators are NP[log2 n]-complete under polynomial time reductions, where
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Log-Bounded-NTM-Halt
Instance: A nondeterministic Turing machine M, n ∈ N in

unary, and k ≤ log ‖M‖.
Problem: Decide whether M accepts the empty string in at

most n steps and using at most k nondeterministic
steps.

Log-Generators
Instance: n ∈ N, k ≤ log n, and a binary function F on [n].
Problem: Decide whether F has a set of generators of cardi-

nality k.

Hint: Recall that p-Bounded-NTM-Halt and p-Generators are W[P]-
complete (see Theorem 3.16 and Theorem 3.19). �

The following exercises contain definitions of the classes EW[1] and LOG[1]
that allow us to prove the statements of Theorem 15.60 for all t ≥ 1 (instead
of t ≥ 2).

Exercise 15.62. Show the ept-equivalence of the following problems
• p-WSat(Γ−

1,2);
• p-WDϕ for the generic Π1/2-formula;
• p-Clique.
We let EW[1] := [p-WD-Π1/2]

ept. �

Exercise 15.63. Show that p-Clique ≤ p-Log-Clique. �

Exercise 15.64. Show the ptime-equivalence of the following problems
• Log-WSat(Γ−

1,2);
• Log-WDϕ for the generic Π1/2-formula;
• Log-Clique.
We let LOG[1] := [LOG-WD-Π1/2]

ept. �

Exercise 15.65. Show the statements of Theorem 15.60 for all t ≥ 1. �

15.6 Higher Levels of Intractability

From Chap. 10 we know that p-MC(STRING, FO) is in FPT and that
p-MC(FO) is AW[∗]-complete under fpt-reductions. We saw that the pa-
rameter dependence of any fpt-algorithm for p-MC(STRING, FO) cannot
be bounded by any elementary function unless FPT = AW[∗] (see Exer-
cise 10.33); hence, p-MC(STRING, FO) �∈ EPT. Nevertheless, the following
result is remarkable:
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Theorem 15.66. p-MC(STRING, FO) ≡ept p-MC(FO).

As a technical tool in the proof of this theorem, we first consider the
alternating weighted satisfiability problem (see p. 179). Similarly as in the
unbounded theory, we have:

Proposition 15.67. p-AWSat(Γ1,2) ≡ept p-AWSat(Γt,1) for t ≥ 2.

Proof: Since Γ1,2 ⊆ Γ2,1 ⊆ Γ3,1 ⊆ . . . up to obvious identifications, it suffices
to show that, for t ≥ 2,

p-AWSat(Γt,1) ≤ept p-AWSat(Γ1,2).

We claimed the corresponding statement for ≤fpt instead of ≤ept as (8.7) in
the proof of Theorem 8.32. The reduction given there is an ept-reduction. 
�

The following two lemmas will yield a proof of Theorem 15.66.

Lemma 15.68. p-AWSat(Γ1,2) ≤ept p-MC(STRING, FO).

Proof: Let (α, �,X1, . . . ,X�, k1, . . . , k�) be an instance of p-AWSat(Γ1,2), say,
with even �. Hence, α has the form

α =
∧
i∈I

(λi1 ∨ λi2)

with literals λij . We set X := X1 ∪ . . . ∪ X�, say X = {X1, . . . , Xn0}. Let
m ∈ N be minimum such that n0 < 2m.

We will construct an equivalent instance (ā, ϕ) of p-MC(STRING, FO).
Here ā will be a string of the form ā = āVar

�āα, where the string āVar will
represent the variables of α and the string āα the formula α. The alphabet of
ā is

Σ := {V1, . . . , V�, +,−, 0, 1,∨}.
Recall from Example 4.11 how we encode strings over Σ as structures of
vocabulary τΣ. In τΣ-formulas we use x < y for (x ≤ y∧x �= y) and succ(x, y)
as an abbreviation for a formula expressing that y is the successor of x, say,
succ(x, y) := (x < y ∧ ∀z¬(x < z ∧ z < y)).

For 0 ≤ n < 2m, we denote by 〈n〉 the binary representation of n of length
m. The formula ϕ=(x, y) is such that, if the substrings of length m starting
at positions x and y have the form 〈n〉 and 〈n′〉, then it states that n = n′:

ϕ=(x, y) := ∃x1 . . .∃xm∃y1 . . .∃ym

(
x1 = x ∧ y1 = y

∧
∧

h∈[m−1]

(
succ(xh, xh+1) ∧ succ(yh, yh+1)

)
∧

∧
h∈[m]

(P0xh ↔ P0yh)
)
.

Note that |ϕ=| = O(m) = O(log |α|). A variable Xh ∈ Xs is represented by
the string āh := Vs〈h〉, and āVar := ā1

� . . .� ān0 is the string representing the
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partition of the set of all variables. For s ∈ [�] the formula ϕs(xs1, . . . , xsks
)

expresses that x̄s = xs1 . . . xsks
is an ascending sequence of positions carrying

the letter Vs, that is, that x̄s corresponds to a subset of Xs of ks elements:

ϕs(xs1, . . . , xsks
) :=

∧
j∈[ks−1]

xsj < xsj+1 ∧
∧

j≤[ks]

PVs
xsj .

The first-order formula ϕ we aim at will be

ϕ := ∃x̄1(ϕ1(x̄1) ∧ ∀x̄2(ϕ2(x̄2)→ . . . ∀x̄�(ϕ�(x̄�)→ ϕ′) . . . )), (15.11)

where ϕ′ will express that the truth assignment determined by x̄ = x̄1 . . . x̄�

satisfies α. For this purpose a positive literal λij = Xh is represented by the
string āij := +〈h〉 and a negative literal λij = ¬Xh by the string āij := −〈h〉.
The following formula ϕL(x̄, y) expresses that the literal starting at position
y is satisfied by the truth assignment x̄. (Read: For some s the variable of the
literal at position y belongs to Xs and the literal is positive if and only if the
variable is in x̄s.)

ϕL(x̄, y) := ∃z∃z′∃y′(succ(z, z′) ∧ succ(y, y′) ∧ ϕ=(z′, y′)∧∨
s∈[�]

(PVs
z ∧ (P+y ↔

∨
j∈[ks]

z = xsj))).

Finally, we represent α by the string āα, which is a concatenation of all
∨āi1

�āi2 with i ∈ I. Then, as ϕ′(x̄) we can take the formula

∀z∀z′((P∨z ∧ succ(z, z′))→ (ϕL(x̄, z′) ∨ ∃u(succm+2(z, u) ∧ ϕL(x̄, u)),

where succm+2(z, u) expresses that u is the “(m + 2)th successor of z,” say,
succm+2(z, u) := ∃x1 . . .∃xm+3

∧
1≤i<m+3 succ(xi, xi+1)∧x1 = z ∧ xm+3 = u.

Then, for the sentence ϕ as in (15.11), we have

S(āVar
�āα) |= ϕ ⇐⇒ (α, �,X1, . . . ,X�, k1, . . . , k�) ∈ p-AWSat(Γ1,2)

(recall that S(ā) denotes the τΣ-structure associated with w ∈ Σ∗). The length
|ϕ| of ϕ can be bounded by O(k+m) = O(k+log |α|), where k := k1 + · · ·+k�

is the old parameter. Therefore, this reduction is an ept-reduction (but not
an fpt-reduction). 
�

Lemma 15.69. p-MC(FO) ≤ept p-AWSat(Γ4,1).

Proof: Let (A, ϕ) be an instance of p-MC(FO). In time O(2|ϕ|) we can trans-
form ϕ into an equivalent formula ϕ′ of the form

∃x1∀x2∃x3 . . .∀x�

∧
i∈I

∨
j∈J

λij ,
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where the λij are atomic or negated atomic formulas. We introduce variables
Xs,a for s ∈ [�] and a ∈ A with the intended meaning “the interpretation of xs

is a” and form the variable sets Xs := {Xs,a | a ∈ A} for s ∈ [�]. Furthermore,
we set k1 = . . . = k� := 1. Then, k1 + . . . + k� ∈ O(|ϕ|).

If λij(xm1 , . . . , xmr
) is an atomic formula, we let

αij :=
∨

a1,...,ar∈A
A|=λij(ā)

∧
h∈[r]

Xmh,ah
.

If λij = ¬ϕ′
ij(xm1 , . . . , xmr

) with an atomic formula ϕ′
ij , we let

αij :=
∧

a1,...,ar∈A
A|=ϕ′

ij(ā)

∨
h∈[r]

¬Xmh,ah
.

Note that in both cases we have |αij | = O(‖A‖), since only the tuples of some
relation of A are taken into consideration. Finally, setting

α :=
∧
i∈I

∨
j∈J

αij ,

one easily verifies that

(A, ϕ) ∈ p-MC(FO) ⇐⇒ (α, �,X1, . . . ,X�, k1, . . . , k�) ∈ AWSat(Γ4,1).

Altogether, the running time of this reduction is bounded by 2O(|ϕ|) · ‖A‖. 
�

Proof of Theorem 15.66: We have

p-MC(FO) ≤eptp-AWSat(Γ4,1)

≤ept p-AWSat(Γ1,2) ≤ept p-MC(STRING, FO),

by Lemma 15.69, Proposition 15.67, and Lemma 15.68, respectively. 
�

Exercise 15.70. Prove the analogue of Theorem 15.66 for the 2kO(1)

-bounded
theory.

Hint: Instead of the binary encoding of integers (variable indices) that we
used in the proof of Lemma 15.68, here one has to use the more sophisticated
encodings introduced in Sect. 10.3. �

Notes

The framework of bounded parameterized complexity theory was introduced
in [104]. This article focused on the 2O(k)-bounded theory, and most results
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concerning this theory presented in this chapter were proved there. Propo-
sition 15.15 was pointed out to the authors by Juan Andrés Montoya. The

2kO(1)

-bounded theory was developed by Weyer in [210, 209], and the results
stated in Exercises 15.17, 15.27, 15.38–15.41, and 15.70 were proved there.

The concept of limited nondeterminism was introduced by Kintala and
Fisher [146], a closely related concept of “guess and check” computations
was introduced by Cai and Chen [34] later. The article [117] is a survey
of the area. Various hierarchies of complexity classes defined by increasing
amounts of nondeterminism were studied, for example the hierarchy of classes
NP[logk n], for k ≥ 1 [146, 71] and various hierarchies within P that extend
(quasi)linear time [32, 22]. Papadimitriou and Yannakakis [167] introduced the
classes LOGSNP and LOGNP, which coincide with LOG[2] and LOG[3], re-
spectively, of the LOG-hierarchy. The LOG-hierarchy was introduced in [104]
as a generalization of these two classes. The completeness results in Theo-
rem 15.59(2)–(4) and the NP[log2 n]-completeness of Log-Generators are
from [167]. Our EW[3]-completeness proof for p-VC-Dimension is an adap-
tation of the LOG[3](=LOGNP)-completeness proof of VC-Dimension given
in [167]. In [161] it is shown that a tournament without a dominating set of
cardinality k can be constructed in time 2O(k) (cf. the hint to Exercise 15.12).

Open Problems

The W-hierarchy has nice closure properties which are not known to hold
for the EW-hierarchy. Specifically, for t ≥ 2 it is an open problem whether
EW[t] = [p-WD-Πt/d]

ept (for any d ≥ 2) or even EW[t] = [p-WD-Πt]
ept.

It is also open if an analogue of the Monotone and Antimonotone Collapse
Theorem 7.29 holds for the EW-hierarchy, that is, if EW[t] = EW[t + 1/2] for
t ≥ 2 (cf. Exercise 15.38). The situation is even worse for the first level EW[1]
of the EW-hierarchy (see Exercise 15.62). An open problem that highlights
the problems is the question whether p-MC(Σ1), which is easily seen to be
contained in EW[1], is complete for the class.

The EXPW-hierarchy is more robust, although the question of an ana-
logue of the Monotone and Antimonotone Collapse Theorem is also open for

this hierarchy. Another interesting open problem in the context of the 2kO(1)

-
bounded theory is to determine the exact complexity of the parameterized
VC-dimension problem. Is it EXPW[3]-complete?
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Subexponential Fixed-Parameter Tractability

This last chapter of the book is concerned with subexponential fixed-parameter
tractability, that is, with the class

SUBEPT = 2oeff(k)-FPT.

Subexponential fixed-parameter tractability is intimately linked with the the-
ory of exact (exponential) algorithms for hard problems, which is concerned
with algorithms for NP-hard problems that are better than the trivial exhaus-
tive search algorithms, though still exponential. For example, there has been
a long sequence of papers on exact algorithms for the 3-satisfiability problem;
the currently best (randomized) algorithm for this problem has a running time
of 1.324n time for instances with n variables. There are numerous further ex-
amples of very nice nontrivial algorithms for hard problems, but a systematic
complexity theory is still in its infancy. A question that has turned out to be
central for such a theory is whether the 3-satisfiability problem can be solved
in time 2o(n). The assumption that

3-Sat �∈ DTIME
(
2oeff(n)

)
(ETH)

is known as the exponential time hypothesis.1 Observe that (ETH) is equiv-
alent to p-3-Sat �∈ SUBEPT, because the size of a formula in 3-CNF with n

variables can always be assumed to be O(n3) ≤ 2oeff(n). A complication in the
complexity theory of exact algorithms for hard problems is that the running
time of algorithms is often measured with respect to different size measures.
For example, the running time of a satisfiability algorithm may be measured
in terms of the number of variables of the input formula, as it is in (ETH),
or in terms of the size of the input formula. Similarly, the running time of a

1Usually, the slightly stronger hypothesis 3-Sat �∈ DTIME
`
2o(n)

´
is called expo-

nential time hypothesis; for technical reasons we have to add the effectivity condition
in order to relate the hypothesis to our (strongly uniform) fixed-parameter tractabil-
ity.
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graph algorithm may be measured in terms of the number of vertices or the
size of the input graph. These different size measures precisely correspond to
different parameterizations in the theory of subexponential fixed-parameter

tractability. Note that the (sub)exponential term 2oeff(n) is fairly sensitive to

small changes of the size measure n. For instance, 2oeff(n) �= 2oeff(n·log n).
If we generalize (ETH) from formulas in 3-CNF to more complex formulas,

we obtain a hierarchy of increasingly stronger hypotheses, the tth of which
states

p-Sat(Γt,d) �∈ SUBEPT (ETHt)

for some d ≥ 1. We will see in Corollary 16.22 that (ETH) and (ETH1) are
equivalent. The hierarchy of hypotheses (ETHt) will lead us to the definition of
the so-called S-hierarchy of subexponential parameterized complexity classes.

It is a beautiful aspect of subexponential parameterized complexity theory
that it can be faithfully translated into unbounded parameterized complexity
theory via a mapping that associates with each parameterized problem its
so-called miniaturization. The image of the S-hierarchy under this miniatur-
ization mapping is the M-hierarchy of unbounded parameterized complexity
classes. Surprisingly, the M-hierarchy turns out to be intimately linked with
the W-hierarchy.

This chapter is organized as follows: In the first section, we discuss the
new role parameters play in the subexponential theory, and we introduce
various reductions. In Sect. 16.2, we define the S-hierarchy and show that
many natural problems are contained in the first level S[1] of this hierarchy.
In Sect. 16.3, we state and prove the Sparsification Lemma, a combinatorial
lemma that we need to prove S[1]-hardness results. Then in Sect. 16.4, we
develop an S[1]-completeness theory. The last three sections are devoted to
the connections between the subexponential and the unbounded theory. In
Sect. 16.5, we introduce the miniaturization mapping and show that it embeds
the subexponential into the unbounded theory. In Sect. 16.6, we introduce the
M-hierarchy and establish the connection between the M-hierarchy and the
W-hierarchy.

16.1 Size-Measures and Reductions

In the subexponential theory, parameterizations play a different role than
elsewhere in parameterized complexity. It may best be described as that of a
size measure. An important difference to the unbounded theory and also to
the bounded theories considered in the previous chapter is that we no longer
assume parameters to be small compared to the input size.

For example, satisfiability algorithms are often analyzed in terms of the
size measure “number of variables of the input formula.” Similarly, graph al-
gorithms are analyzed in terms of the “number of vertices of the input graph.”
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To emphasize the new role of parameterizations as size measures, we use the
letter ν instead of κ to denote parameterizations intended as size measures
(of course, the distinction is not always clear). We denote the correspond-
ing parameterized problems with a prefix “s-” instead of the usual “p-.” The
most obvious size measure for a problem P ⊆ Σ∗ is the length of the input,
that is, ν(x) = |x|. Unfortunately, for many natural problems, the length of
the input is not exactly what we think of as its “size”. For example, we are
used to think of the size of a graph G with n vertices and m edges as being
||G|| = Θ(n + m) rather than Θ(n + m · log n), which would be the length of
a reasonable encoding of G over a finite alphabet. Thus there is a difference
between length (defined as the length of an encoding over a finite alphabet)
and size, and our theory, which is concerned with the tiny gap between 2n

and 2oeff(n), is sensitive to this difference. As elsewhere in this book, it turns
out that the size ||G|| is the better measure to work with. For graph problems
Q, we denote their parameterization by the size of the input graph by s-Q.
For example, we let:

s-3-Colorability
Instance: A graph G.

Parameter: ||G||.
Problem: Decide whether G is 3-colorable.

We use a similar notation for satisfiability problems. Recall that the size ||C||
of a circuit C is roughly the size of its underlying graph, that is, the number
of gates plus the number of lines. We view propositional formulas as circuits
and define their size accordingly. For example, the size of a CNF-formula
α =

∧m
i=1

∨ki

j=1 λij is ||α|| = Θ(
∑m

i=1 ki). We denote the parameterization of
a satisfiability problem by the size of the input formula or circuit by s-Q, for
example s-Sat(Γ) or s-WSat(Γ).

The “number of vertices” size measure for graph problems is denoted by
s-vert. For example, we let

s-vert-Independent-Set
Instance: A graph G = (V, E) and a natural number � ∈ N.

Parameter: |V |.
Problem: Decide whether G has an independent set of � ele-

ments.

We define similar parameterizations of other graph problems, for exam-
ple, s-vert-Clique, s-vert-Vertex-Cover, or s-vert-3-Colorability. The
“number of variables” size measure for satisfiability problems is denoted by s-
var. Thus the canonical notation for p-Sat(Γ) would be s-var-Sat(Γ), but we
stick with the familiar p-Sat(Γ). However, for every class Γ of propositional
formulas or circuits, we let
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s-var-WSat(Γ)
Instance: γ ∈ Γ and � ∈ N.

Parameter: |var(γ)|.
Problem: Decide whether γ is �-satisfiable.

To develop the subexponential theory, we need an appropriate notion of
reduction. Before we introduce our fairly complicated reductions, we state and
prove a lemma that sheds some new light on the class SUBEPT and may help
to understand the reductions better.

Lemma 16.1. Let (Q, ν) be a parameterized problem over the input alphabet
Σ. Then the following statements are equivalent:
(1) (Q, ν) ∈ SUBEPT.
(2) There is an algorithm A expecting inputs from Σ∗ × N and a computable

function f such that for all (x, �) ∈ Σ∗ × N, the algorithm A decides if
x ∈ Q in time

f(�) · 2ν(x)/� · |x|O(1).

(3) There is an algorithm A expecting inputs from Σ∗×N, a computable func-
tion f , and a constant c ∈ N such that for all (x, �) ∈ Σ∗×N, the algorithm
A decides if x ∈ Q in time

f(�) · 2c·ν(x)/� · |x|O(1).

Proof: To prove that (1) implies (2), suppose that (Q, ν) ∈ SUBEPT. Let ι
be a computable function that is nondecreasing and unbounded, and let A be
an algorithm deciding x ∈ Q in time

2ν(x)/ι(ν(x)) · |x|O(1).

For � ∈ N, let n(�) := max{n | ι(n) < �} and n(�) := 1 if � ≤ ι(1). Let
f(�) := 2n(�). Then for all x ∈ Σ∗ and � ∈ N we have

2ν(x)/ι(ν(x)) · |x|O(1) ≤ f(�) · 2ν(x)/� · |x|O(1).

Let A′ be the algorithm that, given (x, �) ∈ Σ∗ × N, simply ignores � and
simulates A on input x. Then A′ and f satisfy the conditions of (2).

(2) trivially implies (3). To prove that (3) implies (1), let f : N→ N be a
computable function, c ∈ N a constant, and A an algorithm that, given (x, �),
decides if x ∈ Q in time

f(�) · 2c·ν(x)/� · |x|O(1).

We may assume that f is increasing and time constructible. Let ι := ιf be the
inverse of f (see Lemma 3.24). Consider the following algorithm for deciding
Q: Given x, compute n := ν(x) and � := ι(n). Then decide if x ∈ Q by
simulating A on input (x, �). The running time of this algorithm is
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|x|O(1) + nO(1) + f(ι(n)) · 2c·n/ι(n) · |x|O(1) ≤ 2oeff(n) · |x|O(1). 
�

Now we are ready to define the reductions:

Definition 16.2. Let (Q, ν) and (Q′, ν′) be parameterized problems over the
alphabets Σ and Σ′, respectively. A subexponential reduction family, or simply
serf-reduction, from (Q, ν) to (Q′, ν′) is a mapping S : Σ∗ × N → (Σ′)∗ such
that:
(1) For all (x, �) ∈ Σ∗ × N we have

x ∈ Q ⇐⇒ S(x, �) ∈ Q′.

(2) There is a computable function f such that for all (x, �) ∈ Σ∗ × N the
value S(x, �) is computable in time

f(�) · 2ν(x)/� · |x|O(1).

(3) There is a computable function g such that for all for all (x, �) ∈ Σ∗ × N,

ν′(S(x, �)) ≤ g(�) · (ν(x) + log |x|). �

We write (Q, ν) ≤serf (Q′, ν′) if there is a serf-reduction from (Q, ν)
to (Q′, ν′) and use the usual derived notations such as <serf, ≡serf, and[
(Q, ν)]serf.

Lemma 16.3. SUBEPT is closed under serf-reductions, that is, if (Q, ν)
and (Q′, ν′) are parameterized problems such that (Q, ν) ≤serf (Q′, ν′) and
(Q′, ν′) ∈ SUBEPT, then (Q, ν) ∈ SUBEPT.

Proof: Let Σ, Σ′ be the alphabets of (Q, ν), (Q′, ν′), respectively. Let S :
Σ∗ × N → (Σ′)∗ be a serf-reduction from (Q, ν) to (Q′, ν′), and let f, g be
functions witnessing clauses (2), (3) of Definition 16.2.

Let A be an algorithm that, given (x′, �′) ∈ (Σ′)∗ × N, decides if x′ ∈ Q′

in time f ′(�′) · 2ν′(x′)/�′ · |x′|O(1). Such an algorithm exists, by Lemma 16.1,
because (Q′, ν′) ∈ SUBEPT.

Now for any (x, �) ∈ Σ∗×N, to decide whether (x, �) ∈ Q we first compute
x′ := S(x, �), let �′ := � · g(�), and then use the algorithm A to decide if
(x′, �′) ∈ Q′. The running time of this algorithm can be bounded by

f(�) · 2ν(x)/� · |x|O(1) + f ′(�′) · 2ν′(x′)/�′ · |x′|O(1).

Since |x′| ≤ f(�) · 2ν(x)/� · |x|O(1) and ν′(x′) ≤ g(�)
(
ν(x) + log |x|

)
, this can be

bounded by
h(�) · 2O(ν(x)/�) · |x|O(1).

Hence (Q, ν) ∈ SUBEPT by Lemma 16.1. 
�

Exercise 16.4. Prove that EPT is closed under serf-reductions. �
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Exercise 16.5. Prove that ≤serf is reflexive and transitive. �

Subexponential reduction families are fairly complicated, and at first
glance they are not particularly natural either. We will give a nice justification
for these reductions later with the Miniaturization Theorem 16.30. Neverthe-
less, most subexponential reductions between concrete problems are of a much
simpler form: A size (or parameter) preserving polynomial time reduction from
a problem (Q, ν) to a problem (Q′, ν′) is a polynomial time reduction R from
Q to Q′ such that for all instances x of Q we have ν′(R(x)) = O(ν(x)).

Lemma 16.6. If there is a size preserving polynomial time reduction from a
problem (Q, ν) to a problem (Q′, ν′), then there is also a serf-reduction from
(Q, ν) to (Q′, ν′).

Proof: Let Σ, Σ′ be the alphabets of (Q, ν), (Q′, ν′), respectively, and let R :
Σ∗ → (Σ′)∗ be a size preserving polynomial time reduction from (Q, ν) to
(Q′, ν′). We define S : Σ∗ × N→ (Σ′)∗ by S(x, �) := R(x). It is easy to prove
that S is a serf-reduction. 
�

Before we start classifying concrete problems in the subexponential world,
we introduce a Turing version of subexponential reduction families.

Definition 16.7. Let (Q, ν) and (Q′, ν′) be parameterized problems over the
alphabets Σ and Σ′, respectively. A subexponential Turing reduction family, or
serf Turing reduction from (Q, ν) to (Q′, ν′) is an algorithm A with an oracle
to Q′ such that there are computable functions f, g : N→ N with:
(1) Given a pair (x, �) ∈ Σ∗ × N, the algorithm A decides if x ∈ Q in time

f(�) · 2ν(x)/� · |x|O(1).

(In particular, for every fixed �, the algorithm A yields a Turing reduction
from (Q, ν) to (Q′, ν′) whose running time is 2ν(x)/� · |x|O(1).)

(2) For all oracle queries “y ∈ Q′?” posed by A on input (x, �) ∈ Σ∗ × N we
have ν′(y) ≤ g(�) · (ν(x) + log |x|). �

We write (Q, ν) ≤serf-T (Q′, ν′) if there is a serf Turing reduction from
(Q, ν) to (Q′, ν′) and use the usual derived notations.

Exercise 16.8. Prove that SUBEPT and EPT are closed under serf Turing
reductions and that ≤serf-T is reflexive and transitive. �

16.2 A Hierarchy Within EPT

We might be tempted to develop the subexponential theory along the lines
of the unbounded theory and the other bounded fixed-parameter tractability
theories, that is, the “exponential” theories of EPT and EXPT. However, that
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would not be particularly interesting and, as far as we can see, not provide
any significant new insights. The crucial difference between the subexponen-
tial theory and the exponential (or higher) theories is that most “natural”
fixed-parameter tractable problems are in EPT or at least in EXPT, but not
in SUBEPT. Notable exceptions are the planar graph problems that we con-

sidered in Sect. 12.4; they can be solved in time 2O(
√

k) · n2. But most other
fixed-parameter tractable algorithms we considered in this book require run-
ning times of at least 2Ω(k) · n. The focus of the subexponential theory is on
problems within EPT, and the main question the theory is concerned with is
whether these problems are in SUBEPT.

A “generic” parameterized problem in EPT is the parameterized satisfia-
bility problem for propositional formulas and Boolean circuits. In loose anal-
ogy to the W-hierarchy, we define the following hierarchy of fixed-parameter
tractable problems:

Definition 16.9. For every t ≥ 1, we let

S[t] :=
⋃
d≥1

[
p-Sat(Γt,d)

]serf
.

Furthermore, we let

S[SAT] :=
[
p-Sat(PROP)

]serf
, and S[P] :=

[
p-Sat(CIRC)

]serf
. �

Recall the definition of the hypotheses (ETHt) for t ≥ 1 (see p. 418) and
observe that for every t ≥ 1 we have

S[t] �= SUBEPT ⇐⇒ (ETHt).

Also note that
S[P] ⊆ EPT,

thus the S-hierarchy is entirely contained in EPT and hence in FPT.
The S-hierarchy has not been investigated to great depth. However, some

highly nontrivial results are known about the first level S[1]. Before we delve
into the deeper parts of the theory, let us show that S[1] contains many natural
problems.

Problems in S[1]

Recall the various parameterizations (size-measures) introduced in Sect. 16.1
(on p. 419). Observe that for graph problems Q we have

s-Q ≤serf s-vert-Q. (16.1)

Furthermore, for every class Γ of propositional formulas or circuits we have

s-Sat(Γ) ≤serf p-Sat(Γ), and s-WSat(Γ) ≤serf s-var-WSat(Γ). (16.2)
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In all these cases, the identity mapping is a size preserving polynomial time
reduction. In general, the converse of these relationships does not hold. How-
ever, we will see in Sect. 16.4 that in many interesting cases a converse (that
is, a reduction from “s-vert” or “s-var” to “s”) can be established for subex-
ponential Turing reduction families.

Inequalities (16.1) and (16.2) imply that if we prove membership of a
problem in S[1] with respect to the size measures “s-vert” or “s-var,” then
membership with respect to the generic size measure “s” follows.

Example 16.10. For every d ≥ 1,

s-vert-d-Colorability ∈ S[1].

To see this, just observe that for every graph G = (V, E) the d-CNF-formula

∧
v∈V

(Xv,1 ∨ . . . ∨Xv,d) ∧
∧

{u,v}∈E

d∧
i=1

(¬Xu,d ∨ ¬Xv,d)

is satisfiable if and only if G is d-colorable. �
It is not entirely obvious how to deal with “weighted” problems such as the

weighted satisfiability problem or the independent set problem. The following
lemma provides a solution:

Lemma 16.11. For all n, � ∈ N such that � ≤ n, there is a formula ξn,� ∈
3-CNF of size O(n) such that
• var(ξn,�) ⊇ {X1, . . . , Xn};
• for all assignments V ⊆ var(ξn,�) satisfying ξn,�

|V ∩ {X1, . . . , Xn}| = �;

• for all X ⊆ {X1, . . . , Xn} with |X | = � there is an assignment V satisfying
ξn,� with V(X) = true for all X ∈ X .

Furthermore, there is an algorithm that computes ξn,� in time O(n).

Proof: We first claim that for all �, n there is a Boolean circuit C�,n of size O(n)
with n input nodes whose satisfying assignments are precisely all assignments
of weight �. Such a circuit can be obtained by pairwise connecting the input
nodes to a layer of n/2 1-bit adders, then pairwise connecting the outputs of
these 1-bit adders to a layer of n/4 2-bit adders, et cetera, and finally checking
that the log n outputs of the top-level log n-bit adder represent the number �
in binary. The size of this circuit is

	log n
∑
i=1

⌊ n

2i

⌋
·O(i) = O(n).

From this circuit, we can construct the desired 3-CNF-formula ξ�,n in a
straightforward way by introducing a new variable for every node of the cir-
cuit. 
�
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Corollary 16.12. The following problems are contained in S[1]:
(1) s-var-WSat(d-CNF) for every d ≥ 1.
(2) s-vert-Independent-Set.
(3) s-vert-Clique.
(4) s-vert-Vertex-Cover.

In the following exercises we generalize the previous results by showing
that all unweighted and weighted problems in monadic SNP (see p. 86) are
contained in S[1]. Let ϕ(X) be a first-order or second-order formula with a
free relation variable X . Recall that a solution for ϕ in a structure A is an
S ⊆ Aarity(X) such thatA |= ϕ(S). We consider the following parameterization
of the problem Fagin-defined by ϕ:

s-vert-FDϕ

Instance: A structure A.
Parameter: |A|.

Problem: Decide whether there is a solution for ϕ in A.

Exercise 16.13. Let ϕ(X) be a Π1-formula with a free set variable (that is,
unary relation variable) X . Prove that s-vert-FDϕ ∈ S[1]. �

We can also consider weighted Fagin-definable problems. For a formula
ϕ(X), we let:

s-vert-WDϕ

Instance: A structure A and � ∈ N.
Parameter: |A|.

Problem: Decide whether there is a solution S for ϕ in A
with |S| = �.

Exercise 16.14. Let ϕ(X) be a Π1-formula with a free set variable X . Prove
that s-vert-WDϕ ∈ S[1]. �

Actually, the previous two exercises can be generalized from Π1-formulas
to strict Σ1

1-formulas, that is, second-order formulas of the form

∃X1 . . .∃Xp∀y1 . . .∀yq θ,

where θ is quantifier-free (cf. Exercise 4.21). Recall that the class of all prob-
lems definable by a strict Σ1

1-sentence is called SNP (cf. p. 86) and that a
second-order sentence is monadic if it only contains unary relation variables.
Thus the following exercise shows that the s-vert parameterizations of all
problems in (weighted) monadic SNP are in S[1].

Exercise 16.15. Let ϕ(X) be a monadic strict Σ1
1-formula with a free set

variable X . Prove that s-vert-FDϕ ∈ S[1] and s-vert-WDϕ ∈ S[1]. �
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It is possible to generalize the results from monadic to arbitrary SNP,
albeit under a less natural size measure.

Exercise 16.16. Let ϕ(X) be a strict Σ1
1-formula with a free relation variable

X . Let s be the maximum of all the arities of all relation variables occurring
in ϕ. Prove that the following parameterization of FDϕ is in S[1]:

Instance: A structure A.
Parameter: |A|s.

Problem: Decide whether there is a solution for ϕ in A.

Prove the analogous result for WDϕ. �

16.3 The Sparsification Lemma

The Sparsification Lemma is the main tool in the development of a S[1]-
completeness theory. The lemma says that the satisfiability problem for d-
CNF-formulas can be reduced to the satisfiability problem for d-CNF-formulas
whose size is linear in the number of variables by a suitable reduction that
preserves subexponential time solvability.

In this section, it will be convenient to view clauses as sets of literals
and CNF-formulas as sets of clauses. A CNF-formula γ′ is a subformula of a
CNF-formula γ if each clause of γ′ is a subset of some clause of γ.

Lemma 16.17 (Sparsification Lemma). Let d ≥ 2. There is a computable
function g : N → N such that for every k ∈ N and every formula γ ∈ d-CNF
with n = |var(γ)| variables there is a Δ2,d-formula

β =
∨
i∈[t]

γi

such that:
(1) β is equivalent to γ,
(2) t ≤ 2n/k,
(3) each γi is a subformula of γ in which each variable occurs at most g(k)

times.
Furthermore, there is an algorithm that, given γ and k, computes β in time
2n/k · |γ|O(1).

The following corollary states the main consequence of the Sparsification
Lemma for us:

Corollary 16.18. For every d ≥ 1,

p-Sat(d-CNF) ≤serf-T s-Sat(d-CNF).
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Proof: A serf Turing reduction from p-Sat(d-CNF) to s-Sat(d-CNF) proceeds
as follows: Given γ ∈ d-CNF and k ∈ N, it computes the formula β =

∨
i∈[t] γi

of the Sparsification Lemma and tests for each γi if it is satisfiable using an
oracle to s-Sat(d-CNF). The parameter ||γi|| of the oracle query is linear in
the number of variables of the input formula, because each variable occurs at
most g(k) times in γi. 
�

The rest of this section is devoted to a proof of the Sparsification Lemma.
The reader may safely skip this proof at first reading and continue with the
development of the S[1]-completeness theory in the next section.

We start with a purely combinatorial lemma that gives a bound for the
number of leaves in certain binary trees. It relies on the following well-known
bound for the binomial coefficients.

Lemma 16.19. Let n ≥ 1 and 0 < q ≤ 1/2. Then

�q·n�∑
i=0

(
n

i

)
≤ 2H(q)·n,

where H(q) := −q · log q − (1− q) · log(1− q) is the binary entropy of q.

For the reader’s convenience, we give an elementary proof of this lemma.

Proof: A straightforward calculation using the fact that log q− log(1− q) ≤ 0
for q ≤ 1/2 shows that for all i ∈ [0, �q · n�],

i · log q + (n− i) · log(1− q) ≥ −n ·H(q).

Hence qi · (1 − q)n−i ≥ 2−n·H(q). Now

1 =
(
q + (1− q))n =

n∑
i=0

(
n

i

)
· qi · (1− q)n−i

≥
�q·n�∑
i=0

(
n

i

)
· qi · (1 − q)n−i

≥ 2−n·H(q)

�q·n�∑
i=0

(
n

i

)
. 
�

Let us fix some terminology about trees. In this section, trees are binary
and rooted. Each node either is a leaf or has a left child and a right child. A
branch is a path from the root to a leaf.

Lemma 16.20. Let n, k, r ≥ 1 be positive integers with k · r ≥ 2, and s > 0
a positive real such that

s ≤ 1

8k · log(k · r) . (16.3)
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Let T be a binary tree of height at most r · n such that on each branch of T
at most s · n nodes are right children of their parents.

Then T has at most 2n/k leaves.

Proof: The number of leaves in T is bounded by the number of branches of
the full binary tree of height r · n that contain at most s · n right children.
The number of such branches is

�s·n�∑
i=0

(
r · n

i

)
≤ 2H(s/r)·r·n.

The inequality holds by Lemma 16.19. Thus we have to prove that H(s/r)·r ≤
1/k, or equivalently

H
(s

r

)
≤ 1

k · r . (16.4)

Let k′ := k · r and note that by (16.3) we have

s

r
≤ 1

8k′ · log k′ .

Thus

H
(s

r

)
≤ H

(
1

8k′ · log k′

)
= − 1

8k′ · log k′ · log
1

8k′ · log k′

−
(

1− 1

8k′ · log k′

)
· log

(
1− 1

8k′ · log k′

)
. (16.5)

Now observe that

− 1

8k′ · log k′ · log
1

8k′ · log k′ =
log(8k′ · log k′)

8k′ · log k′

=
log(8k′)

8k′ · log k′ +
log log k′

8k′ · log k′

≤ 1

2k′ . (16.6)

Furthermore, by using the inequality log(1 − x) ≥ −4x for 0 ≤ x ≤ 1/2 we
obtain

−
(

1− 1

8k′ · log k′

)
· log

(
1− 1

8k′ · log k′

)
≤ − log

(
1− 1

8k′ · log k′

)
≤ 1

2k′ . (16.7)

Plugging (16.6) and (16.7) into (16.5), we get



16.3 The Sparsification Lemma 429

H
(s

r

)
≤ 1

2k′ +
1

2k′ ≤
1

k′ =
1

k · r . 
�

Proof of the Sparsification Lemma 16.17: We will design an algorithm that,
given a d-CNF-formula γ and a k ≥ 1, computes a Δ2,d-formula

β =
∨
i∈[t]

γi

that satisfies clause (1)–(3) of the Sparsification Lemma.
The algorithm proceeds by recursively applying a reduction rule to γ that

we may describe as picking a flower and tearing it apart.2 A flower in a CNF-
formula γ is a set α := {δ1, . . . , δp} of p ≥ 2 clauses of γ, all of the same size,
with δ :=

⋂p
i=1 δi �= ∅. The intersection δ is called the heart of the flower, and

the sets δ1 \ δ, . . . , δp \ δ the petals. The size of α is p, and the radius is |δ1|
(= |δ2| = . . . = |δp|). The heartsize of α is |δ|, and the petalsize of α is |δ1 \ δ|.
Note that we allow the petals to have a pairwise nonempty intersection. This
distinguishes our flowers from the sunflowers that we used in the kernelization
of the hitting set problem (cf. Lemma 9.7).3 Let

γα
heart :=

(
γ \ {δ1, . . . , δp}

)
∪ {δ},

γα
petals :=

(
γ \ {δ1, . . . , δp}

)
∪ {δ1 \ δ, . . . , δp \ δ},

and observe that γ is equivalent to the disjunction γα
heart∨γα

petals. Also observe
that if γ contains no flower with more than p petals then each literal occurs
in at most p clauses and thus each variable occurs at most 2p times.

Simple-Sparsify(γ, k)
1. Reduce(γ)
2. if γ contains a flower with more than pk petals then

// pk is a suitable number depending on k
3. pick such a flower α
4. return Simple-Sparsify(γα

heart, k) ∨ Simple-Sparsify(γα
petals, k)

5. else return γ

Algorithm 16.1.

The last two observations lead to a first, straightforward version of
our sparsification algorithm, Algorithm 16.1. Besides picking flowers, the
algorithm also calls a subroutine Reduce to simplify the input formula.

2Complexity theory can be cruel sometimes.
3Every CNF-formula corresponds to a hypergraph whose vertices are the literals

and whose edges are the clauses. Thus we may compare flowers (defined on CNF
formulas) and sunflowers (defined on hypergraphs).
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Reduce(γ) removes all clauses from γ that contain some other clause; clearly
the resulting formula is equivalent to the original one. It is easy to see that
Simple-Sparsify(γ, k) returns a disjunction β =

∨
i∈[t] γi of subformulas γi

of γ that is equivalent to γ. Furthermore, none of the γi contains a flower with
more than pk petals. Thus no variable occurs more than 2pk times in γi, and
condition (3) is satisfied with g(k) := 2pk. Unfortunately, even if we choose
pk appropriately, we cannot expect condition (2) to be satisfied.

To satisfy (2), we have to refine the algorithm so that it picks flowers with
the right number of petals in the right order. The number of petals that a
flower needs to have in order to be picked by our reduction algorithm depends
on k and the petalsize. The definition of the appropriate parameters is a bit
complicated. We let

qk := 24d · k · log k. (16.8)

For c ∈ [d− 1] we let

rk(c) := 2(16qk)2
c−1−1, (16.9)

and
pk(c) := qk · rk(c). (16.10)

Furthermore, we let pk(0) = 1. A flower α of petalsize c is pretty (with respect
to k) if the number of petals of α is at least pk(c).

In each step, the refined sparsification algorithm picks a pretty flower of
minimum radius, and among all such flowers it picks one of minimum petalsize.
Algorithm Flower(γ, k) (Algorithm 16.2) picks such a flower, or, if the input
formula contains no pretty flower, it returns a null value.

Flower(γ, k)
1. for rad = 2 to d do

2. for all δ1 ∈ γ with |δ1| = rad do

// choose the first petal
3. for ps = 1 to rad − 1 do

4. for all δ ⊆ δ1 such that |δ1 \ δ| = ps do

// choose the heart
5. α ← {δ1}
6. for all δ′ ∈ γ \ {δ1} with |δ′| = rad do

// choose the remaining petals
7. if δ ⊆ δ′ then α ← α ∪ {δ′}
8. if |α| > pk(ps) then return α
9. return nil

Algorithm 16.2.

Algorithm 16.3 is our refined sparsification algorithm. Given a d-CNF-
formula γ and a natural number k, it returns a disjunction β =

∨
i∈[t] γi of
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Sparsify(γ, k)
1. Reduce(γ)
2. α ← Flower(γ, k)
3. if α �= nil then

4. return Sparsify(γα
heart, k) ∨ Sparsify(γα

petals, k)
5. else return γ

Algorithm 16.3.

subformulas γi of γ that is equivalent to γ. Since every function pk is increas-
ing and since flowers in a d-CNF-formula have petalsize at most (d − 1), the
γi satisfy (3) with g(k) := 2pk(d − 1). The length t = t(γ, k) of the disjunc-
tion is the number of leaves of the recursion tree T (γ, k) of the execution
of Sparsify(γ, k). Before we bound t(γ, k) to prove (2), let us analyze the
running time of Sparsify.

Let m := ||γ|| and n := |var(γ)|. Clearly, Reduce can be implemented to
run in polynomial time. The running time of Flower(γ, k) is also polynomial
in γ, since we do not have to compute the value pk(d− 1) if it is larger than
m, and it can be checked in time polynomial in m if this happens. Since
all CNF-formulas that are generated during the execution of Sparsify(γ, k)
are subformulas of γ and thus of size bounded by m, the running time of
Sparsify(γ, k) is bounded by t(γ, k) ·mO(1).

Thus it remains to prove that for every CNF-formula γ and every k ≥ 1

t(γ, k) ≤ 2n/k. (16.11)

We let T = T (γ, k) be the recursion tree of the execution of Sparsify(γ, k),
and t = t(γ, k) the number of leaves of T . Associated with every node v of T
is a subformula γ(v) of γ. Thus γ = γ(r) for the root r of T .

At every node v of T , the formula γ(v) is first Reduced, which yields a
formula γred(v). If γred(v) has no pretty flower, then v is a leaf. Otherwise, v
has two children v′ and v′′ such that

γ(v′) =
(
γred(v)

)α

heart
and γ(v′′) =

(
γred(v)

)α

petals

with respect to some pretty flower α of γred(v) that is lexicographically mini-
mum with respect to radius and petalsize. We always associate the left children
with the heart and the right children with the petals.

In claim 6 below we shall bound the height of T and the number of right
children on every branch. Then an application of Lemma 16.20 will yield the
desired bound (16.11) on the number of leaves.

We fix an arbitrary branch

v0 = r, v1, v2, . . . , v�

of T . For i ∈ [0, �], let γi := γ(vi), and for i ∈ [0, �− 1] we let αi be the flower
that is picked at step i.
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Claim 1. For c ∈ [d], the number of clauses of size c in γ� is at most 2pk(c−
1) · n.

Proof: Suppose for contradiction that for some c there were more than 2pk(c−
1) · n clauses of size c in γ�. Then some literal would be contained in more
than pk(c − 1) clauses of size c. These clauses would form a flower of petal
size at most c− 1 with more than pk(c− 1) petals, which contradicts v� being
a leaf of T . This proves claim 1. �

We say that a clause δ is added in step i (for i ∈ [0, �− 1]) if δ ∈ γi+1 \ γi. An
added clause is a clause that is added in some step, as opposed to an original
clause, which is already contained in γ.

Claim 2. Let i ∈ [�] and c ∈ [d] and suppose that some clause of size c has
been added at a step i′ < i. Then no literal λ is contained in more than
2pk(c− 1) clauses of size c in γi.

Proof: We prove the claim by induction on i. For i = 0, it is trivial. So let
us assume that the claim is proved for i. To prove it for (i + 1), suppose that
some clause of size c has been added in a step i′ ≤ i. Let λ be a literal, and
let δ1, . . . , δp be a list of all clauses of γi+1 of size c that contain λ. We shall
prove that p ≤ 2pk(c− 1).

Suppose that

δ1, . . . , δp′ ∈ γi, and δp′+1, . . . , δp ∈ γi+1 \ γi,

for some p′ ≤ p.
The easiest case is that p′ = p, that is, δ1, . . . , δp are all elements of γi,

and some clause of size c has been added in a step i′ < i. Then p ≤ 2pk(c− 1)
by the induction hypothesis.

If this is not the case, then some clause of size c is added in step i. Then
the radius of αi is larger than c. This implies that γi does not contain a pretty
flower of radius c, because such a flower would have been picked instead of
αi. The clauses δ1, . . . , δp′ , which all contain λ and thus have a nonempty
intersection, form a flower of radius c in γi. This flower cannot be pretty, and
thus

p′ ≤ pk(c− 1).

It remains to prove that the number p − p′ of the newly added clauses
δp′+1, . . . , δp is at most pk(c− 1).

The newly added clauses are either the heart or the petals of the flower
αi. If only the heart is added, then p − p′ ≤ 1 ≤ pk(c − 1). So suppose that
δp′+1, . . . , δp are among the petals of αi. Let δ′ be the heart of αi. The clauses

δ′ ∪ δp′+1, . . . , δ
′ ∪ δp

form a flower in γi that has the same radius as αi, but a smaller petalsize,
because the heart of this flower contains δ′ ∪ {λ}. If this flower was pretty, it
would have been picked instead of α. Thus it cannot be pretty, which means
that p− p′ ≤ pk(c− 1). �
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We say that a clause δ is removed in step i if δ ∈ γi \ γi+1. The removal of δ
can have two reasons: Either δ ∈ αi or δ ∈ γi \ γred

i . In both cases, there is
some δ′ ∈ γi+1 such that δ′ ⊆ δ. We call each such δ′ a cause for the removal
of δ. Note that the original clauses of γ can only be the cause of removals
in step 0. Thus only added clauses can be a cause for the removal of added
clauses.

Claim 3. Let i ∈ [0, �] and c ∈ [d]. Every clause of γi can be a cause for the
removal of at most 2pk(c− 1) added clauses of size c.

Proof: Let δ be a clause that is added in step i. Then δ is a cause for the
removal of either one or all elements of the flower αi (depending on whether
it is a petal or the heart of the flower), and in addition, a cause for the removal
of some of the clauses in γi+1 \ γred

i+1. Note that δ can never be a cause for a
removal after step (i + 1). Thus all clauses whose removal is caused by δ are
contained in γi.

Since δ is a subset of all clauses whose removal is caused by δ and thus
any literal of δ is an element of all these clauses, by claim 2, there can be at
most 2pk(c− 1) such clauses of size c. �

Observe that every clause is added at most once. To see this, suppose for
contradiction that a clause δ is added in step i, then later removed in step
i′ > i, and then added again in step i′′ ≥ i′. Since for all j ≥ i, the formula
γj is a subformula of γi, for i ≤ j ≤ i′′ there is some clause δ′ ∈ γj such that
δ′ ⊇ δ. However, δ would cause the removal of each such clause in step i + 1.

Claim 4. For c ∈ [d− 1], at most rk(c) · n clauses of size c are added.

Proof: The proof is by induction on c. For c = 1, the claim follows from the
fact that there are at most 2n ≤ rk(1) · n clauses of size 1. So suppose the
claim is proved for c′ < c. Each clause of size c is either removed or it remains
in γ�. If an added clause of size c is later removed, then (at least) one of the

at most
∑c−1

b=1 rk(b) · n added clauses of size at most (c − 1) is a cause for
this removal. By claim 3, each clause is a cause for the removal of at most
2pk(c − 1) clauses of size c. Thus the number of added clauses of size c that
are later removed is at most

c−1∑
b=1

rk(b)·n · 2pk(c− 1) = 2n · qk · rk(c− 1) ·
c−1∑
b=1

rk(b) (by (16.10))

= 8n · qk · (16qk)2
c−2−1 · 1

16qk
·

c−1∑
b=1

(16qk)2
b−1

(by (16.9))

≤ 1

2
n · (16qk)2

c−2−1 · 2 · (16qk)2
c−2

=
1

2
n · rk(c) (by (16.9)).
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By claim 1, the number of clauses of size c that remain in γ� is at most
2pk(c − 1) · n. Overall, the number of added clauses of size c is therefore
bounded by

c−1∑
b=1

rk(b) · 2pk(c− 1) · n + 2pk(c− 1) · n

≤ 1

2
n · rk(c) + 2n · qk · rk(c− 1)

≤ n · rk(c).

This completes the proof of claim 4. �

Claim 5. � ≤
∑d−1

c=1 rk(c) · n.

Proof: Since in each step i < � at least one clause is added, this follows
immediately from claim 4. �

Claim 6. At most d · n/qk nodes on the branch v0 . . . v� are right children.

Proof: If vi+1 is a right child of vi, then γi+1 = (γi)
αi

petals. Let c be the petalsize
of αi. Since αi is pretty, α has more than pk(c) petals, which are all added to
γi+1.

Since at most rk(c) · n clauses of size c are added overall, there can be at
most

rk(c) · n
pk(c)

=
n

qk

right children whose parent has a flower of petalsize c. Summing over all c
yields the statement of the claim. �

Now we are ready to prove (16.11). By claims 5 and 6, the recursion tree T is

a binary tree of height at most
∑d−1

c=1 rk(c) · n such that on each branch of T
at most (d/qk) ·n nodes are right children. Let r :=

∑d−1
c=1 rk(c) and s := d/qk.

To be able to apply Lemma 16.20, we have to prove that

s ≤ 1

8k · log(k · r) . (16.12)

Then Lemma 16.20 immediately shows that t(γ, k) ≤ 2n/k.
Observe that (16.12) is equivalent to

8k · log(k · r) · d ≤ qk. (16.13)

By (16.9)

r =

d−1∑
c=1

rk(c) =

d−1∑
c=1

2(16qk)2
c−1−1 ≤ 4(16qk)

2d−2−1 ≤ (16qk)2
d−2

.

Thus for d ≥ 3
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8k · log(k · r) · d ≤ 8k · (log k + log(16qk)2
d−2

) · d
≤ 8k · (log k + 4 + log qk) · 2d−2 · d
≤ 8k · log k · (4d + 7) · 2d−2 · d (by (16.8))

≤ k · log k · 56d2 · 2d−2 (since d ≥ 3)

≤ k · log k · 24d (since d ≥ 3)

= qk (by (16.8)).

For d = 2, one easily verifies directly that 8k · log(k · r) · d ≤ qk. This proves
(16.13) and hence (16.12), which completes the proof of the Sparsification
Lemma. 
�

16.4 S[1]-Completeness

Theorem 16.21. For every d ≥ 3, the problems

p-Sat(d-CNF) and s-Sat(d-CNF)

are S[1]-complete under serf Turing reductions.

Proof: Corollary 16.18 combined with (16.2) (on p. 423) yields

p-Sat(d-CNF) ≡serf-T s-Sat(d-CNF)

for every d ≥ 3. Standard reductions show that

s-Sat(d-CNF) ≡serf-T s-Sat(3-CNF).

for every d ≥ 3. This proves the theorem. 
�

Corollary 16.22. (ETH) and (ETH1) are equivalent.

Corollary 16.23. The following problems are S[1]-complete under serf Tur-
ing reductions:
(1) s-Independent-Set and s-vert-Independent-Set.
(2) s-Vertex-Cover and s-vert-Vertex-Cover.
(3) s-vert-Clique.
(4) s-d-Colorability and s-vert-d-Colorability for every d ≥ 3.
(5) s-WSat(d-CNF) and s-var-WSat(d-CNF) for every d ≥ 2.

Proof: We saw that all the problems are contained in S[1]. By (16.1) and (16.2)
(on p. 423), it suffices to prove hardness of the “s” parameterizations, except
for s-vert-Clique, which is equivalent to s-vert-Independent-Set under size
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preserving polynomial time reductions. Standard polynomial time reductions
(see, for example, [168]), which are easily seen to be size preserving, show:

s-Sat(3-CNF) ≤serf s-Independent-Set

≤serf s-Vertex-Cover,

s-Sat(3-CNF) ≤serf s-3-Colorability

≤serf s-d-Colorability for d ≥ 3,

s-Independent-Set ≤serf s-WSat(2-CNF)

≤serf s-WSat(d-CNF) for d ≥ 2. 
�

In the following exercise, the reader is invited to prove that s-Clique
is in SUBEPT and thus not complete for S[1] unless the exponential time
hypothesis fails.

Exercise 16.24. Prove that s-Clique ∈ SUBEPT. �

Size Measures vs. Standard Parameterizations

Let us now consider the question of how the new “size measure parame-
terizations” relate to the standard parameterizations of problems considered
elsewhere in the book. Note that for graph problems such as Vertex-Cover,
Independent-Set, or Dominating-Set, the s-vert parameterization is re-
ducible to the standard parameterization, because the parameter k in the
standard parameterization describes the size of a subset of the vertex set of
the input graph and hence can always be assumed to be bounded by the
number of vertices. It is also clear that in general there will be no reduc-
tion in the converse direction. For example, unless W[1] = FPT, the W[1]-
complete problem p-Independent-Set is not fpt-reducible to the problem
s-vert-Independent-Set ∈ S[1] ⊆ FPT.

However, the question whether the standard parameterization is reducible
to the number of vertices parameterization is interesting for problems in EPT.
As an example, let us consider the vertex cover problem:

Theorem 16.25. p-Vertex-Cover is S[1]-complete under serf Turing re-
ductions.

Proof: To prove that p-Vertex-Cover ∈ S[1], we use the fact that the ver-
tex cover problem has a “linear” problem kernel. By Theorem 9.14, there is a
polynomial time algorithm that, given an instance (G, �) of Vertex-Cover,
computes an instance (G′, �′), where �′ ≤ � and G′ has at most 2�′ vertices. This
yields a size preserving polynomial time reduction from p-Vertex-Cover to
s-vert-Vertex-Cover that proceeds as follows: It maps an instance (G, k) of
p-Vertex-Cover to its kernel (G′, k′), which is considered as an instance of
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s-vert-Vertex-Cover. The reduction is size preserving, because the param-
eter, that is, the number of vertices of G′, is at most 2k′ ≤ 2k. This proves
that p-Vertex-Cover ∈ S[1].

Since s-vert-Vertex-Cover ≤serf p-Vertex-Cover, completeness fol-
lows from Corollary 16.23. 
�

The S[1]-hardness of p-Vertex-Cover implies that, unless (ETH) fails,
there is no subexponential fpt-algorithm for p-Vertex-Cover. For the planar

graph problem p-Planar-Vertex-Cover, we know that there is an 2O(
√

k) ·
n2-algorithm (cf. Theorem 12.33). Hence

p-Planar-Vertex-Cover ∈ SUBEPT.

However, the S[1]-completeness theory can still be used to prove that the

2O(
√

k) · n2-algorithm is asymptotically optimal in terms of the parameter k.

Theorem 16.26. The following parameterization of Planar-Vertex-Cov-
er is S[1]-hard under serf Turing reductions:

p-sqrt-Planar-Vertex-Cover
Instance: A planar graph G and k ∈ N.

Parameter:
⌈√

k
⌉
.

Problem: Decide whether G has a vertex cover of cardinality k.

Corollary 16.27. If p-Planar-Vertex-Cover is solvable in time 2oeff(
√

k) ·
||G||O(1), then S[1] = SUBEPT.

To prove the theorem, we only show how to apply our structural theory
to obtain the hardness result from a known reduction from Vertex-Cover
to Planar-Vertex-Cover and refer the reader to the literature for the
combinatorial details.

A planar drawing Π of a graph is defined as a planar embedding (see
Definition 12.2) except that edges are allowed to cross. In every point of
the plane only two edges are allowed to cross. Recall that vc(G) denotes the
cardinality of a minimum vertex cover of G.

Lemma 16.28. There is a polynomial time algorithm that, given a graph G
and a planar drawing Π of G with c crossings, computes a planar graph G′
such that

vc(G′) = vc(G) + 13c.

For a proof we refer the reader to [116] (Theorem 2.7).

Proof of Theorem 16.26: We give a parameter preserving polynomial time re-
duction from the S[1]-complete problem s-Vertex-Cover to p-sqrt-Planar-
Vertex-Cover.
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Let (G, k) be an instance of s-Vertex-Cover, where G = (V, E). Let
n := |V | and m := |E|, where without loss of generality we may assume that
2m ≥ n ≥ k. Then the size of G, which is the parameter, is O(m).

Let Π be a planar drawing of G with c ≤ m2 crossings; clearly such a
drawing exists and can be computed in polynomial time. Let G′ be the planar
graph computed by the algorithm of Lemma 16.28 on input (G, Π), and let
k′ := k + 13c. Then

(G, k) ∈ Vertex-Cover ⇐⇒ (G′, k′) ∈ Planar-Vertex-Cover.

Furthermore, ⌈√
k′
⌉

=
⌈√

k + 13c
⌉
≤

⌈√
2m + 13m2

⌉
≤ 4m.

Thus the reduction (G, k) �→ (G′, k′) is a parameter preserving polynomial
time reduction from s-Vertex-Cover to p-sqrt-Planar-Vertex-Cover.


�

Exercise 16.29. Prove that, unless S[1] = SUBEPT, the problems p-Plan-
ar-Independent-Set and p-Planar-Dominating-Set are not solvable in

time 2oeff(
√

k) · ||G||O(1). �

16.5 The Miniaturization Isomorphism

In this section, we establish a connection between subexponential fixed-
parameter tractability and unbounded fixed-parameter tractability. Let (Q, ν)
be a parameterized problem over the alphabet Σ∗. We define:

p-Mini(Q, ν)
Instance: x ∈ Σ∗ and m ∈ N in unary such that |x| ≤ m.

Parameter:
⌈

ν(x)
log m

⌉
.

Problem: Decide whether x ∈ Q.

We call p-Mini(Q, ν) the “parameterized miniaturization” of (Q, ν), because
the interesting instances of the problem are those where ν(x) is very small
compared to m. More precisely, the interesting instances are those where ν(x)
is close to log m, that is, instances where the parameter k := �ν(x)/ log m� is
small. There is an equivalent way of formulating the problem, where this is
made explicit:

Instance: x ∈ Σ∗, k, m ∈ N in unary such that |x| ≤ m, and
ν(x) = �k · log m�.

Parameter: k.
Problem: Decide whether x ∈ Q.
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“Miniaturization” defines a mapping between parameterized problems. The
reason we are interested in this mapping is that it is a structure preserving
mapping from the subexponential theory into the unbounded theory. This is
made precise by the following theorem:

Theorem 16.30 (Miniaturization Theorem). (1) Let (Q, ν) be a param-
eterized problem. Then

(Q, ν) ∈ SUBEPT ⇐⇒ p-Mini(Q, ν) ∈ FPT.

(2) Let (Q, ν) and (Q′, ν′) be parameterized problems. Then

(Q, ν) ≤serf (Q′ν′) ⇐⇒ p-Mini(Q, ν) ≤fpt p-Mini(Q′, ν′).

Proof: Statement (1) follows easily from (2), but it will be instructive to prove
it directly. Let Σ be the alphabet of Q.

For the forward direction, suppose that x ∈ Q can be decided in time
2ν(x)/ι(ν(x)) · |x|O(1) for some nondecreasing and unbounded computable func-
tion ι : N → N. Let f : N → N be a computable function such that
f(ι(n)) ≥ 2n for all n ∈ N. Let x ∈ Σ∗, m ∈ N such that m ≥ |x|, n := ν(x),
and k := �n/ logm�. We claim that

2n/ι(n) · |x|O(1) ≤ f(k) ·mO(1). (16.14)

This will prove that p-Mini(Q, ν) ∈ FPT. To prove (16.14), we distinguish
between two cases: If m ≥ 2n/ι(n), then (16.14) is obvious. If m < 2n/ι(n),
then k ≥ ι(n) and thus f(k) ≥ 2n, which implies (16.14).

For the backward direction, suppose that f : N → N is a computable
function such that there is an fpt-algorithm solving p-Mini(Q, ν) in time

f(k) ·mO(1),

where k := �ν(x)/ log m� is the parameter. We may assume that f is increasing
and time constructible. Let ι := ιf be the “inverse” of f . Without loss of
generality we may assume that ι is growing sufficiently slowly so that n ≤
2O(n/ι(n)).

Let x ∈ Σ∗ and n := ν(x). Let m := max
{
|x|, 2	n/ι(n)
}. Then k =

�n/ logm� ≤ ι(n). Using the fpt-algorithm for p-Mini(Q, ν) on input (x, m),
we can decide if x ∈ Q in time

f(k) ·mO(1) ≤ n ·mO(1) ≤ 2O(n/ι(n)) · |x|O(1).

This proves that (Q, ν) ∈ SUBEPT.

Let us turn to a proof of (2). Let Σ, Σ′ be the alphabets of Q, Q′, respec-
tively.

For the forward direction, suppose that S : Σ∗ × N → (Σ′)∗ is a serf-
reduction from (Q, ν) to (Q, ν′). Choose functions f, g witnessing clauses (2)
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and (3) of Definition 16.2. We claim that the mapping R : Σ∗×N→ (Σ′)∗×N

defined by

R(x, m) :=
(
S
(
x, �ν(x)/ log m�

)
, max

{
|S(x, �ν(x)/ log m�)|, m

})
is an fpt-reduction from p-Mini(Q, ν) to p-Mini(Q′, ν′).

Let (x, m) be an instance of p-Mini(Q, ν) and n := ν(x), k := �n/ log m�.
Furthermore, let x′ := S(x, k), m′ := max{|x′|, m}, n′ := ν′(x′), and k′ :=
�n′/ logm′�.

Observe first that

(x, m) ∈ p-Mini(Q, ν) ⇐⇒ x ∈ Q

⇐⇒ x′ = S(x, k) ∈ Q′

⇐⇒ (x′, m′) ∈ p-Mini(Q′, ν′).

Furthermore, S(x, k) and hence R(x, m) can be computed in time

f(k) · 2n/k · |x|O(1) ≤ f(k) ·mO(1),

because 2n/k ≤ m.
It remains to prove that k′ is effectively bounded in terms of k. By our

choice of g, we have n′ ≤ g(k) · (n + log |x|). Thus

k′ =

⌈
n′

log m′

⌉
≤

⌈
n′

log m

⌉
≤ g(k) ·

⌈
n + log |x|

log m

⌉
≤ g(k) · (k + 1).

This completes the proof that R is an fpt-reduction from p-Mini(Q, ν) to
p-Mini(Q′, ν′).

For the backward direction of (2), let R : Σ∗ × N → (Σ′)∗ × N be an
fpt-reduction from p-Mini(Q, ν) to p-Mini(Q′, ν′). Let f, g be nondecreasing
computable functions and c ∈ N such that R(x, m) can be computed in time
f(k) ·mc and k′ ≤ g(k), where k := �ν(x)/ log m� and k′ := �ν(x′)/ logm′�
for (x′, m′) := R(x, m).

We define a serf reduction S : Σ∗ × N → (Σ′)∗ from (Q, ν) to (Q′, ν′) as
follows: Let (x, �) ∈ Σ∗ × N and n := ν(x), m := max{2�n/(c·�)�, |x|}, and
k := �n/ logm�. Note that

k ≤ 2c · � and log m ≤ n

c · � + log |x|.

We let
S(x, �) := R(x, m).

Then S(x, �) can be computed in time

f (k) ·mc ≤ f(2c · �) · 2n/� · |x|c.
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Let (x′, m′) := R(x, m), n′ := ν′(x), and k′ := �n′/ logm′�. It remains to
prove that n′ ≤ h(�) · (n + log |x|) for some computable function h.

Since m′ is represented in unary and R is computable in time f(k) ·mc,
we have m′ ≤ f(k) ·mc. Thus

n′ ≤ k′ · log m′

≤ g(k) · log(f(k) ·mc) (since k′ ≤ g(k))

≤ g(k) · log f(k) + g(k) · c ·
( n

c · � + log |x|
)

(since log m ≤ n

c · � + log |x|)

≤ h(�) · (n + log |x|) (since k ≤ 2c · �)

for a suitable computable function h. 
�

Exercise 16.31. Prove the analogous result (to Theorem 16.30) for Turing
reductions. �

The subexponential theory is mainly concerned with problems in the class
EPT and the unbounded theory with problems in XP. We shall now investi-
gate how the miniaturization relates EPT with XP.

Lemma 16.32. Let (Q, ν) ∈ EPT. Then p-Mini(Q, ν) ∈ XP.

Proof: Suppose that (Q, ν) is decidable in time

2c·ν(x) · |x|d.

Let (x, m) be an instance of p-Mini(Q, ν), and let n := ν(x), k := �n/ log m�.
Then the instance is decidable in time

2c·ν(x) · |x|d ≤ mc·ν(x)/ log m ·md ≤ mO(k),

which shows that p-Mini(Q, ν) ∈ XP. 
�
Thus the miniaturization mapping maps EPT into XP. Of course, not

every problem in XP is the miniaturization of some other problem, thus the
mapping is not onto. However, the following lemma shows that every problem
in XP is equivalent to the miniaturization of some problem in EPT.

Lemma 16.33. Let (Q, κ) ∈ XP. Then there exists a problem (Q′, ν′) ∈ EPT
such that

(Q, κ) ≡fpt p-Mini(Q′, ν′).

Proof: In a first step we construct a problem (Q′′, κ′′) equivalent to (Q, κ)

that is decidable in time |x|O(
√

κ′′(x)).
Let Σ be the alphabet of Q and suppose that (Q, κ) is decidable in time

|x|f(κ(x)) + f(κ(x)), where without loss of generality f is increasing and time
constructible. Let (Q′′, κ′′) be the following parameterized problem:
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Instance: x ∈ Σ∗, � ∈ N in unary such that � ≥ f(κ(x))2.
Parameter: �.

Problem: Decide whether x ∈ Q.

It is easy to see that indeed (Q′′, κ′′) ≡fpt (Q, κ) and that (Q′′, κ′′) is decidable

in time |x|O(
√

κ′′(x)).

In the second step, we construct the desired problem (Q′, ν′). To simplify
the notation, we let (Q, κ) = (Q′′, κ′′), and again we let Σ be the alphabet of
Q. We let (Q′, ν′) be the following problem

Instance: x ∈ Σ.
Parameter: κ(x) · �log |x|�.

Problem: Decide whether x ∈ Q.

Thus Q′ = Q, that is, (Q′, ν′) is just a re-parameterization of (Q, κ). We
claim that

p-Mini(Q′, ν′) ≡fpt (Q, κ). (16.15)

To prove that p-Mini(Q′, ν′) ≤fpt (Q, κ), let x+ be a “yes”-instance and x−
a “no”-instance of Q. We define a reduction R by letting

R(x, m) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x+ if m ≥ |x|

√
κ(x) and x ∈ Q,

x− if m ≥ |x|
√

κ(x) and x �∈ Q,

x if |x| ≤ m < |x|
√

κ(x),

x− otherwise.

Then clearly for all (x, m) ∈ Σ∗ × N we have

(x, m) ∈ p-Mini(Q′, ν′) ⇐⇒ R(x, m) ∈ Q.

Moreover, R(x, m) is computable in polynomial time, because x ∈ Q is decid-

able in time |x|O(
√

κ(x)), which is mO(1) if m ≥ |x|
√

κ(x).
It remains to prove that the parameter κ(R(x, m)) of the image is ef-

fectively bounded in terms of the parameter �ν′(x)/ log m� of the argu-
ment. Let (x, m) be an instance of p-Mini(Q′, ν′) and k := κ(x), n :=

ν′(x) = k · �log |x|�, k′ := �n/ log m�. If either m ≥ |x|
√

k or m < |x|, then
κ(R(x, m)) ≤ max{κ(x+), κ(x−)}, which is a constant. So let us assume that

|x| ≤ m < |x|
√

k. Then κ(R(x, m)) = k. Moreover,

log m <
√

k · �log |x|� =
n√
k

.

Thus

k =
k · log m

log m
<

√
k · n

log m
≤
√

k · k′.
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Thus κ(R(x, m)) = k ≤ (k′)2, which shows that indeed R is an fpt-reduction
and proves one direction of (16.15).

For the other direction, (Q, κ) ≤fpt p-Mini(Q′, ν′), we define a reduction
R : Σ∗ → Σ∗ × N by R(x) = (x, 2|x|). As

ν′(x)

log(2|x|) =
κ(x) · �log |x|�

log |x|+ 1
≤ κ(x),

R is an fpt-reduction from (Q, κ) to p-Mini(Q′, ν′). 
�

The main result of this section can most elegantly be formulated in the
language of degrees from classical recursion theory. Suppose we have some
reducibility relation ≤ on parameterized problems, for example, ≤fpt. In gen-
eral, ≤ only needs to be a reflexive and transitive relation. Let us denote
the corresponding equivalence relation by ≡. Then the ≤-degree of a problem
(Q, ν), denoted by �(Q, ν)�≤, is the ≡-equivalence class of (Q, ν). For example,
the ≤fpt-degree of p-Clique is the class of all W[1]-complete problems. The
class of all ≤-degrees is denoted by D≤, and for a class C of parameterized
problems that is downward closed under ≤, the class of all degrees in C is
denoted by C≤. The reduction ≤ induces a partial order on D≤.

If ≤ is one of the reductions introduced in this book, say, ≤=≤fpt, then
to simplify the notation we speak of fpt-degrees instead of ≤fpt-degrees and
write �(Q, ν)�fpt, Dfpt, et cetera.

The results of this section can be summarized in the following theorem:

Theorem 16.34. The miniaturization mapping M : Dserf → Dfpt, defined
by

M
(�(Q, ν)�serf) :=

�
p-Mini(Q, ν)

�fpt
,

is a (well-defined) embedding of the partially ordered set (Dserf,≤serf) into the
partially ordered set (Dfpt,≤fpt).

Furthermore, the restriction of M to EPTserf is an isomorphism between
(EPTserf,≤serf) and (XPfpt,≤fpt).

It can be proved that the miniaturization mapping is not onto, that is,
there are parameterized problems (outside XP) not fpt-equivalent to any
miniaturized problem.

Exercise 16.35. Prove the analogous result (to Theorem 16.34) for Turing
reductions. �

16.6 The M-Hierarchy

The natural question that arises once we have established the miniaturiza-
tion isomorphism is how the natural complexity classes within EPT on the
subexponential side and within XP on the unbounded side are related by the



444 16 Subexponential Fixed-Parameter Tractability

isomorphism. We call the image of the S-hierarchy under the “miniaturization
mapping” the M-hierarchy. We will see that the M-hierarchy is closely related
to the W-hierarchy.

Definition 16.36. For every t ≥ 1, we let

M[t] :=
[
{p-Mini(Q, ν) | (Q, ν) ∈ S[t]}

]fpt
.

Furthermore, we let

M[SAT] :=
[
{p-Mini(Q, ν) | (Q, ν) ∈ S[SAT]}

]fpt

and
M[P] :=

[
{p-Mini(Q, ν) | (Q, ν) ∈ S[P]}

]fpt
. �

By the Miniaturization Theorem 16.30 and the definition of the S-hierarchy,
we immediately get the following characterization of the M-hierarchy.

Lemma 16.37. (1) For every t ≥ 1, M[t] =
⋃
d≥1

[
p-Mini(p-Sat(Γt,d)

]fpt
.

(2) M[SAT] =
[
p-Mini(p-Sat(PROP))

]fpt
.

(3) M[P] =
[
p-Mini(p-Sat(CIRC))

]fpt
.

The Miniaturization Theorem also shows that for all t ∈ N∪ {SAT, P} we
have

M[t] = FPT ⇐⇒ S[t] = SUBEPT

and that a problem is S[t]-complete under serf-reductions if and only if its
miniaturization is M[t]-complete under fpt-reductions. By Exercise 16.31, the
corresponding result for Turing reductions also holds. This can be used to
transfer the S[1]-completeness results of Sect. 16.4 to M[1]-completeness re-
sults.

The Log-Parameterizations

Next, we will give a characterization of the M-hierarchy in terms of a new
parameterization of the satisfiability problem. In the following discussion, n
denotes the number of variables of the input formula or the number of input
nodes of the input circuit of a satisfiability problem, and m denotes the size
of the formula or circuit. Let Γ be a class of propositional formulas or cir-
cuits. If we parameterize Sat(Γ) by n, then we obtain the fixed-parameter
tractable problem p-Sat(Γ). Let us now see what happens if we decrease the
parameter. Specifically, for computable functions h : N → N, let us consider
the parameterizations

(
Sat(Γ), κh

)
defined by

κh(γ) :=

⌈
n

h(m)

⌉
,
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for γ ∈ Γ. For constant h ≡ 1, κh is just our old parameterization p-Sat(Γ) ∈
FPT. At the other end of the scale, for h(m) ≥ m ≥ n we have κh(γ) = 1, and
essentially

(
Sat(Γ), κh

)
is just the unparameterized problem Sat(Γ), which is

NP-complete in general. But what happens if we consider functions between
these two extremes?

If h(m) ∈ oeff(log m), then
(
Sat(Γ), κh

)
is still fixed-parameter tracta-

ble. To see this, use that Sat(Γ) is trivially solvable in time mO(1) for in-
stances with m ≥ 2n and apply Proposition 1.7 for instances with m < 2n. If

h(m) ∈ ωeff(log m) then for large circuits of size close to 2n, but still 2oeff(n),
the parameter is 1 and fixed-parameter tractability coincides with polyno-
mial time computability. The most interesting range from the perspective of
parameterized complexity is

h(m) ∈ Θ(log m).

These considerations motivate us to introduce the following parameterization
of the satisfiability problem:

p-log-Sat(Γ)
Instance: γ ∈ Γ of size m with n variables.

Parameter:
⌈

n
log m

⌉
.

Problem: Decide whether γ is satisfiable.

Obviously, p-log-Sat(Γ) is solvable in time

2n ·mO(1) ≤ 2k·log m ·mO(1) = mk+O(1),

where k :=
⌈

n
log m

⌉
is the parameter. Thus p-log-Sat(Γ) ∈ XP (here we as-

sume that Γ itself is efficiently decidable). Intuitively it seems unlikely that
p-log-Sat(Γ) is fixed-parameter tractable, say, for Γ = PROP.

To phrase our first result in its most general form, we introduce a simple
closure property of classes of formulas or circuits: We call a class Γ paddable if
for every γ ∈ Γ and for every m′ ≥ ||γ|| there is a γ′ ∈ Γ such that var(γ′) =
var(γ), the formulas γ and γ′ are equivalent, and m′ ≤ ||γ′|| ≤ O(m′). We call
Γ efficiently paddable if, in addition, there is an algorithm that computes γ′ for
given γ and m′ ≥ ||γ|| in time (m′)O(1). Most natural classes of formulas and
circuits are efficiently paddable, in particular all classes Γt,d and the classes
PROP and CIRC. For example, for the Γ1,2-formula

γ =
∧

i∈[m]

(λi1 ∨ λi2),

we can let λij := λmj for m < i ≤ m′ and j = 1, 2, and

γ′ :=
∧

i∈[m′]

(λi1 ∨ λi2).
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Lemma 16.38. Let Γ be a class of propositional formulas or circuits. Then

p-log-Sat(Γ) ≤fpt p-Mini(p-Sat(Γ)).

Furthermore, if Γ is efficiently paddable, then

p-log-Sat(Γ) ≡fpt p-Mini(p-Sat(Γ)).

We leave the straightforward proof of this lemma to the reader.
As all classes Γt,d and the classes PROP and CIRC are efficiently paddable,

we immediately obtain the following characterization of the M-hierarchy:

Corollary 16.39. (1) For every t ≥ 1, M[t] =
⋃
d≥1

[
p-log-Sat(Γt,d)

]fpt
.

(2) M[SAT] =
[
p-log-Sat(PROP)

]fpt
.

(3) M[P] =
[
p-log-Sat(CIRC)

]fpt
.

By the Miniaturization Theorem we also obtain:

Corollary 16.40. Let Γ be an efficiently paddable class of formulas or cir-
cuits. Then

p-log-Sat(Γ) ∈ FPT ⇐⇒ p-Sat(Γ) ∈ SUBEPT.

We can also consider “log-parameterizations” of other fixed-parameter
tractable problems. In particular:

p-log-Vertex-Cover
Instance: A graph G and � ∈ N.

Parameter:
⌈

�
log ||G||

⌉
.

Problem: Decide whether G has a vertex-cover of size �.

Exercise 16.41. Prove that p-log-Vertex-Cover is M[1]-complete under
fpt Turing reductions. �

The M-Hierarchy and the W-Hierarchy

We have already met the log-parameterization of the satisfiability problem (for
the class of all Boolean circuits) before; in Sect. 3.3 we used it as a technical
tool to prove that

W[P] = FPT ⇐⇒ p-Sat(CIRC) ∈ SUBEPT

(see Theorem 3.25). In particular, Lemma 3.26 states that the problem
p-log-Sat(CIRC) is W[P]-complete under fpt-reductions. Thus

M[P] = W[P].

The following theorem is a generalization of this fact. The proof is based on
a construction that we called the k · log n-trick in Chap. 3 (see the proof of
Theorem 3.9 and Corollary 3.13).
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Theorem 16.42. For every t ≥ 1,

M[t] ⊆W[t] ⊆M[t + 1].

Proof: We first prove M[t] ⊆W[t]. For simplicity, let us assume that t is odd.
Fix d ≥ 1 such that t + d ≥ 3. We shall prove that

p-log-Sat(Γt,d) ≤fpt p-WSat(Γt,d). (16.16)

Let γ ∈ Γt,d, m := ||γ|| and n := |var(γ)|. To simplify the notation, let us
assume that � := log m and k := n/ logm are integers. We shall construct a
Γt,d-formula β in time polynomial in γ such that

γ is satisfiable ⇐⇒ β is k-satisfiable. (16.17)

Let X = var(γ), and let X1, . . . ,Xk be a partition of X into k sets of size �
(note that n = k · �).

For i ∈ [k] and every subset S ⊆ Xi, let Y S be a new variable. Let Yi be

the set of all Y S
i with S ⊆ Xi and Y =

⋃k
i=1 Yi. Call a truth value assignment

for Y good if for i ∈ [k] exactly one variable in Yi is set to true. There is a
bijection f between the truth value assignments V for X and the good truth
value assignments for Y defined by

f(V)(Y S) = true ⇐⇒ ∀X ∈ Xi :
(
V(X) = true ⇐⇒ X ∈ S

)
,

for all V : X → {true, false}, i ∈ [k], and S ⊆ Xi.
Let β′′ be the formula obtained from γ by replacing, for i ∈ [k] and X ∈ Xi,

each occurrence of the literal X by the formula∧
S⊆Xi with X �∈S

¬Y S ,

and each occurrence of the literal ¬X by the formula∧
S⊆Xi with X∈S

¬Y S .

Then an assignment V : X → {true, false} satisfies γ if and only if f(V)
satisfies β′′. Thus γ is satisfiable if and only if β′′ has a good assignment. Note
that the size of each of the sets Yi is 2� = m. Thus the size of β′′ is polynomial
in m. Moreover, β′′ can easily be computed from γ in polynomial time.

β′′ is not a Γt,d-formula: The transformation from γ to β′′ has turned the
small disjunctions (λ1 ∨ . . . ∨ λd) on the bottom level of γ into formulas∧

i

ν1i ∨ . . . ∨
∧
i

νdi.

Applying the distributive law to all these subformulas turns them into big
conjunctions of disjunctions of at most d literals, and since t is odd, it turns
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the whole formula β′′ into a Γt,d-formula β′. Since d is fixed, the size only
increases polynomially, and β′ can be computed from β′′ in polynomial time.
And we still have: γ is satisfiable if and only if β′ has a good assignment.

All that remains to do is to add a subformula stating that all assignments
of weight k are good. We let

α :=
∧

i∈[k]

∧
S,T⊆Xi

S �=T

(¬Y S ∨ ¬Y T )

and β := α∧β′. Then β is (equivalent to) a Γt,d-formula that satisfies (16.17).

Next, we prove W[t] ⊆M[t + 1]. For simplicity, let us assume again that t
is odd. Let d = 2 if t = 1, and d = 1 otherwise. Recall that by Theorem 6.28
(for t = 1) and Theorem 7.1 (for t ≥ 2), p-WSat(Γ−

t,d) is W[t]-complete. We
shall prove that

p-WSat(Γ−
t,d) ≤fpt p-log-Sat(Γt+1,1). (16.18)

We simply reverse the idea of the proof that M[t] ⊆W[t].
Let β ∈ Γ−

t,d and k ≥ 1, say,

β =
∧

i1∈I1

∨
i2∈I2

. . .
∧

it∈It

δ(i1, . . . , it), (16.19)

where each δ(i1, . . . , it) is a disjunction of at most d negative literals. Let
n := |var(β)| and � := log n, and let us assume again that � is an integer.
Furthermore, we assume that the variables of β are indexed with subsets of
{1, . . . , �}, or, more precisely, that

var(β) = Y =
{
Y S

∣∣ S ⊆ {1, . . . , �}
}
.

For i ∈ [k] and j ∈ [�], let Xij be a new variable. As above, let Xi := {Xij | j ∈
[�]} and X :=

⋃
i∈[k] Xi. The idea is that every assignment to the variables in

Xi corresponds to a subset Si ⊆ {1, . . . , �} and hence to a variable Y Si . Thus
an assignment to all variables in X corresponds to a subset {Y S1 , . . . , Y Sk} ⊆
Y and hence to an assignment to the variables in Y of weight at most k (“at
most” because the Si are not necessarily distinct).

Formally, let g be the following mapping from the assignments for X to
the assignments for Y of weight at most k: For every V : X → {true, false},
we let g(V) : Y → {true, false} be the assignment that sets Y S1 , . . . , Y Sk

to true and all other variables to false, where for i ∈ [k]

Si := {j | V(Xij) = true}.

Let γ′′ be the formula obtained from β by replacing each literal ¬Y S by the
subformula
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χS :=
∧

i∈[k]

( ∨
j∈S

¬Xij ∨
∨

j∈{1,...,�}\S

Xij

)
.

(Remember that all literals in β are negative.) Then for every assignment
V : X → {true, false},

V satisfies γ′′ ⇐⇒ g(V) satisfies β.

The translation from β to γ′′ turns every δ = δ(i1, . . . , it) in (16.19) into a
disjunction δ′ of at most d formulas χS . Say,

δ′ =
(
χS1 ∨ . . . ∨ χSd

)
By applying the distributive law, this formula can be turned into a conjunction
χ of kd disjunctions of d · � literals. Applying this operation to every δ′ in
γ′′, we obtain an equivalent Γt+1,1-formula γ′. Then for every assignment
V : X → {true, false},

V satisfies γ′ ⇐⇒ g(V) satisfies β.

This almost completes the proof. The only problem that remains to be solved
is that not all assignments g(V) have weight exactly k, because some of the
induced Si may be identical. Let

α′ :=
∧

1≤i<i′≤k

∨
j∈[�]

¬(Xij ↔ Xi′j).

Then for every V : X → {true, false} that satisfies α′, the assignment g(V)
has weight exactly k. Thus g induces a mapping from the assignments for X
that satisfy α′ onto the weight k assignments for Y. Note that α′ is equivalent
to a Γ2,1-formula α of size O(k2 · 22�) = O(k2 · n2). Furthermore, given k, n,
such a formula α can be computed in time polynomial in k and n.

We let γ := α ∧ γ′. Then γ is satisfiable if and only if β is k-satisfiable.
The size m of γ is polynomial in the size of β, and the number of variables is
k · �, where � = log n ≤ log m. By adding dummy variables we can adjust the
number of variables in such a way that k = �|var(γ)|/ logm�. 
�

Exercise 16.43. Prove that M[SAT] = W[SAT]. �

Notes

There is a large number of results on exact algorithms for various hard prob-
lems (see, for example, [130, 211]). Well-known examples of nontrivial exact
algorithms are the ever-improving algorithms for the 3-satisfiability problem
[28, 65, 138, 171, 190]. The time 1.324n algorithm mentioned in the introduc-
tion is due to Iwama and Tamaki [138].
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The exponential time hypothesis and related assumptions were studied
from a complexity theoretic point of view in [93, 136, 137, 193]. The most
fundamental and substantial investigation of subexponential time complexity
is due to Impagliazzo et al. [137]. In particular, the Sparsification Lemma 16.17
and the S[1]-completeness results (Theorem 16.21 and Corollary 16.23) were
proved in this article. Exercises 16.13–16.16 are also due to [137]. Subex-
ponential Turing reduction families were introduced in [137]; the many-one
version is from [52]. We know the simple elementary proof of Lemma 16.19
from Y. Chen. Lemma 16.28 is due to Garey, Johnson, and Stockmeyer [116].
Theorems 16.25 and 16.26 are due to Cai and Juedes [39]. Marx [158] applied
the idea of scaling the parameter, as in p-sqrt-Planar-Vertex-Cover, even
more drastically to obtain a tight no(log log k) lower bound for the closest sub-
string problem (whose definition we omit here).

The relation between (unbounded) parameterized complexity and subex-
ponential complexity was first observed by Abrahamson, Downey and Fel-
lows [1]. Theorem 16.42, the connection between the M-hierarchy and the W-
hierarchy, goes back to this article. The ideas were later refined in [44, 45, 101].
Miniaturized problems and the class M[1] was first studied in [75]. The role of
various size measures in the context of miniaturized problems was investigated
in [48]. The Miniaturization Theorem and the other results of Sect. 16.5 are
from [52].

Open Problems

The most important open problem here, and one of the overall most important
problems in parameterized complexity theory, is the question whether

M[1] = W[1],

or, equivalently, the question whether

(ETH) ⇐⇒ W[1] �= FPT.

The corresponding question for the higher levels of the hierarchies, that is,

M[t]
?
= W[t] for t ≥ 2, is also open. Note that it is also possible that M[t+1] =

W[t] for t ≥ 1.
While the classes S[1] and hence M[1] are fairly well understood, almost

nothing is known about the higher levels of the S-hierarchy and the M-
hierarchy. There is no completeness theory for S[t] for any t ≥ 2. In particular,
it is open whether p-Sat(Γt,d) is S[t]-complete for any fixed d ≥ 1. In view
of the W-completeness theory, one might actually guess that p-Sat(Γt,1) is
S[t]-complete. Proving such a result would probably require some form of a
Sparsification Lemma for the higher levels, an interesting problem in itself. Of
course, one could also try to eliminate the use of the Sparsification Lemma
from the proof of the S[1]-completeness of p-Sat(3-CNF) and possibly even
prove completeness under many-one reductions.
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Finally, it is a notorious open question if a collapse such as W[t] = FPT
on some level t of the W-hierarchy has any implications for the higher lev-
els (ideally, implies W[t′] = FPT for all t′). In view of the entanglement of
the W-hierarchy and the M-hierarchy, one possible approach to this question
would be to prove a corresponding result for the M-hierarchy. An equivalent
formulation of the question for the M-hierarchy is whether ¬(ETHt) implies
¬(ETHt′) for t′ > t.
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Appendix: Background from Complexity
Theory

In this appendix, we briefly review some basic definitions and results from
classical complexity theory. For further background, references, and proofs of
the results mentioned here, the reader may, for example, consult the textbooks
[20, 168, 208] or the surveys [142, 204].

Notation

Before we start, let us remind the reader of a few notations, some of which
we also introduce elsewhere in the book. The set of nonnegative integers is
denoted by N0 and the set of natural numbers (that is, positive integers) by
N. For integers n, m with n ≤ m, we let [n, m] := {n, n + 1, . . . , m} and
[n] := [1, n].

We use the standard big-Oh notation: For a function f : N0 → N0, we let

O(f) := {g : N0 → N0 | ∃c, n0 ∈ N0 ∀n ≥ n0 : g(n) ≤ c · f(n)},

Ω(f) := {g : N0 → N0 | ∃c, n0 ∈ N ∀n ≥ n0 : g(n) ≥ 1

c
· f(n)},

Θ(f) := O(f) ∩ Ω(f),

o(f) := {g : N0 → N0 | ∀c ∈ N0 ∃n0 ∈ N ∀n ≥ n0 : g(n) ≤ 1

c
· f(n)},

ω(f) := {g : N0 → N0 | ∀c ∈ N0 ∃n0 ∈ N ∀n ≥ n0 : g(n) ≥ c · f(n)}.

As is common, we usually write f(n) = O(g(n)) or f(n) ≤ O(g(n)) instead of
f ∈ O(g). If we write O(1), we view 1 as the function with constant value 1.
We also use derived notations such as, for example,

nO(f(n)) := {g : N0 → N0 | ∃f ′ ∈ O(f) ∃n0 ∈ N ∀n ≥ n0 : g(n) ≤ nf ′(n)}.

In particular, nO(1) denotes the class of all polynomially bounded functions.
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A.1 Machine Models

The machine model underlying most of our complexity-theoretic results is
the standard multitape Turing machine model. However, for analyzing the
running time of specific algorithms, random access machines are better suited.
As a third model of computation, we also have to deal with Boolean circuits,
although in this book circuits only appear as instances of algorithmic problems
and not as a basic model of computation.

Turing Machines

A nondeterministic Turing machine (NTM) is a tuple

M = (S, Σ, Δ, s0, F ),

where:

• S is the finite set of states.
• Σ is the alphabet.
• s0 ∈ S is the initial state.
• F ⊆ S is the set of accepting states.
• Δ ⊆ S×(Σ∪{$, �})k×S×(Σk∪{$})k×{left, right, stay}k is the transition

relation. Here k ∈ N is the number of tapes, and $, � �∈ Σ are special
symbols: “$” marks the left end of any tape. It cannot be overwritten and
only allows right -transitions.1 “�” is the blank symbol. The elements of Δ
are the transitions.

Intuitively, the tapes of our machine are bounded to the left and un-
bounded to the right. The leftmost cell, the 0th cell, of each tape carries
a “$”, and initially, all other tape cells carry the blank symbol. The input is
written on the first tape, starting with the first cell, the cell immediately to
the right of the “$”.

Sometimes, in particular for space-bounded computations, the first tape
is viewed as a read-only input tape. In this case, Δ ⊆ S× (Σ∪{$, �})k×S×
(Σk ∪ {$})k−1 × {left, right, stay}k.

The machine M is deterministic if for all (s, ā) ∈ S × (Σ ∪ {$, �})k there
is at most one (s′, ā′, d̄′) such that (s, ā, s′, ā′, d̄′) ∈ Δ. The machine M has
binary branching, if for all (s, ā) ∈ S × (Σ ∪ {$, �})k there are at most two
tuples (s′, ā′, d̄′) such that (s, ā, s′, ā′, d̄′) ∈ Δ.

A configuration of M is a tuple

C = (s, x1, p1, . . . , xk, pk),

1To formally achieve that “$” marks the left end of the tapes, whenever
(s, (a1, . . . , ak), s′, (a′

1, . . . , a
′
k), (d1, . . . , dk)) ∈ Δ, then for all i ∈ [k] we have

ai = $ ⇐⇒ a′
i = $ and ai = $ =⇒ di = right.
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where s ∈ S, xi ∈ Σ∗, and pi ∈ [0, |xi| + 1] for each i ∈ [k]. Intuitively,
$xi�� . . . is the sequence of symbols in the cells of tape i, and the head of
tape i scans the pith cell. Then, xi is called the inscription of tape i.

The initial configuration for an input x ∈ Σ∗ is

C0(x) = (s0, x, 1, ε, 1, . . . , ε, 1),

where ε denotes the empty word.
A computation step of M is a pair (C, C′) of configurations such that the

transformation from C to C′ obeys the transition relation. We omit the formal
details. We write C → C′ to denote that (C, C′) is a computation step of M.
If C → C′, we call C′ a successor configuration of C. A halting configuration
is a configuration that has no successor configuration. A halting configuration
is accepting if its state is in F . A step C → C′ is nondeterministic if there is
a configuration C′′ �= C′ such that C → C′′.

A finite run of M is a sequence (C0, . . . C�) where Ci−1 → Ci for all i ∈ [�],
C0 is an initial configuration, and C� is a halting configuration. An infinite
run of M is a sequence (C0, C1, C2 . . .) where Ci−1 → Ci for all i ∈ N and C0

is an initial configuration. If the first configuration C0 of a run ρ is C0(x), then
we call ρ a run with input x. A finite run is accepting if its last configuration
is an accepting configuration; infinite runs can never be accepting. The length
of a run is the number of steps it contains if it is finite, or ∞ if it is infinite.

The language (or problem) accepted by M is the set QM of all x ∈ Σ∗ such
that there is an accepting run of M with initial configuration C0(x). If all runs
of M are finite, then we say that M decides QM, and we call QM the problem
decided by M.

If M is a deterministic Turing machine, we can also define the function
computed by M. We let fM be the partial function from Σ∗ to Σ∗ defined as
follows: Let x ∈ Σ∗. If there is no accepting run with input x, then fM(x)
is undefined. Otherwise, fM is the inscription the last configuration on the
unique accepting run with input x. That is, if (C0(x), . . . , C�) is an accepting
run with C� = (x1, p1, . . . , xk, pk), then fM(x) := xk.

Let t : N0 → N0. The running time of M is bounded by t, or M runs in
time t, if for every x ∈ Σ∗ the length of every run of M with input x is at
most t(|x|).

To define the space complexity, one usually considers Turing machines
whose first tape is a read-only input tape. For such machines, the size of a
configuration C = (s, x1, p1, . . . , xk, pk) is the total length of the work-tape

inscriptions, that is,
∑k

i=2 |xi|. We say that M runs in space s : N0 → N0 if
for every x ∈ Σ∗ every run of M with input x only consists of configurations
of size at most s(|x|).

Oracle Machines

A (deterministic or nondeterministic) oracle Turing machine is a Turing ma-
chine with a distinguished work tape, which we call the query tape, and three
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distinguished states sq, s+, s−, which we call the query state and the positive
and negative answer states, respectively.

The semantics of an oracle Turing machine is defined relative to an oracle
O ⊆ Σ∗. As long as the machine is in a configuration whose state is not
the query state sq, it proceeds as a standard machine. Whenever it is in a
configuration C = (sq, x1, p1, . . . , xk, pk) whose state is the query state, it
proceeds as follows. Suppose the last tape is the query tape. Then if xk ∈ O,
the next configuration is (s+, x1, p1, . . . , xk−1, pk−1, ε, 1), and if xk �∈ O, the
next configuration is (s−, x1, p1, . . . , xk−1, pk−1, ε, 1). We say that the oracle
is queried for instance xk.

Of course, acceptance is also defined relative to an oracle O, and we say
that an oracle Turing machine M decides a problem Q ⊆ Σ∗ relative to an
oracle O ∈ Σ∗ if for all x ∈ Σ∗, every run of M relative to O is finite and
there is an accepting run if and only if x ∈ Q.

Sometimes, in particular when considering counting problems, we also need
to consider oracle Turing machines that use functions as oracles. Instead of
erasing the query tape after the oracle has been queried, in the next configu-
ration the value of the oracle function applied to the query instance is written
on the query tape.

Alternating Turing Machines

An alternating Turing machine (ATM) is a Turing machine whose states are
partitioned into existential and universal states. Formally, an ATM is a tuple
M = (S∃, S∀, Σ, Δ, s0, F ), where S∃ and S∀ are disjoint sets and MN = (S∃ ∪
S∀, Σ, Δ, s0, F ) is an NTM. Configurations and steps of M are defined as for
MN .

However, runs are defined differently. Let us call a configuration existential
if it is not a halting configuration and its state is in S∃, and universal if it is
not a halting configuration and its state is in S∀. Intuitively, in an existential
configuration, there must be one possible run that leads to acceptance (as
for nondeterministic machines), whereas in a universal configuration, all runs
must lead to acceptance. Formally, a run of an ATM M is a directed tree
where each node is labeled with a configuration of M such that:

• The root is labeled with an initial configuration.
• If a vertex is labeled with an existential configuration C, then the vertex

has precisely one child that is labeled with a successor configuration of C.
• If a vertex is labeled with a universal configuration C, then for every

successor configuration C′ of C the vertex has a child that is labeled with
C′.

The run is finite if the tree is finite and infinite otherwise. The length of the
run is the height of the tree. The run is accepting if it is finite and every leaf
is labeled with an accepting configuration. If the root of a run ρ is labeled
with C0(x), then ρ is a run with input x.
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The language (or problem) accepted by M is the set QM of all x ∈ Σ∗ such
that there is an accepting run of M with initial configuration C0(x).

M runs in time t : N0 → N0 if for every x ∈ Σ∗ the length of every run of
M with input x is at most t(|x|). Similarly, M runs in space s : N0 → N0 if
for every x ∈ Σ∗ every run of M with input x only consists of configurations
of size at most s(|x|).

A step C → C′ is an alternation if either C is existential and C′ is universal
or vice versa. A run ρ of M is �-alternating, for an � ∈ N, if on every path in the
tree associated with ρ, there are less than � alternations between existential
and universal configurations. Fig. A.1 illustrates this. The machine M is �-
alternating if every run of M is �-alternating.

∃

∀

∃

∃

∃ ∀

∀

∃

Fig. A.1. Schematic view of a 3-alternating run of length 5

Random Access Machines

While Turing machines are our model of choice for defining complexity classes,
they are less suitable for analyzing the running times of algorithms. It has be-
come standard to base the analysis of algorithms on random access machines
(RAMs). We follow this practice.

A RAM consists of a finite control unit, a program counter, and an infi-
nite sequence of registers r0, r1, r2, . . .. Registers store nonnegative integers.
Register r0 is the accumulator. A RAM executes a program that consists of
a sequence of instructions. It is a crucial property of RAMs that they allow
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indirect addressing, that is, there are instructions for accessing registers whose
address (index) is specified by the content of other registers. Besides loading
numbers from an arbitrary, possibly indirectly addressed, register to the accu-
mulator and back from the accumulator to an arbitrary register, RAM instruc-
tions include conditional and unconditional jump instructions and arithmetic
instructions. The result of an arithmetic instruction is stored in the accu-
mulator. In our specific model, we allow the following arithmetic operations:
addition, subtraction (cut off at 0), and division by 2 (rounded off).

RAMs, as defined so far, are always deterministic. We introduce nonde-
terministic and alternating RAMs in Chaps. 6 and 8.

Inputs and outputs of RAMs are simply stored in the first registers. More
precisely, if we want to decide a problem Q ⊆ Σ∗ by a RAM, assuming without
loss of generality that Σ is a subset of N, then an instance x = (x1, . . . , xn) ∈
Σn is given to the RAM by storing xi in register ri for i ∈ [n]; all other registers
are initially set to 0. Outputs are specified similarly. For decision problems,
acceptance or rejection is indicated by writing 1 or 0, respectively, into the
accumulator. It is now easy to define what it means for a RAM program to
decide a problem Q ⊆ Σ∗ or to compute a (partial) function from Σ∗ to Σ∗.

To measure the running time of a RAM, we use a uniform cost measure.
That is, the length of a run is defined to be the number of instructions carried
out, no matter how large the numbers involved are. A RAM program P runs
in time t : N0 → N0 if for every x ∈ Σ∗ the length of the run of P with input
x is at most t(|x|).

Theorem A.1 (RAM Simulation). (1) Let Q ⊆ Σ∗ be a problem that can
be decided by a deterministic Turing machine that runs in time t : N0 →
N0. Then there exists a RAM program that decides Q and runs in time
O(t).

(2) Let Q ⊆ Σ∗ be a problem that can be decided by a RAM program that runs
in time t : N0 → N0. Then there exists a deterministic Turing machine
that decides Q and runs in time O(t3).

The important fact that follows from these simulation results is that if we
only worry about the running time of algorithms up to polynomial factors,
then it does not matter which of the two machine models we use to specify
them. Whenever we make more precise claims about the running time of
algorithms for specific problems, we refer to the RAM model. In principle we
could specify these algorithms as RAM programs whose running time is as
claimed (but we never do).

Circuits

A (Boolean) circuit is a directed acyclic graph in which each node of in-
degree > 0 is labeled as and-node, as or-node, or, if the in-degree is exactly 1,
as negation node. Nodes of in-degree 0 are either labeled as Boolean constants
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0 or 1, or as input nodes . In addition, one node of out-degree 0 is labeled as
the output node. We think of the input nodes as being numbered 1, . . . , n.

A circuit C with n input nodes defines an n-ary Boolean function in a
natural way. We denote the value computed by C on input x ∈ {0, 1}n by
C(x). If C(x) = 1, we say that x satisfies C. We call C satisfiable if there is
some tuple x ∈ {0, 1}n that satisfies C.

We say that a family (Cn)n≥0 of Boolean circuits decides a problem Q ⊆
{0, 1}∗, if for every n ≥ 0 the circuit Cn has precisely n input nodes, and for
all x ∈ {0, 1}n we have

Cn(x) = 1 ⇐⇒ x ∈ Q.

We define the size ||C|| of a circuit C to be the number of nodes plus the
number of edges of C. The family (Cn)n≥0 is uniform if there is an algorithm
that, given n ∈ N0, computes Cn in time polynomial in ||Cn||.

Theorem A.2 (Circuit Simulation). (1) Let t : N0 → N0 be such that
t(n) ≥ n for all n ∈ N0. Let Q ⊆ {0, 1}∗ be a problem that can be decided
by a deterministic Turing machine that runs in time t.
Then there is a uniform family (Cn)n≥0 of Boolean circuits such that
(Cn)n≥0 decides Q and ||Cn|| ∈ O(t2(n)).

(2) Let Q ⊆ {0, 1}∗ be a problem that can be decided by a uniform family
(Cn)n≥0 of Boolean circuits. Let t : N0 → N0 be such that for all n ∈ N0

we have ||Cn|| ≤ t(n).
Then there is deterministic Turing machine that decides Q and runs in
time tO(1).

We cannot make statement (2) of the previous theorem more precise be-
cause our notion of uniformity only requires that the nth circuit in the family
is computable in time Cn. However, it is easy to prove the following:

Proposition A.3. There is an algorithm that, given a circuit C with n input
nodes and an x ∈ {0, 1}n, decides if C(x) = 1 in time O(||C||).

This proposition is an example of our standard way of dealing with algo-
rithms. To make the statement more precise, we could replace “algorithm” by
RAM program.

We state a variant of Theorem A.2 for nondeterministic Turing machines
with binary branching.

Proposition A.4. Let t, t′ : N0 → N0 be such that t(n) ≥ n for all n ∈
N0 and such that t′(n) is computable in time polynomial in n. Let Q ⊆ Σ∗

be a problem such that x ∈ Q can be decided by a nondeterministic Turing
machine with binary branching in time t(|x|) that performs at most t′(|x|)
nondeterministic steps. Then there is an algorithm associating with every x ∈
Σ∗ a circuit Cx with t′(|x|) input nodes such that

x ∈ Q ⇐⇒ Cx is satisfiable.
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A.2 Complexity Classes

Let t : N0 → N0. The class of all decision problems Q ⊆ Σ∗ that can be
decided by a deterministic Turing machine that runs in time t is denoted by

DTIME(t).

For a class T of functions we let DTIME(T ) :=
⋃

t∈T DTIME(T ). Similarly,
we define NTIME(t) and NTIME(T ) for nondeterministic and ATIME(t) and
ATIME(T ) for alternating Turing machines. We also define space-bounded
classes D/N/ASPACE(s) and D/N/ASPACE(S).

A function t : N0 → N0 is time constructible if there is a deterministic
Turing machine that for all n ∈ N on every input of length n halts in exactly
t(n) steps. Similarly, a function can be defined to be space constructible.

Theorem A.5 (Time Hierarchy Theorem). Let t, t′ : N0 → N0 such that
t′ is time constructible and t′(n) ∈ ω(t(n) · log t(n)) for all n ∈ N. Then

DTIME(t) ⊂ DTIME(t′).

Similar results hold for the nondeterministic and the space-bounded classes.

Theorem A.6 (Savitch’s Theorem). Let s : N0 → N0 be space construc-
tible with s(n) ≥ log n for all n ∈ N. Then

NSPACE(s(n)) ⊆ DSPACE(s2(n)).

In this book, we consider the following standard complexity classes:

L := DSPACE(O(log n)),

NL := NSPACE(O(log n)),

PTIME := DTIME(nO(1)),

NP := NTIME(nO(1)),

PSPACE := DSPACE(nO(1)),

EXPTIME := DTIME(2nO(1)

),

2EXPTIME := DTIME(22nO(1)

).

The classes are ordered by inclusion (in the order they are defined). An
additional class that we have to consider is

ETIME := DTIME(2O(n)).

It follows from the hierarchy theorems that

NL ⊂ PSPACE,
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PTIME ⊂ ETIME ⊂ EXPTIME ⊂ 2EXPTIME.

For every t ≥ 1 we let ΣP
t be the class of all problems decided by an alternating

Turing machine A that runs in time nO(1) such that every run of A starts with
an existential configuration and is t-alternating. The classes ΣP

t , for t ≥ 1,
form the polynomial hierarchy.

Alternatively, for every t ≥ 1, ΣP
t+1 can be defined as the class of all

problems decided by a nondeterministic oracle Turing machine that runs in
time nO(1) relative to an oracle in ΣP

t .

Theorem A.7. (1) Let t : N0 → N0 such that t(n) ≥ n for all n ∈ N0. Then

ATIME(t(n)O(1)) = DSPACE(t(n)O(1)).

(2) Let s : N0 → N0 such that s(n) ≥ log n for all n ∈ N. Then

ASPACE(s(n)) = DTIME(2O(s(n))).

Thus we have

NP = ΣP
1 ⊆ ΣP

2 ⊆ ΣP
3 ⊆ · · · ⊆ ATIME(nO(1)) = PSPACE.

For f : N0 → N0, a problem Q ⊆ Σ∗ is in NP[f ] if there is a nondetermin-
istic Turing machine M that runs in time nO(1) and performs at most f(n)
nondeterministic steps on every run with an input of length n. For a class F
of functions, we let

NP[F ] :=
⋃

f∈F
NP[f ].

We have
NP[log n] = PTIME and NP[nO(1)] = NP.

Reductions and Completeness

A polynomial time (many-one) reduction from a problem Q ⊆ Σ∗ to a problem
Q′ ⊆ (Σ′)∗ is a mapping R : Σ∗ → (Σ′)∗ such that

(1) For all x ∈ Σ∗,
x ∈ Q ⇐⇒ R(x) ∈ Q′.

(2) R is computable by a deterministic Turing machine that runs in time
nO(1).

A polynomial time Turing reduction from a problem Q ⊆ Σ∗ to a problem
Q′ ⊆ (Σ′)∗ is a deterministic oracle Turing machine that decides Q relative
to the oracle Q′ and runs in time nO(1).

We write Q ≤ptime Q′ if there is a polynomial time many-one reduction
from Q to Q′. A problem Q is hard for a complexity class C, or C-hard, under
polynomial time reductions if Q′ ≤ptime Q for every Q′ ∈ C. A problem Q
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is complete for a complexity class C, or C-complete, under polynomial time
reductions if Q ∈ C and Q is C-hard.

The classical problems underlying many of the parameterized problems in
this book are NP-complete under polynomial time reductions, among them
Vertex-Cover, Hitting-Set, Independent-Set, Clique, Hom, Emb,
Feedback-Vertex-Set, Perfect-Code, Short-NTM-Halt, Crossing-
Number, Tree-Width, Integer-Programming, Colorability, d-Col-
orability for every d ≥ 3, Sat(A) for every polynomial time decidable class
A of propositional formulas that contains 3-CNF, and WSat(A) for every
polynomial time decidable class A of propositional formulas that contains
2-CNF. All these problems are defined elsewhere in this book (most of them
only in their parameterized forms).



References

1. K.A. Abrahamson, R.G. Downey, and M.R. Fellows. Fixed-parameter
tractability and completeness IV: On completeness for W[P] and PSPACE
analogs. Annals of Pure and Applied Logic, 73:235–276, 1995.

2. K.A. Abrahamson, J.Ellis, M.R. Fellows, and M. Mata. On the complexity
of fixed-parameter problems. In 30th Annual Symposium on Foundations of
Computer Science, pages 210–215. IEEE Computer Society, 1989.

3. F.N. Abu-Khzam, R.L. Collins, M.R. Fellows, M.A. Langston, W.H. Sutters,
and C.T. Symon. Kernelization algorithms for the vertex cover problem: The-
ory and experiments. In L. Arge, G.F. Italiano, and R. Sedgewick, editors,
Proceedings of the Sixth Workshop on Algorithm Engineering and Experiments
and the First Workshop on Analytic Algorithmics and Combinatorics, pages
62–69. SIAM, 2004.

4. J. Alber. Exact Algorithms for NP-hard Problems on Networks: Design, Analy-
sis, and Implementation. PhD thesis, Universität Tübingen, Wilhelm-Schickard
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DEA, Université Paris Sud, 1995.

22. S.A. Bloch, J.F. Buss, and J. Goldsmith. Sharply bounded alternation within
P. ECCC Report TR96-011, 1996.

23. H.L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. Journal of Algorithms, 11:631–643, 1990.

24. H.L. Bodlaender. On disjoint cycles. International Journal of Foundations of
Computer Science, 5:59–68, 1994.

25. H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

26. H.L. Bodlaender. Treewidth: Algorithmic techniques and results. In I. Privara
and P. Ruzicka, editors, Proceedings 22nd International Symposium on Math-
ematical Foundations of Computer Science, volume 1295 of Lecture Notes in
Computer Science, pages 29–36. Springer-Verlag, 1997.

27. H.L. Bodlaender, R.G. Downey, M.R. Fellows, and H.T. Wareham. The pa-
rameterized complexity of sequence alignments and consensus. Theoretical
Computer Science, 147:31–54, 1994.

28. T. Brueggemann and W. Kern. An improved deterministic local search algo-
rithm for 3-sat. Theoretical Computer Science, 329:303–313, 2004.
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54. V. Chvátal. On the computational complexity of finding a kernel. Report No.
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Universität Tübingen, Germany, 2002.

166. R. Niedermeier and P. Rossmanith. An efficient fixed parameter algorithm for
3-hitting set. Journal of Discrete Algorithms, 1:89–102, 2003.

167. C. H. Papadimitriou and M. Yannakakis. On limited nondeterminism and
the complexity of V-C dimension. Journal of Computer and System Sciences,
53:161–170, 1996.

168. C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
169. C.H. Papadimitriou and M. Yannakakis. Optimization, approximation, and

complexity classes. Journal of Computer and System Sciences, 43:425–440,
1991.

170. C.H. Papadimitriou and M. Yannakakis. On the complexity of database
queries. Journal of Computer and System Sciences, 58:407–427, 1999.

171. R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time
algorithm for k-SAT. In Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, pages 628–637. IEEE Computer Society,
1998.

172. J. Plehn and B. Voigt. Finding minimally weighted subgraphs. In R. Möhring,
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Z, 3
N0, 3
N, 3

[n, m], 3
[n], 3

Σ, 3
Σ∗, 4
κ, 4

(Q, κ), 4
|x|, 5

nO(1), 6
O( · ), 6
o( · ), 6

Ω( · ), 6
ω( · ), 6

Θ( · ), 6
κsize, 6
κone, 7

(Q, κ)�, 7
G = (V, E), 8

H = (V, E), 10
|M |, 12
deg(v), 18

deg(G), 18
(sol, cost, goal), 19

optO, 20
r(x, y), 22
K = (V, E, λ), 24

K, v |= ϕ, 25
A, 25

≤fpt, 34
≡fpt, 34
<fpt, 34

ˆ
(Q, κ)

˜fpt
, 34ˆ

C
˜fpt

, 34

G, 35
≤ptime, 35
≤fpt-T, 37
≡fpt-T, 37ˆ
(Q, κ)

˜fpt-T
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M, 45
W[P], 45
C, 49
C(x), 49
(Cn)n≥0, 49
||C||, 49
bit(i, n), 50
Sn,k, 50
Bn,j , 51
f ∈ oeff(g), 58
ι, 58
ιf , 58
¬, 66
∧, ∨, 66V

,
W

, 66
Γt,d, 66
Δt,d, 66
CNF, 67
d-CNF, 67
DNF, 67
d-DNF, 67
A+, 67
A−, 67
var(α), 68
α = α(X1, . . . , Xn), 68
τ , 72
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arity(R), 72
RA, 72
τGraph, 72
τHG, 72
τCirc, 72
OUT , AND , OR, NEG , IN , TRUE ,

FALSE , 72
τΣ, 73
S(ā), 73
〈A〉, 74
||A||, 74
x, y, . . ., 75
x = y, 75
Rx1 . . . xr, 75
∃,∀, 75
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free(ϕ), 75
ϕ(x1, . . . , xk), 75
ϕ(A), 75
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∃≥kx ϕ, 76
∃=kx ϕ, 76
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vc′k, 76
vck, 76
cliquek, 77
isk, 77
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truek,d, 77
wsatk,d, 78
FO, 78
Φ[τ ], 78
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Σt, 78
Πt, 78
ΣFO[τ ], 79
|ϕ|, 79
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colk, 80
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SO, 80
MSO, 80
MSO, 80
Σ1
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Π1
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MC(Φ), 82
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WD-Φ, 87
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VC(H), 91
Log-WDϕ, 91
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p-WDϕ, 95
p-WD-Φ, 95
W[t], 95
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Σt,u[r], 149
P, 169
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simple-Σ�, 171
wsimple-Σ�, 171
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reg-Δ+
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Bound, 186
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Σ�,m, 196
Θt,u, 198
Σ∗
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Σfunc

t , 201
Σfunc

t,u , 201
r(0), r(1), . . ., 203
g(0), g(1), . . ., 204
M�M ′, 212
S(X), 214
val(C), 214
vc(G), 214
L(G), 218
dH(ā, b̄), 228
A = (S, Σ, sI , Δ, F ), 234
L(A), 234
L(ϕ) (for strings), 235
tow, 239
Σω, 240
Pow(σ), 241
ω
v, 241

λ(
ω
v), 241

L(K, v), 241
Lω(A), 241

S
`ω
a
´
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T = (T, E), 245
T = (T, E1, E2), 245
(T, E1, E2, λ), 245
A = (S, Σ, Δ, F ), 245
⊥, 245
τ 2
Σ, 246

Pa, 246
TREElob[Σ], 246
TREElob, 246
L(ϕ) (for trees), 246
τu
Σ, 247

TREElo, 247
TREEb, 250
T (n), 250
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Tvar(V ), 253
Tlit(V ), 254
Tlit(¬V ), 254
Tclause(V ), 254
T (γ), 254
root(x), clause(x), lit(x),
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V(S), 255
sat-assh(X), 255

sath, 256
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TREEu, 259
Tt, 262
(T , (Bt)t∈T ), 262
tw(G), 262
B(U), 262
B−1(W ), 263
(T , (b̄t)t∈T ), 263
b̄t, 263
Gk×�, 265
tw(A), 275
G(A), 276
τϕ, 280
dG(v, w), 287
K5, 290
K3,3, 290
top-subH, 290
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SG
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NA
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NA
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NA

r (a), 314
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r (S), 314
ltw(A, r), 314
DEG(d), 314
PLANAR, 314
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a )a∈Σ), 329
TREEl, 329
BIP, 329
∃FO, 335
∃FOp, 335
Λ, 346
Λn,k, 347
(F, κ), 357
(F, κ) ≤fpt (F ′, κ′), 363
(F, κ) ≤fpt-T (F ′, κ′), 363ˆ
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˜fpt
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Pk, 372
Ck, 372
DK , 372
θh(X), 376
G�,m, 377
Ω(k, 	), 380
F , 390
f ≤ g, 390
≤ept, 391
<ept, 391
≡ept, 391
Πt/d!, 397
ν, 419
≤serf, 423
κh(γ), 444
N0, 453
N, 453
[n, m], 453
[n], 453
O(f), 453
Ω(f), 453
Θ(f), 453

o(f), 453
ω(f), 453
O(1), 453
nO(f(n)), 453
nO(1), 453
M = (S, Σ, Δ, s0, F ), 454
$, 454
�, 454
C = (s, x1, p1, . . . , xk, pk), 455
C → C′, 455
ρ, 455
QM, 455
fM, 455
sq, s+, s−, 456
M = (S∃, S∀, Σ, Δ, s0, F ), 456
r0, r1, r2, . . ., 457
C, 459
C(x), 459
(Cn)n≥0, 459
||C||, 459
ΣP

t , 461
≤ptime, 461
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#A[t], 366
#A[1], 367
#Hom(C), 360
#P, 362
#Sat(3-CNF), 362
#WSat(CIRC), 366
#W[1], 367–384
#W[P], 366
#W[t], 364
2EXPTIME, 460
3-Colorability, 279
3-DNF, see normal form
3-colorability problem, 8, 279

A-hierarchy, see hierarchy
A-matrix, 195, 195–197
A[1], 105–131
A[	, t], 195
A[t], see hierarchy, 98
accumulator, 117, 457
alphabet, 3

of a tree automaton, 245
of an automaton, 234
of an NTM, 454

alternation, 457
approximable

constant, 23, 89
approximation algorithm

polynomial time ε-, 23
approximation ratio, 22
approximation scheme

efficient polynomial time (eptas), 23,
225

fixed-parameter tractable randomized
(fptras), 385

fully polynomial randomized (fpras),
384

fully polynomial time (fptas), 23

polynomial time (ptas), 23
ARAM, 168

ARAM program

(t, u)-alternating, 203
	-alternating, 170

κ-restricted, 170
tail-nondeterministic, 170

e-alternating, 169
arc

polygonal, 302
arc-connected, 302

arity
bounded, 342

of a relation symbol, 72
of a vocabulary, 72

ASat, 71

ASatt, 71
ASPACE(S), 460

ASPACE(s), 460
assignment, 68

exact, 126
ATIME(T ), 460

ATIME(t), 460
ATM, 456

atom, see atomic formula
atomic proposition, 241

automaton
Büchi, 25
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deterministic finite (DFA), 234
deterministic tree , 245
equivalent, 234
Muller, 242
nondeterministic Büchi, 241

nondeterministic finite (NFA), 234
nondeterministic tree , 245

automorphism, 74
AW[∗], 103, 188, 188–193
AW[P], 192
AW[SAT], 192

Büchi’s Theorem, 236

bag
of a tree decomposition, 262

balanced W -separator, 267
Bodlaender’s Theorem, 266
Boolean circuit, see circuit
Boolean constant, 49, 458
boundary, 302

c-Colorability, 86
CC-Emb(A,B), 345
child, 245
CIRC, 49
CIRC+, 53
CIRC−, 54
circuit, 49, 72, 147, 458

k-satisfiable, 49
antimonotone, 54
family, 49

uniform, 49
monotone, 53
satisfiable, 49

circuit simulation, 459
Circuit-Sat, 58, 69
class of graphs

nontrivial, 320
classical problem, 4
clause, 67
Clique, 20, 87
clique, 20, see also

Clique,
Max-Clique,
p-Clique,
p-Clique-Dominating-Set,
p-#Clique,
Log-Clique,

s-vert-Clique,
s-Clique

closest string problem, see p-Closest-
String

CNF, see normal form
co-C, 183
color coding, 342–346
colorability problem, see 3-colorability

problem, c-Colorability,
3-Colorability,
p∗-tw-3-Colorability,
p∗-tw-3-Colorability,
s-vert-d-Colorability,
s-d-Colorability

colorful
with respect to λ, 344

coloring
k-, 344

random, 344
complement

of a graph, 35
configuration

accepting, 169, 455
deterministic, 169
existential, 169, 456
halting, 169, 455
initial, 455
of an NTM, 455, 456
successor, 169, 455
universal, 169, 456

conjunction
big, 66
small, 66

conjunctive query, 1, 110
containment, 111

connected
in a tree, 262

consistent, 255
copy

colorful, 344
of a structure, 344

core, 210, 330
counting problem, 357

corresponding to, 363
parameterized, 357

Courcelle’s Theorem, 280
Courcelle(A, ϕ), 285
cover

(r,w)-, 312
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for a hypergraph, 19, 126
crossing number, 289
crown, 214
crown rule reduction, 212–218
cycle

directed, 372
of length k, 372

decided
by a circuit family, 49

decision problem
corresponding to, 363

definable
Fagin-∼ by, 86
in a logic, 85
weighted Fagin-∼ by, 87

degree
of a graph, 18
of a structure, 314
of a vertex, 18

depth
of a circuit, 147
of a node, 147

DFA, see automaton
diameter, 305
DIGRAPH, 72
disconnecting set, 401
disjunction

big, 66
small, 66

distance, 287, 305
in a structure, 314

DNF, see normal form
dominating set, 11, see also

Dominating-Set,
p-Dominating-Set,
p-deg-Dominating-Set,
Min-Dominating-Set,
Tournament-Dominating-Set,
p-Clique-Dominating-Set,
p-Tournament-Dominating-
Set,
p-Planar-Dominating-Set,
p-deg-#Dominating-Set,
Log-Dominating-Set

of a tournament, 90, 144
Dominating-Set, 11, 88
DSPACE(S), 460
DSPACE(s), 460

DTIME(T ), 460
DTIME(t), 460
Duplicator, 331

edge, 10
realized by, 262

Emb(C), 342
embedding, 73, 106, 342

colorful, 385
planar, 302
problem, see p-Emb
strong, 73, 106
strong ∼ problem, see p-Strong-Emb

endomorphism, 330
endpoint

of an arc, 302
EPT, 390, 422
ept-equivalent logarithmic restriction,

410
ept-reduction, see reduction
eptas, see approximation scheme
(ETH), 417, 435, 450
(ETH)t, 418
ETIME, 460
Euler’s formula, 303
Eval(Φ), 82
Evalϕ, 83
evaluation problem

for Φ, see Eval(Φ)
EW-hierarchy, see hierarchy
EW[1], 412
EW[P], 394
EW[t], 397
Excluded Grid Theorem, 295
existential p-pebble game, 331

r-round winning strategy, 332
position of the, 332
starting from position (ā, b̄), 332
winning strategy, 332

existential closure
of a class Φ, 101

EXISTS, 168, 204
EXP-W[P], 396
expansion

τ -, 73
exponential time hypothesis, see (ETH)
EXPT, 390
expt-reduction, see reduction
EXPTIME, 460
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extension, 73

F fixed-parameter tractable, 390
F-FPT, 390
face, 302

outer, 302
Fagin definability, 86

characterization by ∼ of the
A-hierarchy, 186, 188

characterization by ∼ of the
A-matrix, 197

weighted, 87
Fagin’s Theorem, 85
FD-Φ, 86
FDϕ, 86
feedback vertex set, 289, see also

Feedback-Vertex-Set,
p∗-tw-Feedback-Vertex-Set,
p-Feedback-Vertex-Set

Feedback-Vertex-Set, 289
finite control unit, 457
first-order logic, see logic
fixed-parameter tractable, 5, 5–10, 23,

26–30, 71, 222, 223, 228, 239, 243,
247, 266, 280, 292–298, 304, 309,
315, 320, 335,
see also FPT

F , 390
bounded, 389
counting problem, 357, 357–361
nonuniformly, 297
strongly uniform, 9
subexponential, 417

Flower(γ, k), 430
FO, 78,

see also logic
FO-WSat(γ, k), 258
FOk, 82
FORALL, 168, 204
formula

antimonotone in X, 81
first-order, 75

Πt, 78
Σt,u, 149
Σt, 78
atomic, 75
bounded, 186
bounded (to Y ), 130
quantifier-free, 78

regular Δ+
1,2-, 180

simple Σ�-, 171
weakly simple Σ�-, 171
width of a , 82

generic Πt/d-, 398
monotone in X, 81
negative in X, 81, 135
positive in X, 81, 135
positive primitive, 110
propositional

Δt,d, 66
Γt,d, 66
negative, 67
positive, 67
small, 66

quantified propositional, 71
t-alternating, 71

second-order, 79
monadic, 80

fpras, see approximation scheme
FPT, 5, 39, 59, 62, 170, 444,

see also fixed-parameter tractable
FPT = W[P], 59, 170
FPT �= W[1], 336, 450
fpt-algorithm

Monte Carlo, 342
randomized, 342, 342
with respect to κ, 5

fpt-reduction, see reduction
fptas, see approximation scheme
fptras, see approximation scheme
function

computed by, 455
increasing, 6
nondecreasing, 6
space constructible, 460
time constructible, 27, 460
tower, 239
unbounded, 6

Gaifman graph, see graph
Gaifman’s Theorem, 317
Game(p), 333
Generalized-Node-Deletion, 100
generators

set of, 55
genus, 294

bounded, 314
Geography, 190
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GRAPH, 72
graph, 10

k-colorable, 8, 80
k-connected, 265
apex, 320
collaboration, 11
complete, 20
cut of a, 89
directed, 72
Gaifman, 276, 313
hypergraph representation of a, 72
planar, 302, 302–313
plane, 302
primal, 11, 276
undirected, 72

grid
(k × 	), 265

GUESS, 117

halting problem, 46, 168, 197
short ∼ for alternating single-

tape Turing machines with
less than 	 alternations, see
p-Short-ASTM-Halt�

short ∼ for nondeterministic (mul-
titape) Turing machines, see
p-Short-NTM-Halt

short ∼ for nondeterministic
single-tape Turing machines, see
p-Short-NSTM-Halt

Hamming distance, 228
Hash-Emb(A,B), 346
height

of a tree, 14
of a node, 267

hierarchy
#A-, 366
#W-, 364
A-, 98, 98–103, 142, 165–188
EW-, 397, 397–412
LOG-, 92, 407–412
M-, 418, 444, 447
polynomial, 71, 83, 461
S-, 418, 423, 444
W∗-, 198
Wfunc-, 201
W-, 95, 95–98, 133–161, 197–204, 447

hitting set, 10, see also
Hitting-Set,

p-Hitting-Set,
p-card-Hitting-Set,
Min-Hitting-Set,
p-d-Hitting-Set,
p-card-#Hitting-Set,
Log-Hitting-Set

Hitting-Set, 11, 88
Hom(BIP), 329
Hom(C), 327, 335–337, 341
Hom(TREEl), 329
homomorphically equivalent, 329
homomorphism, 73, 106, 327

partial, 331
strong, 73, 106

homomorphism problem, see HOM,
p-Hom

hyperedge, 10
hypergraph, 10, 72,

see also graph
collaboration, 10

hypergraph representation, 277

image of a structure, 330
independent set, 4, see also

Independent-Set,
p-Independent-Set,
p-deg-Independent-Set,
Max-Independent-Set,
p∗-tw-Independent-Set,
p-Planar-Independent-Set,
p-deg-#Independent-Set,
p-Hyp-IS,
s-vert-Independent-Set,
s-Independent-Set

in a hypergraph, 401
Independent-Set, 4, 11
inscription, 455
instance, 4
integer (linear) programming feasibility

problem, see p-Integer-
Programming

integer linear programming, 222–230
interior point

of an arc, 302
isomorphic, 74
isomorphism, 74

JGEQUAL, 204
JGZERO, 204
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Jordan Curve Theorem for Polygons,
302

kernel, 29, 208
in a graph, 143

kernel problem
parameterized, see p-Kernel

kernelization, 29, 208, 322–324
Buss’, 208
polynomial, 208, 208–222

k · log n-trick, 52, 395, 446
Kuratowski’s Theorem, 290

L, 460
language

ω-, 240
ω-regular, 242
accepted by, 169, 455, 457
Büchi recognizable, 242
defined by, 235
of K at v, 241
regular, 234
tree , 246

recognized by, 245
regular, 246

leaf, 245
length

of a run, 169
limited nondeterminism, 60–63, 90–92
linear programming problem, 218
linear temporal logic, 2, 25
literal

of first-order logic, 78
of propositional logic, 66

local
r-, 317

Log-Bounded-NTM-Halt, 411
Log-Clique, 90, 412
Log-Dominating-Set, 90, 411
Log-Generators, 412
LOG-hierarchy, see hierarchy
Log-Hitting-Set, 408, 411
Log-WSat(Γ−

1,2), 412
Log-WD-Φ, 91
Log-WDϕ, 91, 407, 412
Log-WSat(A), 408
Log-WSat(CIRC), 396
Log-WSat(Γ+

t,1), 411

Log-WSat(Γ−
t,1), 411

Log-WSat(Γt,1), 411
LOG[t], 92, 408
logic

first-order, 75–79, 82, 188, 250, 315,
413

monadic second-order, 80, 236, 242,
246, 250

propositional, 66–71
quantified propositional, 71
second-order, 79–81

LOGNP, 92, 416
LOGSNP, 92, 416
longest common subsequence problem,

see p-LCS
loop-free, 72
LTL, see linear temporal logic

M-hierarchy, see hierarchy
M[P], 444
M[SAT], 444
M[t], 444
machine characterization

of AW[∗], 189
of A[1], 118
of the A-hierarchy, 168–171
of the Wfunc-hierarchy, 203
of the W-hierarchy, 204
of W[1], 118

makespan, 222
matching, 212

maximal, 212
maximum, 212

Max-3-DNF-Sat, 22
Max-Clique, 20
Max-Cut, 89
Max-Independent-Set, 21
maximization problem, 20
MAX-Φ, 89
Maxψ, 89
MAXSNP, 89
MC(LTL), 25
MC(Φ), 82
MCϕ, 83
Menger’s Theorem, 270
method of bounded search trees, 14,

10–19
Min-Dominating-Set, 21
Min-Hitting-Set, 21
Min-Makespan-Scheduling, 223, 225
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Min-Vertex-Cover, 20
miniaturization

parameterized, 438
Miniaturization Theorem, 439
minimization problem, 20
minimum vertex cover problem, see

Min-Vertex-Cover
minor, 295

excluded, 296
minor closed, 296
minor map, 338

onto, 338
model of, 76
model-checking characterization

of AW[SAT], 193
of the A-matrix, 196
of the polynomial hierarchy, 83
of the W-hierarchy, 149
of W[SAT], 162

model-checking problem
for Φ (MC(Φ)), 82
for linear temporal logic, 2, 24, 25
parameterized, see p-MC(Φ)

monadic second-order logic, see logic
monotone and antimonotone collapse,

156
MSO, 80, 235,

see also logic
MSO-Sat(γ), 257
multigraph, 72

neighborhood
r-, 310

in a structure, 314
Nemhauser–Trotter theorem, 219
NFA, see automaton
NL, 460
node, 262

and-, 49, 458
big ∼ of a circuit, 147
depth of a, 77
input, 49, 459
negation, 49, 458
or-, 49, 458
output, 49, 459
small ∼ of a circuit, 147

nonuniform XP, 41
normal form

d-conjunctive (d-CNF), 67

d-disjunctive (d-DNF), 67
conjunctive (CNF), 67
disjunctive (DNF), 67

3- (3-DNF), 22
negation, 67, 78
prenex, 78

normalization
first-order, 171
propositional, 136

Normalization Lemma
Σ�-, 171

NP, 47, 85, 460
after a precomputation, 38
eventually in, 38

NP∗[f(m)], 63
NP-complete

strongly, 223
NP-optimization problem, 19, 19–24,

88–90
NP[F ], 61, 461
NP[f ], 61, 90, 461
NP[log2 n], 61, 90
NPbin[f ], 61
NRAM, 117
NRAM program

κ-restricted, 118
tail-nondeterministic, 118

NSPACE(S), 460
NSPACE(s), 460
NTIME(T ), 460
NTIME(t), 460
NTM, 454

optimization problem, see NP-
optimization problem

p∗-tw-3-Colorability, 279, 286
p∗-tw-Colorability, 286
p∗-tw-Feedback-Vertex-Set, 289
p∗-tw-Graph-Isomorphism, 299
p∗-tw-Hamiltonicity, 280, 287
p∗-tw-Independent-Set, 287
p∗-tw-MC(MSO), 280
p∗-tw-Sat(CIRC), 286
p-#Clique, 363, 367, 381
p-#Cycle, 363, 372–374, 385
p-#Cycle-through-Edge, 374
p-#Directed-Cycle, 372, 372, 373,

376
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p-#Dominating-Set, 365
p-#Emb(C), 385
p-#Hom(C), 371
p-#Matching, 388
p-#MC(C, FO), 361
p-#MC(C, MSO), 361
p-#MC(C, Φ), 361
p-#MC(Φ), 361
p-#MC(Σ1), 365
p-#Path, 363, 372, 374, 385
p-#Short-NSTM-Halt, 371
p-#Typed-Directed-Cycle, 376, 381
p-#Vertex-Cover, 357, 359
p-#WD-Φ, 364
p-#WDϕ, 360
p-#WSat(A), 362
p-#WSat(2-CNF−), 367
p-#WSat(Γt,d), 364
p-AWD�-Φ, 186
p-AWD�,ϕ, 186
p-AWSat(CIRC), 193
p-AWSat(Γ1,2), 413
p-AWSat(Γ4,1), 414
p-AWSat(Γt,1), 413
p-AWSat(Θ), 180
p-AWSat�(Θ), 174
p-Bounded-NTM-Halt, 46, 54, 396
p-card-#Hitting-Set, 358
p-card-Hitting-Set, 12
p-clausesize-WSat(CNF), 126
p-Clique, 21, 35, 42, 46, 96, 99, 106,

113, 392, 394, 412
p-Clique-Dominating-Set, 100, 180,

186, 366
p-Closest-String, 228
p-Colorability, 8, 38, 40
p-Compact-TM-Halt, 194
p-Conjunctive-Query-

Containment-I, 111
p-Conjunctive-Query-

Containment-II, 111
p-Conjunctive-Query-Evaluation,

110
p-Crossing-Number, 290, 294
p-Cycle, 347
p-d-Hitting-Set, 17, 210, 211
p-deg-#Dominating-Set, 359
p-deg-#Independent-Set, 359
p-deg-Dominating-Set, 18

p-deg-Independent-Set, 18, 30, 208
p-Directed-Feedback-Vertex-Set,

299
p-Disjoint-Cycles, 297
p-Disjoint-Paths, 294
p-Distance-d-Dominating-Set, 161
p-Dominating-Set, 11, 36, 42, 46, 96,

99, 143, 392, 402
p-dual-Clique, 161
p-dual-Dual-Dominating-Set, 161
p-Edge-Disjoint-Triangle, 345
p-Emb, 106
p-Emb(C), 342, 347
p-Exact-Hitting-Set, 122
p-Exact-WSat(CNF), 126, 143
p-Exact-WSat(CNF+), 126, 143
p-Exact-WSat(Γ), 126
p-Exp-DTM-Halt, 42
p-Feedback-Vertex-Set, 292
p-Game, 336
p-Generators, 55, 396
p-Hitting-Set, 11, 36, 42, 46, 96, 99,

143, 392, 402
p-Hom, 106
p-Hom(C), 328, 335–337, 342
p-Hyp-DIS, 401
p-Hyp-IS, 401
p-Hypergraph-Basis, 30
p-Independent-Set, 5, 35, 42, 46, 106,

123, 128, 392
p-Integer-Programming, 222
p-Kernel, 143
p-LCS, 47, 146, 202, 203
p-Linear-Inequality-Deletion, 57
p-log-Circuit-Sat, 59
p-Log-Clique, 408, 412
p-Log-Dominating-Set, 408
p-Log-Hitting-Set, 408
p-log-Sat(CIRC), 446
p-log-Sat(Γ), 445, 446
p-log-Sat(Γt,d), 446
p-log-Sat(PROP), 446
p-log-Vertex-Cover, 446
p-Log-WDϕ, 408
p-Log-WSat(CIRC), 395, 396
p-Log-WSat(Γ), 408
p-Matrix-Dominating-Set, 19
p-MC(C, Φ), 84
p-MC(FO), 413, 414
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p-MC(LTL), 25, 244
p-MC(Φ), 84, 98
p-MC(Σ1), 392, 394
p-MC(Σt,u), 401
p-MC(STRING, FO), 413
p-MC(STRING, MSO), 239
p-MC(STRING[Σ], FO), 260
p-MC(STRING[Σ], MSO), 260
p-MC(TREE, FO), 250
p-MC(TREE, MSO), 250
p-MC(TREElo, MSO), 247
p-MC(TREElob, MSO), 246
p-Min-Makespan-Scheduling, 223
p-Min-Vertex-Cover, 21
p-Mini(Q,ν), 438
p-Mini(p-Sat(Γ)), 446
p-Minimum-Axiom-Set, 57
p-Minor, 296
p-O, 21, 23
p-Path, 347
p-Perfect-Code, 120
p-Dominating-Set, 438
p-Planar-Dominating-Set, 305, 309,

322, 324
p-Independent-Set, 438
p-Planar-Independent-Set, 304,

304, 322
p-Planar-Subgraph-Isomorphism,

309
p-Planar-Vertex-Cover, 322, 437
p-PSat(A), 404
p-PSat(CIRC+), 55
p-PSat(Γ−

t,1), 405
p-Red/Blue-Nonblocker, 160
p-Sat, 4, 6, 30
p-Sat(A), 9, 69
p-Sat(d-CNF), 435
p-Sat(Γ), 446
p-Set-Packing, 109
p-Set-Splitting, 346
p-Short-ASTM-Halt, 168, 170, 189
p-Short-ASTM-Halt�, 166, 170
p-Short-ATM-Halt�, 168, 197
p-Short-Geography, 190
p-Short-NSTM-Halt, 114
p-Short-NTM-Halt, 153
p-Short-Post-Correspondence, 123
p-Square-Tiling, 117
p-Strong-Emb, 106

p-Strong-Hom, 106
p-Subgraph-Isomorphism, 99
p-Subset-Sum, 122
p-Topological-Subgraph, 298, 299
p-Tournament-Dominating-Set,

144, 392, 402
p-Tree-Width, 266
p-var-MC(FO), 193
p-var-MC(Φ), 162
p-var-MC(PNF), 193
p-VC-Dimension, 108, 402, 403, 405,

407
p-Vertex-Cover, 18, 35, 195, 209,

210, 215, 218
p-Vertex-Deletion, 100, 183, 184
p-WD-Φ, 95
p-WDϕ, 95, 128, 412
p-WSat(A), 69, 408
p-WSat(CIRC), 49, 395, 398
p-WSat(CIRC+), 53, 398
p-WSat(CIRC−), 54
p-WSat(d-CNF), 123, 128
p-WSat(d-CNF−), 123
p-WSat(Δt,d), 133
p-WSat(Γ+

t,1), 133, 397, 401

p-WSat(Γ+
t,d), 397, 400–402

p-WSat(Γ−
1,2), 392, 412

p-WSat(Γ−
1,d), 398

p-WSat(Γ−
t,1), 133, 397, 401, 405

p-WSat(Γ−
t,d), 397, 400–402

p-WSat(Γ1,d), 398
p-WSat(Γt,1), 133, 397
p-WSat(Γt,d), 134, 397, 400
panel problem, 10
para-EXPTIME, 43
para-L, 195
para-NP, 38, 37–41
para-PSPACE, 194
parameter, 4

logarithmic, 393
parameterization, 4, 436

log-, 444
standard, 21

parameterized complexity theory
bounded, 390
unbounded, 390

parameterized graph homomorphism
problem, 99
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parameterized induced subgraph
isomorphism problem, 99

parameterized intractable, 33
parameterized partitioned satisfiability

problem, see p-PSat(A)
parameterized problem, 4

trivial, 35
parameterized vertex cover problem, see

p-Vertex-Cover
parent, 245
parsimonious, see reduction
path

M -alternating, 212
M -augmenting, 212
computation, 169
in a graph, 24
of length k, 372

pattern matching problem, 234
pebble, 331
pebble game

existential p-, 331
perfect code, 120
perfect family of hash functions

k-, 346
perfect hashing, 342, 346–354
petal, 211
planar embedding, 302
PNF, 193
polygon, 302
polynomial hierarchy, see hierarchy
polynomially balanced, 19
problem

decided by, 169, 455
program counter, 457
PROP, 66
proposition

atomic, 24
propositional characterization

of AW[∗], 189
of A[1], 123
of the A-hierarchy, 175
of the EW-hierarchy, 397
of the polynomial hierarchy, 71
of the W-hierarchy, 133
of W[1], 123

propositional logic, see logic
PSPACE, 71, 83, 460
ptas, see approximation scheme
PTIME, 6, 7, 82, 460

after a precomputation on the
parameter, 27

eventually in, 27
PTIME �= NP, 39, 57, 250

query language, 1

RAM, 117, 457
alternating (ARAM), 168
nondeterministic (NRAM), 117
simulation, 458

random access machine, see RAM
reactive system, 241
Reduce(G, k), 209
reduct

τ -, 73
reduction

ept-, 391
expt-, 394
fpt many one, 33
fpt parsimonious, 363
fpt Turing, 37

closure under, 37
complete under, 37
hard under, 37

fpt Turing ∼ for counting problems,
363

fpt-, 33
closed under, 34
closure under, 34
complete under, 34
hard under, 34

parsimonious, 362
polynomial time, 461

complete under, 462
hard under, 462

polynomial time Turing , 461
subexponential ∼ family (serf), 421
subexponential Turing ∼ family, 422

region, 302
register, 457

guess, 204
standard, 203

relational database, 1
root, 245
Rooted-TDec(k,G, W ), 273
run

	-alternating, 457
accepting, 455, 456
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finite, 455, 456
infinite, 455, 456
length of, 455
of a nondeterministic Büchi

automaton, 241
accepting, 241

of a tree automaton, 245
accepting, 245

of an ARAM, 169
accepting, 169
finite, 169
infinite, 169

with input x, 455, 456
running time, 455

s-3-Colorability, 419
s-Clique, 436
s-d-Colorability, 435
S-hierarchy, see hierarchy
s-Independent-Set, 435
s-Sat(d-CNF), 435
s-var-WSat(d-CNF), 425, 435
s-var-WSat(Γ), 419
s-vert-Clique, 425, 435
s-vert-d-Colorability, 424, 435
s-vert-FDϕ, 425
s-vert-Independent-Set, 419, 425, 435
s-vert-Vertex-Cover, 425, 435
s-vert-WDϕ, 425
s-Vertex-Cover, 435
s-WSat(d-CNF), 435
S[1], 423–426, 435–438
S[P], 423
S[SAT], 423
S[t], 423
Sat, 4
Sat(A), 69
Sat(CIRC), 69
Sat(3-CNF), 69
satisfiability problem

alternating, see ASat
for formulas or circuits, 69, see also

Sat(A), Sat(3-CNF), Sat(CIRC)
parameterized, 3, 4
parameterized weighted

for A, see p-WSat(A)
weighted, 69, see also WSat(A),

s-var-WSat(Γ)
satisfiable

k-, 69, 77
circuit, 459

Savitch’s Theorem, 460
Scattered(G, S, 	, r), 318
second-order logic, see logic
sentence, 75
separate, 264
serf, see reduction
shatter, 91
signature, 241
Simple-Sparsify(γ, k), 429
size

of a circuit, 49, 459
of a configuration, 455
of a hypergraph, 12
of a query, 1
of a structure, 74

size measure, 418, 436
slice, 7, 39
SNP, 86, 88
SO, 80
solution

half-integral, 218
spanning tree, 305
Sparsification Lemma, 426
Sparsify(γ, k), 430
sphere

[i, j]-, 310
r-, 310

Spoiler, 331
SQL, 1
state

accepting
of an NTM, 454

initial
of an NTM, 454

initial ∼ of an automaton, 234
negative answer, 456
of a tree automaton, 245

accepting, 245
of an automaton, 234

accepting, 234
of an NTM, 454
positive answer, 456
query, 456

step, 169
computation, 455
deterministic, 168
existential, 168
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nondeterministic, 118, 168, 455
of an NTM, 456
universal, 168

STRING, 73
string, 73

ω-, 240
STRING[Σ], 73
strong homomorphism problem, see

p-Strong-Hom
structure, 72

τ -, 72
bipartite, 112
connected, 338
encoding of a, 74
incidence, 112
Kripke, 2, 24, 241
planar, 314
size of a, 74

subdivision, 290
SUBEPT, 390, 417, 444
SUBEXPTIME∗[f(m)], 63
subgraph, 73

topological, 290
subgraph isomorphism problem, see

p-Subgraph-Isomorphism
subhypergraph, 184
SubIso(G,H), 312
substructure, 73

induced, 73
sunflower, 210
Sunflower Lemma, 211
symbol

blank, 454
constant, 201
function, 201
relation, 72

term, 67, 201
Time Hierarchy Theorem, 460
tournament, 90, 144
Tournament-Dominating-Set, 90,

411
transition

of an NTM, 454
transition relation

of a tree automaton, 245
of an automaton, 234
of an NTM, 454

tree, 245, 262

Σ-, 245
d-ary, 245
height of a, 14
labeled unranked, 329
ordered, 245
ordered binary, 245
unranked, 247

labeled ordered, 247
tree decomposition

1-node, 263
of a graph, 262
of a structure, 275
ordered, 263
small, 265

tree width
bounded, 285, 329
bounded ∼ modulo homomorphic

equivalence, 331
bounded local, 314
effectively bounded local, 314
local, 314
modulo homomorphic equivalence,

329, 331
of a graph, 262
of a structure, 275

tree width reduction, 293, 292–295
tuple realized by, 275
Turing machine

(deterministic or nondeterministic)
oracle, 456

alternating
	-alternating, 457

alternating (ATM), 456
deterministic, 454
nondeterministic (NTM), 454

(2O(k), κ)-restricted, 394
κ-restricted, 45
binary branching, 61, 454

TypedDirectedCycle(G, k, θI), 379

uniform family
of circuits, 459

universe, 72

value
of a crown, 214

Vapnik–Chervonenkis dimension, 91,
108, see also VC-Dimension,
p-VC-Dimension
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variable
first-order, 75
free ∼ of, 75
propositional, 66
relation, 79
set, 79

VC-Dimension, 91, 108, 411
vertex, 10
vertex cover, 17, see also

p-Vertex-Cover,
Min-Vertex-Cover,
p-Min-Vertex-Cover,
Vertex-Cover,
p-Planar-Vertex-Cover,
p-#Vertex-Cover,
s-vert-Vertex-Cover,
s-Vertex-Cover,
p-log-Vertex-Cover

minimum, 214
Vertex-Cover, 87
vocabulary, 72

arbitrary, 201
relational, 72, 201

W-hierarchy, see hierarchy
W[1], 105–131, 336
W[P], 45, 45–63, 170
W[SAT], 162
W[t], see hierarchy, 95

W∗[t], 198
Wfunc[t], 201
walk

in a graph, 24
WD-Φ, 87
WD-phi(A, k), 96
WDϕ, 87
WDϕ(C), 87
weakly balanced separation, 269
weft

of a circuit, 147
of a node, 147

weight
of a tuple, 49
of an assignment, 69

weighted satisfiability problem
	-alternating, see p-AWSat�(Θ)
alternating, see p-AWSat(Θ)
for circuits, see p-WSat(CIRC)

width
of a tree decomposition, 262

winning strategy, 332
r-round, 332

WRAM, 203
WSat(A), 69

XL, 194
XP, 41, 41–43
XPnu, see nonuniform XP
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